af_key.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/xfrm.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. struct {
  45. uint8_t msg_version;
  46. uint32_t msg_pid;
  47. int (*dump)(struct pfkey_sock *sk);
  48. void (*done)(struct pfkey_sock *sk);
  49. union {
  50. struct xfrm_policy_walk policy;
  51. struct xfrm_state_walk state;
  52. } u;
  53. struct sk_buff *skb;
  54. } dump;
  55. };
  56. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  57. {
  58. return (struct pfkey_sock *)sk;
  59. }
  60. static int pfkey_can_dump(struct sock *sk)
  61. {
  62. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  63. return 1;
  64. return 0;
  65. }
  66. static void pfkey_terminate_dump(struct pfkey_sock *pfk)
  67. {
  68. if (pfk->dump.dump) {
  69. if (pfk->dump.skb) {
  70. kfree_skb(pfk->dump.skb);
  71. pfk->dump.skb = NULL;
  72. }
  73. pfk->dump.done(pfk);
  74. pfk->dump.dump = NULL;
  75. pfk->dump.done = NULL;
  76. }
  77. }
  78. static void pfkey_sock_destruct(struct sock *sk)
  79. {
  80. pfkey_terminate_dump(pfkey_sk(sk));
  81. skb_queue_purge(&sk->sk_receive_queue);
  82. if (!sock_flag(sk, SOCK_DEAD)) {
  83. printk("Attempt to release alive pfkey socket: %p\n", sk);
  84. return;
  85. }
  86. WARN_ON(atomic_read(&sk->sk_rmem_alloc));
  87. WARN_ON(atomic_read(&sk->sk_wmem_alloc));
  88. atomic_dec(&pfkey_socks_nr);
  89. }
  90. static void pfkey_table_grab(void)
  91. {
  92. write_lock_bh(&pfkey_table_lock);
  93. if (atomic_read(&pfkey_table_users)) {
  94. DECLARE_WAITQUEUE(wait, current);
  95. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  96. for(;;) {
  97. set_current_state(TASK_UNINTERRUPTIBLE);
  98. if (atomic_read(&pfkey_table_users) == 0)
  99. break;
  100. write_unlock_bh(&pfkey_table_lock);
  101. schedule();
  102. write_lock_bh(&pfkey_table_lock);
  103. }
  104. __set_current_state(TASK_RUNNING);
  105. remove_wait_queue(&pfkey_table_wait, &wait);
  106. }
  107. }
  108. static __inline__ void pfkey_table_ungrab(void)
  109. {
  110. write_unlock_bh(&pfkey_table_lock);
  111. wake_up(&pfkey_table_wait);
  112. }
  113. static __inline__ void pfkey_lock_table(void)
  114. {
  115. /* read_lock() synchronizes us to pfkey_table_grab */
  116. read_lock(&pfkey_table_lock);
  117. atomic_inc(&pfkey_table_users);
  118. read_unlock(&pfkey_table_lock);
  119. }
  120. static __inline__ void pfkey_unlock_table(void)
  121. {
  122. if (atomic_dec_and_test(&pfkey_table_users))
  123. wake_up(&pfkey_table_wait);
  124. }
  125. static const struct proto_ops pfkey_ops;
  126. static void pfkey_insert(struct sock *sk)
  127. {
  128. pfkey_table_grab();
  129. sk_add_node(sk, &pfkey_table);
  130. pfkey_table_ungrab();
  131. }
  132. static void pfkey_remove(struct sock *sk)
  133. {
  134. pfkey_table_grab();
  135. sk_del_node_init(sk);
  136. pfkey_table_ungrab();
  137. }
  138. static struct proto key_proto = {
  139. .name = "KEY",
  140. .owner = THIS_MODULE,
  141. .obj_size = sizeof(struct pfkey_sock),
  142. };
  143. static int pfkey_create(struct net *net, struct socket *sock, int protocol)
  144. {
  145. struct sock *sk;
  146. int err;
  147. if (net != &init_net)
  148. return -EAFNOSUPPORT;
  149. if (!capable(CAP_NET_ADMIN))
  150. return -EPERM;
  151. if (sock->type != SOCK_RAW)
  152. return -ESOCKTNOSUPPORT;
  153. if (protocol != PF_KEY_V2)
  154. return -EPROTONOSUPPORT;
  155. err = -ENOMEM;
  156. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  157. if (sk == NULL)
  158. goto out;
  159. sock->ops = &pfkey_ops;
  160. sock_init_data(sock, sk);
  161. sk->sk_family = PF_KEY;
  162. sk->sk_destruct = pfkey_sock_destruct;
  163. atomic_inc(&pfkey_socks_nr);
  164. pfkey_insert(sk);
  165. return 0;
  166. out:
  167. return err;
  168. }
