avc.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949
  1. /*
  2. * Implementation of the kernel access vector cache (AVC).
  3. *
  4. * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
  5. * James Morris <jmorris@redhat.com>
  6. *
  7. * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com>
  8. * Replaced the avc_lock spinlock by RCU.
  9. *
  10. * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2,
  14. * as published by the Free Software Foundation.
  15. */
  16. #include <linux/types.h>
  17. #include <linux/stddef.h>
  18. #include <linux/kernel.h>
  19. #include <linux/slab.h>
  20. #include <linux/fs.h>
  21. #include <linux/dcache.h>
  22. #include <linux/init.h>
  23. #include <linux/skbuff.h>
  24. #include <linux/percpu.h>
  25. #include <net/sock.h>
  26. #include <linux/un.h>
  27. #include <net/af_unix.h>
  28. #include <linux/ip.h>
  29. #include <linux/audit.h>
  30. #include <linux/ipv6.h>
  31. #include <net/ipv6.h>
  32. #include "avc.h"
  33. #include "avc_ss.h"
  34. static const struct av_perm_to_string av_perm_to_string[] = {
  35. #define S_(c, v, s) { c, v, s },
  36. #include "av_perm_to_string.h"
  37. #undef S_
  38. };
  39. static const char *class_to_string[] = {
  40. #define S_(s) s,
  41. #include "class_to_string.h"
  42. #undef S_
  43. };
  44. #define TB_(s) static const char *s[] = {
  45. #define TE_(s) };
  46. #define S_(s) s,
  47. #include "common_perm_to_string.h"
  48. #undef TB_
  49. #undef TE_
  50. #undef S_
  51. static const struct av_inherit av_inherit[] = {
  52. #define S_(c, i, b) { c, common_##i##_perm_to_string, b },
  53. #include "av_inherit.h"
  54. #undef S_
  55. };
  56. const struct selinux_class_perm selinux_class_perm = {
  57. av_perm_to_string,
  58. ARRAY_SIZE(av_perm_to_string),
  59. class_to_string,
  60. ARRAY_SIZE(class_to_string),
  61. av_inherit,
  62. ARRAY_SIZE(av_inherit)
  63. };
  64. #define AVC_CACHE_SLOTS 512
  65. #define AVC_DEF_CACHE_THRESHOLD 512
  66. #define AVC_CACHE_RECLAIM 16
  67. #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  68. #define avc_cache_stats_incr(field) \
  69. do { \
  70. per_cpu(avc_cache_stats, get_cpu()).field++; \
  71. put_cpu(); \
  72. } while (0)
  73. #else
  74. #define avc_cache_stats_incr(field) do {} while (0)
  75. #endif
  76. struct avc_entry {
  77. u32 ssid;
  78. u32 tsid;
  79. u16 tclass;
  80. struct av_decision avd;
  81. atomic_t used; /* used recently */
  82. };
  83. struct avc_node {
  84. struct avc_entry ae;
  85. struct list_head list;
  86. struct rcu_head rhead;
  87. };
  88. struct avc_cache {
  89. struct list_head slots[AVC_CACHE_SLOTS];
  90. spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
  91. atomic_t lru_hint; /* LRU hint for reclaim scan */
  92. atomic_t active_nodes;
  93. u32 latest_notif; /* latest revocation notification */
  94. };
  95. struct avc_callback_node {
  96. int (*callback) (u32 event, u32 ssid, u32 tsid,
  97. u16 tclass, u32 perms,
  98. u32 *out_retained);
  99. u32 events;
  100. u32 ssid;
  101. u32 tsid;
  102. u16 tclass;
  103. u32 perms;
  104. struct avc_callback_node *next;
  105. };
  106. /* Exported via selinufs */
  107. unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
  108. #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
  109. DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
  110. #endif
  111. static struct avc_cache avc_cache;
  112. static struct avc_callback_node *avc_callbacks;
  113. static struct kmem_cache *avc_node_cachep;
  114. static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
  115. {
  116. return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
  117. }
  118. /**
  119. * avc_dump_av - Display an access vector in human-readable form.