  169. static int pfkey_release(struct socket *sock)
  170. {
  171. struct sock *sk = sock->sk;
  172. if (!sk)
  173. return 0;
  174. pfkey_remove(sk);
  175. sock_orphan(sk);
  176. sock->sk = NULL;
  177. skb_queue_purge(&sk->sk_write_queue);
  178. sock_put(sk);
  179. return 0;
  180. }
  181. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  182. gfp_t allocation, struct sock *sk)
  183. {
  184. int err = -ENOBUFS;
  185. sock_hold(sk);
  186. if (*skb2 == NULL) {
  187. if (atomic_read(&skb->users) != 1) {
  188. *skb2 = skb_clone(skb, allocation);
  189. } else {
  190. *skb2 = skb;
  191. atomic_inc(&skb->users);
  192. }
  193. }
  194. if (*skb2 != NULL) {
  195. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  196. skb_orphan(*skb2);
  197. skb_set_owner_r(*skb2, sk);
  198. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  199. sk->sk_data_ready(sk, (*skb2)->len);
  200. *skb2 = NULL;
  201. err = 0;
  202. }
  203. }
  204. sock_put(sk);
  205. return err;
  206. }
  207. /* Send SKB to all pfkey sockets matching selected criteria. */
  208. #define BROADCAST_ALL 0
  209. #define BROADCAST_ONE 1
  210. #define BROADCAST_REGISTERED 2
  211. #define BROADCAST_PROMISC_ONLY 4
  212. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  213. int broadcast_flags, struct sock *one_sk)
  214. {
  215. struct sock *sk;
  216. struct hlist_node *node;
  217. struct sk_buff *skb2 = NULL;
  218. int err = -ESRCH;
  219. /* XXX Do we need something like netlink_overrun? I think
  220. * XXX PF_KEY socket apps will not mind current behavior.
  221. */
  222. if (!skb)
  223. return -ENOMEM;
  224. pfkey_lock_table();
  225. sk_for_each(sk, node, &pfkey_table) {
  226. struct pfkey_sock *pfk = pfkey_sk(sk);
  227. int err2;
  228. /* Yes, it means that if you are meant to receive this
  229. * pfkey message you receive it twice as promiscuous
  230. * socket.
  231. */
  232. if (pfk->promisc)
  233. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  234. /* the exact target will be processed later */
  235. if (sk == one_sk)
  236. continue;
  237. if (broadcast_flags != BROADCAST_ALL) {
  238. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  239. continue;
  240. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  241. !pfk->registered)
  242. continue;
  243. if (broadcast_flags & BROADCAST_ONE)
  244. continue;
  245. }
  246. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  247. /* Error is cleare after succecful sending to at least one
  248. * registered KM */
  249. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  250. err = err2;
  251. }
  252. pfkey_unlock_table();
  253. if (one_sk != NULL)
  254. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  255. if (skb2)
  256. kfree_skb(skb2);
  257. kfree_skb(skb);
  258. return err;
  259. }
  260. static int pfkey_do_dump(struct pfkey_sock *pfk)
  261. {
  262. struct sadb_msg *hdr;
  263. int rc;
  264. rc = pfk->dump.dump(pfk);
  265. if (rc == -ENOBUFS)
  266. return 0;
  267. if (pfk->dump.skb) {
  268. if (!pfkey_can_dump(&pfk->sk))
  269. return 0;
  270. hdr = (struct sadb_msg *) pfk->dump.skb->data;
  271. hdr->sadb_msg_seq = 0;
  272. hdr->sadb_msg_errno = rc;
  273. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  274. &pfk->sk);
  275. pfk->dump.skb = NULL;
  276. }
  277. pfkey_terminate_dump(pfk);
  278. return rc;
  279. }
  280. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  281. {
  282. *new = *orig;
  283. }
  284. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  285. {
  286. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  287. struct sadb_msg *hdr;
  288. if (!skb)
  289. return -ENOBUFS;
  290. /* Woe be to the platform trying to support PFKEY yet
  291. * having normal errnos outside the 1-255 range, inclusive.