  120. * @tclass: target security class
  121. * @av: access vector
  122. */
  123. void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
  124. {
  125. const char **common_pts = NULL;
  126. u32 common_base = 0;
  127. int i, i2, perm;
  128. if (av == 0) {
  129. audit_log_format(ab, " null");
  130. return;
  131. }
  132. for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
  133. if (av_inherit[i].tclass == tclass) {
  134. common_pts = av_inherit[i].common_pts;
  135. common_base = av_inherit[i].common_base;
  136. break;
  137. }
  138. }
  139. audit_log_format(ab, " {");
  140. i = 0;
  141. perm = 1;
  142. while (perm < common_base) {
  143. if (perm & av) {
  144. audit_log_format(ab, " %s", common_pts[i]);
  145. av &= ~perm;
  146. }
  147. i++;
  148. perm <<= 1;
  149. }
  150. while (i < sizeof(av) * 8) {
  151. if (perm & av) {
  152. for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
  153. if ((av_perm_to_string[i2].tclass == tclass) &&
  154. (av_perm_to_string[i2].value == perm))
  155. break;
  156. }
  157. if (i2 < ARRAY_SIZE(av_perm_to_string)) {
  158. audit_log_format(ab, " %s",
  159. av_perm_to_string[i2].name);
  160. av &= ~perm;
  161. }
  162. }
  163. i++;
  164. perm <<= 1;
  165. }
  166. if (av)
  167. audit_log_format(ab, " 0x%x", av);
  168. audit_log_format(ab, " }");
  169. }
  170. /**
  171. * avc_dump_query - Display a SID pair and a class in human-readable form.
  172. * @ssid: source security identifier
  173. * @tsid: target security identifier
  174. * @tclass: target security class
  175. */
  176. static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
  177. {
  178. int rc;
  179. char *scontext;
  180. u32 scontext_len;
  181. rc = security_sid_to_context(ssid, &scontext, &scontext_len);
  182. if (rc)
  183. audit_log_format(ab, "ssid=%d", ssid);
  184. else {
  185. audit_log_format(ab, "scontext=%s", scontext);
  186. kfree(scontext);
  187. }
  188. rc = security_sid_to_context(tsid, &scontext, &scontext_len);
  189. if (rc)
  190. audit_log_format(ab, " tsid=%d", tsid);
  191. else {
  192. audit_log_format(ab, " tcontext=%s", scontext);
  193. kfree(scontext);
  194. }
  195. BUG_ON(tclass >= ARRAY_SIZE(class_to_string) || !class_to_string[tclass]);
  196. audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
  197. }
  198. /**
  199. * avc_init - Initialize the AVC.
  200. *
  201. * Initialize the access vector cache.
  202. */
  203. void __init avc_init(void)
  204. {
  205. int i;
  206. for (i = 0; i < AVC_CACHE_SLOTS; i++) {
  207. INIT_LIST_HEAD(&avc_cache.slots[i]);
  208. spin_lock_init(&avc_cache.slots_lock[i]);
  209. }
  210. atomic_set(&avc_cache.active_nodes, 0);
  211. atomic_set(&avc_cache.lru_hint, 0);
  212. avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
  213. 0, SLAB_PANIC, NULL);
  214. audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
  215. }
  216. int avc_get_hash_stats(char *page)
  217. {
  218. int i, chain_len, max_chain_len, slots_used;
  219. struct avc_node *node;
  220. rcu_read_lock();
  221. slots_used = 0;
  222. max_chain_len = 0;
  223. for (i = 0; i < AVC_CACHE_SLOTS; i++) {
  224. if (!list_empty(&avc_cache.slots[i])) {
  225. slots_used++;
  226. chain_len = 0;
  227. list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
  228. chain_len++;
  229. if (chain_len > max_chain_len)
  230. max_chain_len = chain_len;
  231. }
  232. }
  233. rcu_read_unlock();
  234. return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
  235. "longest chain: %d\n",
  236. atomic_read(&avc_cache.active_nodes),
  237. slots_used, AVC_CACHE_SLOTS, max_chain_len);
  238. }
  239. static void avc_node_free(struct rcu_head *rhead)
  240. {
  241. struct avc_node *node = container_of(rhead, struct avc_node, rhead);
  242. kmem_cache_free(avc_node_cachep, node);
  243. avc_cache_stats_incr(frees);
  244. }
  245. static void avc_node_delete(struct avc_node *node)
  246. {
  247. list_del_rcu(&node->list);
  248. call_rcu(&node->rhead, avc_node_free);
  249. atomic_dec(&avc_cache.active_nodes);
  250. }
  251. static void avc_node_kill(struct avc_node *node)
  252. {
  253. kmem_cache_free(avc_node_cachep, node);
  254. avc_cache_stats_incr(frees);