  292. */
  293. err = -err;
  294. if (err == ERESTARTSYS ||
  295. err == ERESTARTNOHAND ||
  296. err == ERESTARTNOINTR)
  297. err = EINTR;
  298. if (err >= 512)
  299. err = EINVAL;
  300. BUG_ON(err <= 0 || err >= 256);
  301. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  302. pfkey_hdr_dup(hdr, orig);
  303. hdr->sadb_msg_errno = (uint8_t) err;
  304. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  305. sizeof(uint64_t));
  306. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  307. return 0;
  308. }
  309. static u8 sadb_ext_min_len[] = {
  310. [SADB_EXT_RESERVED] = (u8) 0,
  311. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  312. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  313. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  314. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  315. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  316. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  317. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  318. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  319. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  320. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  321. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  322. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  323. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  324. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  325. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  326. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  327. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  328. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  329. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  330. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  331. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  332. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  333. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  334. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  335. [SADB_X_EXT_KMADDRESS] = (u8) sizeof(struct sadb_x_kmaddress),
  336. };
  337. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  338. static int verify_address_len(void *p)
  339. {
  340. struct sadb_address *sp = p;
  341. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  342. struct sockaddr_in *sin;
  343. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  344. struct sockaddr_in6 *sin6;
  345. #endif
  346. int len;
  347. switch (addr->sa_family) {
  348. case AF_INET:
  349. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  350. if (sp->sadb_address_len != len ||
  351. sp->sadb_address_prefixlen > 32)
  352. return -EINVAL;
  353. break;
  354. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  355. case AF_INET6:
  356. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  357. if (sp->sadb_address_len != len ||
  358. sp->sadb_address_prefixlen > 128)
  359. return -EINVAL;
  360. break;
  361. #endif
  362. default:
  363. /* It is user using kernel to keep track of security
  364. * associations for another protocol, such as
  365. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  366. * lengths.
  367. *
  368. * XXX Actually, association/policy database is not yet
  369. * XXX able to cope with arbitrary sockaddr families.
  370. * XXX When it can, remove this -EINVAL. -DaveM
  371. */
  372. return -EINVAL;
  373. break;
  374. }
  375. return 0;
  376. }
  377. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  378. {
  379. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  380. sec_ctx->sadb_x_ctx_len,
  381. sizeof(uint64_t));
  382. }
  383. static inline int verify_sec_ctx_len(void *p)
  384. {
  385. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  386. int len = sec_ctx->sadb_x_ctx_len;
  387. if (len > PAGE_SIZE)
  388. return -EINVAL;
  389. len = pfkey_sec_ctx_len(sec_ctx);
  390. if (sec_ctx->sadb_x_sec_len != len)
  391. return -EINVAL;
  392. return 0;
  393. }
  394. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  395. {
  396. struct xfrm_user_sec_ctx *uctx = NULL;
  397. int ctx_size = sec_ctx->sadb_x_ctx_len;
  398. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  399. if (!uctx)
  400. return NULL;
  401. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  402. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  403. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  404. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  405. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  406. memcpy(uctx + 1, sec_ctx + 1,
  407. uctx->ctx_len);
  408. return uctx;
  409. }
  410. static int present_and_same_family(struct sadb_address *src,
  411. struct sadb_address *dst)
  412. {
  413. struct sockaddr *s_addr, *d_addr;
  414. if (!src || !dst)
  415. return 0;
  416. s_addr = (struct sockaddr *)(src + 1);