  255. atomic_dec(&avc_cache.active_nodes);
  256. }
  257. static void avc_node_replace(struct avc_node *new, struct avc_node *old)
  258. {
  259. list_replace_rcu(&old->list, &new->list);
  260. call_rcu(&old->rhead, avc_node_free);
  261. atomic_dec(&avc_cache.active_nodes);
  262. }
  263. static inline int avc_reclaim_node(void)
  264. {
  265. struct avc_node *node;
  266. int hvalue, try, ecx;
  267. unsigned long flags;
  268. for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
  269. hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
  270. if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
  271. continue;
  272. rcu_read_lock();
  273. list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
  274. if (atomic_dec_and_test(&node->ae.used)) {
  275. /* Recently Unused */
  276. avc_node_delete(node);
  277. avc_cache_stats_incr(reclaims);
  278. ecx++;
  279. if (ecx >= AVC_CACHE_RECLAIM) {
  280. rcu_read_unlock();
  281. spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
  282. goto out;
  283. }
  284. }
  285. }
  286. rcu_read_unlock();
  287. spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
  288. }
  289. out:
  290. return ecx;
  291. }
  292. static struct avc_node *avc_alloc_node(void)
  293. {
  294. struct avc_node *node;
  295. node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
  296. if (!node)
  297. goto out;
  298. INIT_RCU_HEAD(&node->rhead);
  299. INIT_LIST_HEAD(&node->list);
  300. atomic_set(&node->ae.used, 1);
  301. avc_cache_stats_incr(allocations);
  302. if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
  303. avc_reclaim_node();
  304. out:
  305. return node;
  306. }
  307. static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
  308. {
  309. node->ae.ssid = ssid;
  310. node->ae.tsid = tsid;
  311. node->ae.tclass = tclass;
  312. memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
  313. }
  314. static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
  315. {
  316. struct avc_node *node, *ret = NULL;
  317. int hvalue;
  318. hvalue = avc_hash(ssid, tsid, tclass);
  319. list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
  320. if (ssid == node->ae.ssid &&
  321. tclass == node->ae.tclass &&
  322. tsid == node->ae.tsid) {
  323. ret = node;
  324. break;
  325. }
  326. }
  327. if (ret == NULL) {
  328. /* cache miss */
  329. goto out;
  330. }
  331. /* cache hit */
  332. if (atomic_read(&ret->ae.used) != 1)
  333. atomic_set(&ret->ae.used, 1);
  334. out:
  335. return ret;
  336. }
  337. /**
  338. * avc_lookup - Look up an AVC entry.
  339. * @ssid: source security identifier
  340. * @tsid: target security identifier
  341. * @tclass: target security class
  342. * @requested: requested permissions, interpreted based on @tclass
  343. *
  344. * Look up an AVC entry that is valid for the
  345. * @requested permissions between the SID pair
  346. * (@ssid, @tsid), interpreting the permissions
  347. * based on @tclass. If a valid AVC entry exists,
  348. * then this function return the avc_node.
  349. * Otherwise, this function returns NULL.
  350. */
  351. static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
  352. {
  353. struct avc_node *node;
  354. avc_cache_stats_incr(lookups);
  355. node = avc_search_node(ssid, tsid, tclass);
  356. if (node && ((node->ae.avd.decided & requested) == requested)) {
  357. avc_cache_stats_incr(hits);
  358. goto out;
  359. }
  360. node = NULL;
  361. avc_cache_stats_incr(misses);
  362. out:
  363. return node;
  364. }
  365. static int avc_latest_notif_update(int seqno, int is_insert)
  366. {
  367. int ret = 0;
  368. static DEFINE_SPINLOCK(notif_lock);
  369. unsigned long flag;
  370. spin_lock_irqsave(&notif_lock, flag);
  371. if (is_insert) {
  372. if (seqno < avc_cache.latest_notif) {
  373. printk(KERN_WARNING "SELinux: avc: seqno %d < latest_notif %d\n",
  374. seqno, avc_cache.latest_notif);
  375. ret = -EAGAIN;
  376. }
  377. } else {
  378. if (seqno > avc_cache.latest_notif)
  379. avc_cache.latest_notif = seqno;
  380. }
  381. spin_unlock_irqrestore(&notif_lock, flag);
  382. return ret;
  383. }
  384. /**
  385. * avc_insert - Insert an AVC entry.