  417. d_addr = (struct sockaddr *)(dst + 1);
  418. if (s_addr->sa_family != d_addr->sa_family)
  419. return 0;
  420. if (s_addr->sa_family != AF_INET
  421. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  422. && s_addr->sa_family != AF_INET6
  423. #endif
  424. )
  425. return 0;
  426. return 1;
  427. }
  428. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  429. {
  430. char *p = (char *) hdr;
  431. int len = skb->len;
  432. len -= sizeof(*hdr);
  433. p += sizeof(*hdr);
  434. while (len > 0) {
  435. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  436. uint16_t ext_type;
  437. int ext_len;
  438. ext_len = ehdr->sadb_ext_len;
  439. ext_len *= sizeof(uint64_t);
  440. ext_type = ehdr->sadb_ext_type;
  441. if (ext_len < sizeof(uint64_t) ||
  442. ext_len > len ||
  443. ext_type == SADB_EXT_RESERVED)
  444. return -EINVAL;
  445. if (ext_type <= SADB_EXT_MAX) {
  446. int min = (int) sadb_ext_min_len[ext_type];
  447. if (ext_len < min)
  448. return -EINVAL;
  449. if (ext_hdrs[ext_type-1] != NULL)
  450. return -EINVAL;
  451. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  452. ext_type == SADB_EXT_ADDRESS_DST ||
  453. ext_type == SADB_EXT_ADDRESS_PROXY ||
  454. ext_type == SADB_X_EXT_NAT_T_OA) {
  455. if (verify_address_len(p))
  456. return -EINVAL;
  457. }
  458. if (ext_type == SADB_X_EXT_SEC_CTX) {
  459. if (verify_sec_ctx_len(p))
  460. return -EINVAL;
  461. }
  462. ext_hdrs[ext_type-1] = p;
  463. }
  464. p += ext_len;
  465. len -= ext_len;
  466. }
  467. return 0;
  468. }
  469. static uint16_t
  470. pfkey_satype2proto(uint8_t satype)
  471. {
  472. switch (satype) {
  473. case SADB_SATYPE_UNSPEC:
  474. return IPSEC_PROTO_ANY;
  475. case SADB_SATYPE_AH:
  476. return IPPROTO_AH;
  477. case SADB_SATYPE_ESP:
  478. return IPPROTO_ESP;
  479. case SADB_X_SATYPE_IPCOMP:
  480. return IPPROTO_COMP;
  481. break;
  482. default:
  483. return 0;
  484. }
  485. /* NOTREACHED */
  486. }
  487. static uint8_t
  488. pfkey_proto2satype(uint16_t proto)
  489. {
  490. switch (proto) {
  491. case IPPROTO_AH:
  492. return SADB_SATYPE_AH;
  493. case IPPROTO_ESP:
  494. return SADB_SATYPE_ESP;
  495. case IPPROTO_COMP:
  496. return SADB_X_SATYPE_IPCOMP;
  497. break;
  498. default:
  499. return 0;
  500. }
  501. /* NOTREACHED */
  502. }
  503. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  504. * say specifically 'just raw sockets' as we encode them as 255.
  505. */
  506. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  507. {
  508. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  509. }
  510. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  511. {
  512. return (proto ? proto : IPSEC_PROTO_ANY);
  513. }
  514. static inline int pfkey_sockaddr_len(sa_family_t family)
  515. {
  516. switch (family) {
  517. case AF_INET:
  518. return sizeof(struct sockaddr_in);
  519. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  520. case AF_INET6:
  521. return sizeof(struct sockaddr_in6);
  522. #endif
  523. }
  524. return 0;
  525. }
  526. static
  527. int pfkey_sockaddr_extract(const struct sockaddr *sa, xfrm_address_t *xaddr)
  528. {
  529. switch (sa->sa_family) {
  530. case AF_INET:
  531. xaddr->a4 =
  532. ((struct sockaddr_in *)sa)->sin_addr.s_addr;
  533. return AF_INET;
  534. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  535. case AF_INET6:
  536. memcpy(xaddr->a6,
  537. &((struct sockaddr_in6 *)sa)->sin6_addr,
  538. sizeof(struct in6_addr));
  539. return AF_INET6;
  540. #endif
  541. }
  542. return 0;
  543. }
  544. static
  545. int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr, xfrm_address_t *xaddr)
  546. {
  547. return pfkey_sockaddr_extract((struct sockaddr *)(addr + 1),
  548. xaddr);
  549. }
  550. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  551. {
  552. struct sadb_sa *sa;
  553. struct sadb_address *addr;
  554. uint16_t proto;
  555. unsigned short family;
  556. xfrm_address_t *xaddr;
  557. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  558. if (sa == NULL)
  559. return NULL;
  560. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  561. if (proto == 0)
  562. return NULL;
  563. /* sadb_address_len should be checked by caller */
  564. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  565. if (addr == NULL)
  566. return NULL;
  567. family = ((struct sockaddr *)(addr + 1))->sa_family;
  568. switch (family) {
  569. case AF_INET:
  570. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  571. break;
  572. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  573. case AF_INET6:
  574. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  575. break;
  576. #endif
  577. default:
  578. xaddr = NULL;
  579. }
  580. if (!xaddr)
  581. return NULL;
  582. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  583. }
  584. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  585. static int
  586. pfkey_sockaddr_size(sa_family_t family)
  587. {
  588. return PFKEY_ALIGN8(pfkey_sockaddr_len(family));
  589. }
  590. static inline int pfkey_mode_from_xfrm(int mode)
  591. {
  592. switch(mode) {
  593. case XFRM_MODE_TRANSPORT:
  594. return IPSEC_MODE_TRANSPORT;
  595. case XFRM_MODE_TUNNEL:
  596. return IPSEC_MODE_TUNNEL;
  597. case XFRM_MODE_BEET:
  598. return IPSEC_MODE_BEET;
  599. default:
  600. return -1;
  601. }
  602. }
  603. static inline int pfkey_mode_to_xfrm(int mode)
  604. {
  605. switch(mode) {
  606. case IPSEC_MODE_ANY: /*XXX*/
  607. case IPSEC_MODE_TRANSPORT:
  608. return XFRM_MODE_TRANSPORT;
  609. case IPSEC_MODE_TUNNEL:
  610. return XFRM_MODE_TUNNEL;
  611. case IPSEC_MODE_BEET:
  612. return XFRM_MODE_BEET;
  613. default:
  614. return -1;
  615. }
  616. }
  617. static unsigned int pfkey_sockaddr_fill(xfrm_address_t *xaddr, __be16 port,
  618. struct sockaddr *sa,
  619. unsigned short family)
  620. {
  621. switch (family) {
  622. case AF_INET:
  623. {
  624. struct sockaddr_in *sin = (struct sockaddr_in *)sa;
  625. sin->sin_family = AF_INET;
  626. sin->sin_port = port;
  627. sin->sin_addr.s_addr = xaddr->a4;
  628. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  629. return 32;
  630. }
  631. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  632. case AF_INET6:
  633. {
  634. struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
  635. sin6->sin6_family = AF_INET6;
  636. sin6->sin6_port = port;
  637. sin6->sin6_flowinfo = 0;
  638. ipv6_addr_copy(&sin6->sin6_addr, (struct in6_addr *)xaddr->a6);
  639. sin6->sin6_scope_id = 0;
  640. return 128;
  641. }
  642. #endif
  643. }
  644. return 0;
  645. }
  646. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  647. int add_keys, int hsc)
  648. {
  649. struct sk_buff *skb;
  650. struct sadb_msg *hdr;
  651. struct sadb_sa *sa;
  652. struct sadb_lifetime *lifetime;
  653. struct sadb_address *addr;
  654. struct sadb_key *key;
  655. struct sadb_x_sa2 *sa2;
  656. struct sadb_x_sec_ctx *sec_ctx;
  657. struct xfrm_sec_ctx *xfrm_ctx;
  658. int ctx_size = 0;
  659. int size;
  660. int auth_key_size = 0;
  661. int encrypt_key_size = 0;
  662. int sockaddr_size;
  663. struct xfrm_encap_tmpl *natt = NULL;
  664. int mode;
  665. /* address family check */
  666. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  667. if (!sockaddr_size)
  668. return ERR_PTR(-EINVAL);
  669. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  670. key(AE), (identity(SD),) (sensitivity)> */
  671. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  672. sizeof(struct sadb_lifetime) +
  673. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  674. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  675. sizeof(struct sadb_address)*2 +
  676. sockaddr_size*2 +
  677. sizeof(struct sadb_x_sa2);
  678. if ((xfrm_ctx = x->security)) {
  679. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  680. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  681. }
  682. /* identity & sensitivity */
  683. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr, x->props.family))
  684. size += sizeof(struct sadb_address) + sockaddr_size;
  685. if (add_keys) {
  686. if (x->aalg && x->aalg->alg_key_len) {
  687. auth_key_size =
  688. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  689. size += sizeof(struct sadb_key) + auth_key_size;
  690. }
  691. if (x->ealg && x->ealg->alg_key_len) {
  692. encrypt_key_size =
  693. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  694. size += sizeof(struct sadb_key) + encrypt_key_size;
  695. }
  696. }
  697. if (x->encap)
  698. natt = x->encap;
  699. if (natt && natt->encap_type) {
  700. size += sizeof(struct sadb_x_nat_t_type);
  701. size += sizeof(struct sadb_x_nat_t_port);
  702. size += sizeof(struct sadb_x_nat_t_port);
  703. }
  704. skb = alloc_skb(size + 16, GFP_ATOMIC);
  705. if (skb == NULL)
  706. return ERR_PTR(-ENOBUFS);
  707. /* call should fill header later */
  708. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  709. memset(hdr, 0, size); /* XXX do we need this ? */
  710. hdr->sadb_msg_len = size / sizeof(uint64_t);
  711. /* sa */
  712. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  713. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  714. sa->sadb_sa_exttype = SADB_EXT_SA;
  715. sa->sadb_sa_spi = x->id.spi;
  716. sa->sadb_sa_replay = x->props.replay_window;
  717. switch (x->km.state) {
  718. case XFRM_STATE_VALID:
  719. sa->sadb_sa_state = x->km.dying ?
  720. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  721. break;
  722. case XFRM_STATE_ACQ:
  723. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  724. break;