  386. * @ssid: source security identifier
  387. * @tsid: target security identifier
  388. * @tclass: target security class
  389. * @ae: AVC entry
  390. *
  391. * Insert an AVC entry for the SID pair
  392. * (@ssid, @tsid) and class @tclass.
  393. * The access vectors and the sequence number are
  394. * normally provided by the security server in
  395. * response to a security_compute_av() call. If the
  396. * sequence number @ae->avd.seqno is not less than the latest
  397. * revocation notification, then the function copies
  398. * the access vectors into a cache entry, returns
  399. * avc_node inserted. Otherwise, this function returns NULL.
  400. */
  401. static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
  402. {
  403. struct avc_node *pos, *node = NULL;
  404. int hvalue;
  405. unsigned long flag;
  406. if (avc_latest_notif_update(ae->avd.seqno, 1))
  407. goto out;
  408. node = avc_alloc_node();
  409. if (node) {
  410. hvalue = avc_hash(ssid, tsid, tclass);
  411. avc_node_populate(node, ssid, tsid, tclass, ae);
  412. spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
  413. list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
  414. if (pos->ae.ssid == ssid &&
  415. pos->ae.tsid == tsid &&
  416. pos->ae.tclass == tclass) {
  417. avc_node_replace(node, pos);
  418. goto found;
  419. }
  420. }
  421. list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
  422. found:
  423. spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
  424. }
  425. out:
  426. return node;
  427. }
  428. static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
  429. struct in6_addr *addr, __be16 port,
  430. char *name1, char *name2)
  431. {
  432. if (!ipv6_addr_any(addr))
  433. audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr));
  434. if (port)
  435. audit_log_format(ab, " %s=%d", name2, ntohs(port));
  436. }
  437. static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
  438. __be16 port, char *name1, char *name2)
  439. {
  440. if (addr)
  441. audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr));
  442. if (port)
  443. audit_log_format(ab, " %s=%d", name2, ntohs(port));
  444. }
  445. /**
  446. * avc_audit - Audit the granting or denial of permissions.
  447. * @ssid: source security identifier
  448. * @tsid: target security identifier
  449. * @tclass: target security class
  450. * @requested: requested permissions
  451. * @avd: access vector decisions
  452. * @result: result from avc_has_perm_noaudit
  453. * @a: auxiliary audit data
  454. *
  455. * Audit the granting or denial of permissions in accordance
  456. * with the policy. This function is typically called by
  457. * avc_has_perm() after a permission check, but can also be
  458. * called directly by callers who use avc_has_perm_noaudit()
  459. * in order to separate the permission check from the auditing.
  460. * For example, this separation is useful when the permission check must
  461. * be performed under a lock, to allow the lock to be released
  462. * before calling the auditing code.
  463. */
  464. void avc_audit(u32 ssid, u32 tsid,
  465. u16 tclass, u32 requested,
  466. struct av_decision *avd, int result, struct avc_audit_data *a)
  467. {
  468. struct task_struct *tsk = current;
  469. struct inode *inode = NULL;
  470. u32 denied, audited;
  471. struct audit_buffer *ab;
  472. denied = requested & ~avd->allowed;
  473. if (denied) {
  474. audited = denied;
  475. if (!(audited & avd->auditdeny))
  476. return;
  477. } else if (result) {
  478. audited = denied = requested;
  479. } else {
  480. audited = requested;
  481. if (!(audited & avd->auditallow))
  482. return;
  483. }
  484. ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
  485. if (!ab)
  486. return; /* audit_panic has been called */
  487. audit_log_format(ab, "avc: %s ", denied ? "denied" : "granted");
  488. avc_dump_av(ab, tclass, audited);
  489. audit_log_format(ab, " for ");
  490. if (a && a->tsk)
  491. tsk = a->tsk;
  492. if (tsk && tsk->pid) {
  493. audit_log_format(ab, " pid=%d comm=", tsk->pid);
  494. audit_log_untrustedstring(ab, tsk->comm);
  495. }
  496. if (a) {
  497. switch (a->type) {
  498. case AVC_AUDIT_DATA_IPC:
  499. audit_log_format(ab, " key=%d", a->u.ipc_id);
  500. break;
  501. case AVC_AUDIT_DATA_CAP:
  502. audit_log_format(ab, " capability=%d", a->u.cap);
  503. break;
  504. case AVC_AUDIT_DATA_FS:
  505. if (a->u.fs.path.dentry) {
  506. struct dentry *dentry = a->u.fs.path.dentry;
  507. if (a->u.fs.path.mnt) {
  508. audit_log_d_path(ab, "path=",
  509. &a->u.fs.path);
  510. } else {
  511. audit_log_format(ab, " name=");
  512. audit_log_untrustedstring(ab, dentry->d_name.name);
  513. }
  514. inode = dentry->d_inode;
  515. } else if (a->u.fs.inode) {
  516. struct dentry *dentry;
  517. inode = a->u.fs.inode;
  518. dentry = d_find_alias(inode);
  519. if (dentry) {
  520. audit_log_format(ab, " name=");
  521. audit_log_untrustedstring(ab, dentry->d_name.name);
  522. dput(dentry);
  523. }
  524. }
  525. if (inode)
  526. audit_log_format(ab, " dev=%s ino=%lu",
  527. inode->i_sb->s_id,
  528. inode->i_ino);
  529. break;
  530. case AVC_AUDIT_DATA_NET:
  531. if (a->u.net.sk) {
  532. struct sock *sk = a->u.net.sk;
  533. struct unix_sock *u;
  534. int len = 0;
  535. char *p = NULL;
  536. switch (sk->sk_family) {
  537. case AF_INET: {
  538. struct inet_sock *inet = inet_sk(sk);
  539. avc_print_ipv4_addr(ab, inet->rcv_saddr,
  540. inet->sport,
  541. "laddr", "lport");
  542. avc_print_ipv4_addr(ab, inet->daddr,
  543. inet->dport,
  544. "faddr", "fport");
  545. break;
  546. }
  547. case AF_INET6: {
  548. struct inet_sock *inet = inet_sk(sk);
  549. struct ipv6_pinfo *inet6 = inet6_sk(sk);
  550. avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
  551. inet->sport,
  552. "laddr", "lport");
  553. avc_print_ipv6_addr(ab, &inet6->daddr,
  554. inet->dport,
  555. "faddr", "fport");
  556. break;
  557. }
  558. case AF_UNIX:
  559. u = unix_sk(sk);
  560. if (u->dentry) {
  561. struct path path = {
  562. .dentry = u->dentry,
  563. .mnt = u->mnt
  564. };
  565. audit_log_d_path(ab, "path=",
  566. &path);
  567. break;
  568. }
  569. if (!u->addr)
  570. break;
  571. len = u->addr->len-sizeof(short);
  572. p = &u->addr->name->sun_path[0];
  573. audit_log_format(ab, " path=");
  574. if (*p)
  575. audit_log_untrustedstring(ab, p);
  576. else
  577. audit_log_n_hex(ab, p, len);
  578. break;
  579. }
  580. }
  581. switch (a->u.net.family) {
  582. case AF_INET:
  583. avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
  584. a->u.net.sport,
  585. "saddr", "src");
  586. avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
  587. a->u.net.dport,
  588. "daddr", "dest");
  589. break;
  590. case AF_INET6:
  591. avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
  592. a->u.net.sport,
  593. "saddr", "src");
  594. avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
  595. a->u.net.dport,
  596. "daddr", "dest");
  597. break;
  598. }
  599. if (a->u.net.netif > 0) {
  600. struct net_device *dev;
  601. /* NOTE: we always use init's namespace */
  602. dev = dev_get_by_index(&init_net,
  603. a->u.net.netif);
  604. if (dev) {
  605. audit_log_format(ab, " netif=%s",
  606. dev->name);
  607. dev_put(dev);
  608. }
  609. }
  610. break;
  611. }
  612. }
  613. audit_log_format(ab, " ");
  614. avc_dump_query(ab, ssid, tsid, tclass);
  615. audit_log_end(ab);
  616. }
  617. /**
  618. * avc_add_callback - Register a callback for security events.