  725. default:
  726. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  727. break;
  728. }
  729. sa->sadb_sa_auth = 0;
  730. if (x->aalg) {
  731. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  732. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  733. }
  734. sa->sadb_sa_encrypt = 0;
  735. BUG_ON(x->ealg && x->calg);
  736. if (x->ealg) {
  737. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  738. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  739. }
  740. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  741. if (x->calg) {
  742. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  743. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  744. }
  745. sa->sadb_sa_flags = 0;
  746. if (x->props.flags & XFRM_STATE_NOECN)
  747. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  748. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  749. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  750. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  751. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  752. /* hard time */
  753. if (hsc & 2) {
  754. lifetime = (struct sadb_lifetime *) skb_put(skb,
  755. sizeof(struct sadb_lifetime));
  756. lifetime->sadb_lifetime_len =
  757. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  758. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  759. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  760. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  761. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  762. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  763. }
  764. /* soft time */
  765. if (hsc & 1) {
  766. lifetime = (struct sadb_lifetime *) skb_put(skb,
  767. sizeof(struct sadb_lifetime));
  768. lifetime->sadb_lifetime_len =
  769. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  770. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  771. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  772. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  773. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  774. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  775. }
  776. /* current time */
  777. lifetime = (struct sadb_lifetime *) skb_put(skb,
  778. sizeof(struct sadb_lifetime));
  779. lifetime->sadb_lifetime_len =
  780. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  781. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  782. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  783. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  784. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  785. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  786. /* src address */
  787. addr = (struct sadb_address*) skb_put(skb,
  788. sizeof(struct sadb_address)+sockaddr_size);
  789. addr->sadb_address_len =
  790. (sizeof(struct sadb_address)+sockaddr_size)/
  791. sizeof(uint64_t);
  792. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  793. /* "if the ports are non-zero, then the sadb_address_proto field,
  794. normally zero, MUST be filled in with the transport
  795. protocol's number." - RFC2367 */
  796. addr->sadb_address_proto = 0;
  797. addr->sadb_address_reserved = 0;
  798. addr->sadb_address_prefixlen =
  799. pfkey_sockaddr_fill(&x->props.saddr, 0,
  800. (struct sockaddr *) (addr + 1),
  801. x->props.family);
  802. if (!addr->sadb_address_prefixlen)
  803. BUG();
  804. /* dst address */
  805. addr = (struct sadb_address*) skb_put(skb,
  806. sizeof(struct sadb_address)+sockaddr_size);
  807. addr->sadb_address_len =
  808. (sizeof(struct sadb_address)+sockaddr_size)/
  809. sizeof(uint64_t);
  810. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  811. addr->sadb_address_proto = 0;
  812. addr->sadb_address_reserved = 0;
  813. addr->sadb_address_prefixlen =
  814. pfkey_sockaddr_fill(&x->id.daddr, 0,
  815. (struct sockaddr *) (addr + 1),
  816. x->props.family);
  817. if (!addr->sadb_address_prefixlen)
  818. BUG();
  819. if (xfrm_addr_cmp(&x->sel.saddr, &x->props.saddr,
  820. x->props.family)) {
  821. addr = (struct sadb_address*) skb_put(skb,
  822. sizeof(struct sadb_address)+sockaddr_size);
  823. addr->sadb_address_len =
  824. (sizeof(struct sadb_address)+sockaddr_size)/
  825. sizeof(uint64_t);
  826. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  827. addr->sadb_address_proto =
  828. pfkey_proto_from_xfrm(x->sel.proto);
  829. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  830. addr->sadb_address_reserved = 0;
  831. pfkey_sockaddr_fill(&x->sel.saddr, x->sel.sport,
  832. (struct sockaddr *) (addr + 1),
  833. x->props.family);
  834. }
  835. /* auth key */
  836. if (add_keys && auth_key_size) {
  837. key = (struct sadb_key *) skb_put(skb,
  838. sizeof(struct sadb_key)+auth_key_size);
  839. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  840. sizeof(uint64_t);