  619. * @callback: callback function
  620. * @events: security events
  621. * @ssid: source security identifier or %SECSID_WILD
  622. * @tsid: target security identifier or %SECSID_WILD
  623. * @tclass: target security class
  624. * @perms: permissions
  625. *
  626. * Register a callback function for events in the set @events
  627. * related to the SID pair (@ssid, @tsid) and
  628. * and the permissions @perms, interpreting
  629. * @perms based on @tclass. Returns %0 on success or
  630. * -%ENOMEM if insufficient memory exists to add the callback.
  631. */
  632. int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
  633. u16 tclass, u32 perms,
  634. u32 *out_retained),
  635. u32 events, u32 ssid, u32 tsid,
  636. u16 tclass, u32 perms)
  637. {
  638. struct avc_callback_node *c;
  639. int rc = 0;
  640. c = kmalloc(sizeof(*c), GFP_ATOMIC);
  641. if (!c) {
  642. rc = -ENOMEM;
  643. goto out;
  644. }
  645. c->callback = callback;
  646. c->events = events;
  647. c->ssid = ssid;
  648. c->tsid = tsid;
  649. c->perms = perms;
  650. c->next = avc_callbacks;
  651. avc_callbacks = c;
  652. out:
  653. return rc;
  654. }
  655. static inline int avc_sidcmp(u32 x, u32 y)
  656. {
  657. return (x == y || x == SECSID_WILD || y == SECSID_WILD);
  658. }
  659. /**
  660. * avc_update_node Update an AVC entry
  661. * @event : Updating event
  662. * @perms : Permission mask bits
  663. * @ssid,@tsid,@tclass : identifier of an AVC entry
  664. *
  665. * if a valid AVC entry doesn't exist,this function returns -ENOENT.
  666. * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
  667. * otherwise, this function update the AVC entry. The original AVC-entry object
  668. * will release later by RCU.
  669. */
  670. static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
  671. {
  672. int hvalue, rc = 0;
  673. unsigned long flag;
  674. struct avc_node *pos, *node, *orig = NULL;
  675. node = avc_alloc_node();
  676. if (!node) {
  677. rc = -ENOMEM;
  678. goto out;
  679. }
  680. /* Lock the target slot */
  681. hvalue = avc_hash(ssid, tsid, tclass);
  682. spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
  683. list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
  684. if (ssid == pos->ae.ssid &&
  685. tsid == pos->ae.tsid &&
  686. tclass == pos->ae.tclass){
  687. orig = pos;
  688. break;
  689. }
  690. }
  691. if (!orig) {
  692. rc = -ENOENT;
  693. avc_node_kill(node);
  694. goto out_unlock;
  695. }
  696. /*
  697. * Copy and replace original node.
  698. */
  699. avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
  700. switch (event) {
  701. case AVC_CALLBACK_GRANT:
  702. node->ae.avd.allowed |= perms;
  703. break;
  704. case AVC_CALLBACK_TRY_REVOKE:
  705. case AVC_CALLBACK_REVOKE:
  706. node->ae.avd.allowed &= ~perms;
  707. break;
  708. case AVC_CALLBACK_AUDITALLOW_ENABLE:
  709. node->ae.avd.auditallow |= perms;
  710. break;
  711. case AVC_CALLBACK_AUDITALLOW_DISABLE:
  712. node->ae.avd.auditallow &= ~perms;
  713. break;
  714. case AVC_CALLBACK_AUDITDENY_ENABLE:
  715. node->ae.avd.auditdeny |= perms;
  716. break;
  717. case AVC_CALLBACK_AUDITDENY_DISABLE:
  718. node->ae.avd.auditdeny &= ~perms;
  719. break;
  720. }
  721. avc_node_replace(node, orig);
  722. out_unlock:
  723. spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
  724. out:
  725. return rc;
  726. }
  727. /**
  728. * avc_ss_reset - Flush the cache and revalidate migrated permissions.
  729. * @seqno: policy sequence number
  730. */
  731. int avc_ss_reset(u32 seqno)
  732. {
  733. struct avc_callback_node *c;
  734. int i, rc = 0, tmprc;
  735. unsigned long flag;
  736. struct avc_node *node;
  737. for (i = 0; i < AVC_CACHE_SLOTS; i++) {
  738. spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
  739. /*
  740. * With preemptable RCU, the outer spinlock does not
  741. * prevent RCU grace periods from ending.