  841. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  842. key->sadb_key_bits = x->aalg->alg_key_len;
  843. key->sadb_key_reserved = 0;
  844. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  845. }
  846. /* encrypt key */
  847. if (add_keys && encrypt_key_size) {
  848. key = (struct sadb_key *) skb_put(skb,
  849. sizeof(struct sadb_key)+encrypt_key_size);
  850. key->sadb_key_len = (sizeof(struct sadb_key) +
  851. encrypt_key_size) / sizeof(uint64_t);
  852. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  853. key->sadb_key_bits = x->ealg->alg_key_len;
  854. key->sadb_key_reserved = 0;
  855. memcpy(key + 1, x->ealg->alg_key,
  856. (x->ealg->alg_key_len+7)/8);
  857. }
  858. /* sa */
  859. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  860. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  861. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  862. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  863. kfree_skb(skb);
  864. return ERR_PTR(-EINVAL);
  865. }
  866. sa2->sadb_x_sa2_mode = mode;
  867. sa2->sadb_x_sa2_reserved1 = 0;
  868. sa2->sadb_x_sa2_reserved2 = 0;
  869. sa2->sadb_x_sa2_sequence = 0;
  870. sa2->sadb_x_sa2_reqid = x->props.reqid;
  871. if (natt && natt->encap_type) {
  872. struct sadb_x_nat_t_type *n_type;
  873. struct sadb_x_nat_t_port *n_port;
  874. /* type */
  875. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  876. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  877. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  878. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  879. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  880. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  881. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  882. /* source port */
  883. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  884. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  885. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  886. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  887. n_port->sadb_x_nat_t_port_reserved = 0;
  888. /* dest port */
  889. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  890. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  891. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  892. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  893. n_port->sadb_x_nat_t_port_reserved = 0;
  894. }
  895. /* security context */
  896. if (xfrm_ctx) {
  897. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  898. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  899. sec_ctx->sadb_x_sec_len =
  900. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  901. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  902. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  903. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  904. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  905. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  906. xfrm_ctx->ctx_len);
  907. }
  908. return skb;
  909. }
  910. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  911. {
  912. struct sk_buff *skb;
  913. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  914. return skb;
  915. }
  916. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  917. int hsc)
  918. {
  919. return __pfkey_xfrm_state2msg(x, 0, hsc);
  920. }
  921. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  922. void **ext_hdrs)
  923. {
  924. struct xfrm_state *x;
  925. struct sadb_lifetime *lifetime;
  926. struct sadb_sa *sa;
  927. struct sadb_key *key;
  928. struct sadb_x_sec_ctx *sec_ctx;
  929. uint16_t proto;
  930. int err;
  931. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  932. if (!sa ||
  933. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  934. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  935. return ERR_PTR(-EINVAL);
  936. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  937. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  938. return ERR_PTR(-EINVAL);
  939. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  940. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  941. return ERR_PTR(-EINVAL);
  942. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  943. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  944. return ERR_PTR(-EINVAL);
  945. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  946. if (proto == 0)
  947. return ERR_PTR(-EINVAL);
  948. /* default error is no buffer space */
  949. err = -ENOBUFS;
  950. /* RFC2367:
  951. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  952. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  953. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  954. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  955. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  956. not true.