  742. */
  743. rcu_read_lock();
  744. list_for_each_entry(node, &avc_cache.slots[i], list)
  745. avc_node_delete(node);
  746. rcu_read_unlock();
  747. spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
  748. }
  749. for (c = avc_callbacks; c; c = c->next) {
  750. if (c->events & AVC_CALLBACK_RESET) {
  751. tmprc = c->callback(AVC_CALLBACK_RESET,
  752. 0, 0, 0, 0, NULL);
  753. /* save the first error encountered for the return
  754. value and continue processing the callbacks */
  755. if (!rc)
  756. rc = tmprc;
  757. }
  758. }
  759. avc_latest_notif_update(seqno, 0);
  760. return rc;
  761. }
  762. /**
  763. * avc_has_perm_noaudit - Check permissions but perform no auditing.
  764. * @ssid: source security identifier
  765. * @tsid: target security identifier
  766. * @tclass: target security class
  767. * @requested: requested permissions, interpreted based on @tclass
  768. * @flags: AVC_STRICT or 0
  769. * @avd: access vector decisions
  770. *
  771. * Check the AVC to determine whether the @requested permissions are granted
  772. * for the SID pair (@ssid, @tsid), interpreting the permissions
  773. * based on @tclass, and call the security server on a cache miss to obtain
  774. * a new decision and add it to the cache. Return a copy of the decisions
  775. * in @avd. Return %0 if all @requested permissions are granted,
  776. * -%EACCES if any permissions are denied, or another -errno upon
  777. * other errors. This function is typically called by avc_has_perm(),
  778. * but may also be called directly to separate permission checking from
  779. * auditing, e.g. in cases where a lock must be held for the check but
  780. * should be released for the auditing.
  781. */
  782. int avc_has_perm_noaudit(u32 ssid, u32 tsid,
  783. u16 tclass, u32 requested,
  784. unsigned flags,
  785. struct av_decision *avd)
  786. {
  787. struct avc_node *node;
  788. struct avc_entry entry, *p_ae;
  789. int rc = 0;
  790. u32 denied;
  791. BUG_ON(!requested);
  792. rcu_read_lock();
  793. node = avc_lookup(ssid, tsid, tclass, requested);
  794. if (!node) {
  795. rcu_read_unlock();
  796. rc = security_compute_av(ssid, tsid, tclass, requested, &entry.avd);
  797. if (rc)
  798. goto out;
  799. rcu_read_lock();
  800. node = avc_insert(ssid, tsid, tclass, &entry);
  801. }
  802. p_ae = node ? &node->ae : &entry;
  803. if (avd)
  804. memcpy(avd, &p_ae->avd, sizeof(*avd));
  805. denied = requested & ~(p_ae->avd.allowed);
  806. if (denied) {
  807. if (flags & AVC_STRICT)
  808. rc = -EACCES;
  809. else if (!selinux_enforcing || security_permissive_sid(ssid))
  810. avc_update_node(AVC_CALLBACK_GRANT, requested, ssid,
  811. tsid, tclass);
  812. else
  813. rc = -EACCES;
  814. }
  815. rcu_read_unlock();
  816. out:
  817. return rc;
  818. }
  819. /**
  820. * avc_has_perm - Check permissions and perform any appropriate auditing.
  821. * @ssid: source security identifier
  822. * @tsid: target security identifier
  823. * @tclass: target security class
  824. * @requested: requested permissions, interpreted based on @tclass
  825. * @auditdata: auxiliary audit data
  826. *
  827. * Check the AVC to determine whether the @requested permissions are granted
  828. * for the SID pair (@ssid, @tsid), interpreting the permissions
  829. * based on @tclass, and call the security server on a cache miss to obtain
  830. * a new decision and add it to the cache. Audit the granting or denial of
  831. * permissions in accordance with the policy. Return %0 if all @requested
  832. * permissions are granted, -%EACCES if any permissions are denied, or
  833. * another -errno upon other errors.
  834. */
  835. int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
  836. u32 requested, struct avc_audit_data *auditdata)
  837. {
  838. struct av_decision avd;
  839. int rc;
  840. rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
  841. avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
  842. return rc;
  843. }
  844. u32 avc_policy_seqno(void)
  845. {
  846. return avc_cache.latest_notif;
  847. }