  957. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  958. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  959. */
  960. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  961. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  962. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  963. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  964. return ERR_PTR(-EINVAL);
  965. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  966. if (key != NULL &&
  967. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  968. ((key->sadb_key_bits+7) / 8 == 0 ||
  969. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  970. return ERR_PTR(-EINVAL);
  971. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  972. if (key != NULL &&
  973. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  974. ((key->sadb_key_bits+7) / 8 == 0 ||
  975. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  976. return ERR_PTR(-EINVAL);
  977. x = xfrm_state_alloc();
  978. if (x == NULL)
  979. return ERR_PTR(-ENOBUFS);
  980. x->id.proto = proto;
  981. x->id.spi = sa->sadb_sa_spi;
  982. x->props.replay_window = sa->sadb_sa_replay;
  983. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  984. x->props.flags |= XFRM_STATE_NOECN;
  985. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  986. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  987. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  988. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  989. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  990. if (lifetime != NULL) {
  991. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  992. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  993. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  994. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  995. }
  996. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  997. if (lifetime != NULL) {
  998. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  999. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1000. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1001. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1002. }
  1003. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1004. if (sec_ctx != NULL) {
  1005. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1006. if (!uctx)
  1007. goto out;
  1008. err = security_xfrm_state_alloc(x, uctx);
  1009. kfree(uctx);
  1010. if (err)
  1011. goto out;
  1012. }
  1013. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  1014. if (sa->sadb_sa_auth) {
  1015. int keysize = 0;
  1016. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1017. if (!a) {
  1018. err = -ENOSYS;
  1019. goto out;
  1020. }
  1021. if (key)
  1022. keysize = (key->sadb_key_bits + 7) / 8;
  1023. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1024. if (!x->aalg)
  1025. goto out;
  1026. strcpy(x->aalg->alg_name, a->name);
  1027. x->aalg->alg_key_len = 0;
  1028. if (key) {
  1029. x->aalg->alg_key_len = key->sadb_key_bits;
  1030. memcpy(x->aalg->alg_key, key+1, keysize);
  1031. }
  1032. x->props.aalgo = sa->sadb_sa_auth;
  1033. /* x->algo.flags = sa->sadb_sa_flags; */
  1034. }
  1035. if (sa->sadb_sa_encrypt) {
  1036. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1037. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1038. if (!a) {
  1039. err = -ENOSYS;
  1040. goto out;
  1041. }
  1042. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1043. if (!x->calg)
  1044. goto out;
  1045. strcpy(x->calg->alg_name, a->name);
  1046. x->props.calgo = sa->sadb_sa_encrypt;
  1047. } else {
  1048. int keysize = 0;
  1049. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1050. if (!a) {
  1051. err = -ENOSYS;
  1052. goto out;
  1053. }
  1054. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1055. if (key)
  1056. keysize = (key->sadb_key_bits + 7) / 8;
  1057. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1058. if (!x->ealg)
  1059. goto out;
  1060. strcpy(x->ealg->alg_name, a->name);
  1061. x->ealg->alg_key_len = 0;
  1062. if (key) {
  1063. x->ealg->alg_key_len = key->sadb_key_bits;
  1064. memcpy(x->ealg->alg_key, key+1, keysize);
  1065. }
  1066. x->props.ealgo = sa->sadb_sa_encrypt;
  1067. }
  1068. }
  1069. /* x->algo.flags = sa->sadb_sa_flags; */
  1070. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1071. &x->props.saddr);
  1072. if (!x->props.family) {
  1073. err = -EAFNOSUPPORT;
  1074. goto out;
  1075. }
  1076. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1077. &x->id.daddr);
  1078. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1079. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1080. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1081. if (mode < 0) {
  1082. err = -EINVAL;
  1083. goto out;
  1084. }
  1085. x->props.mode = mode;
  1086. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1087. }
  1088. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1089. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1090. /* Nobody uses this, but we try. */
  1091. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1092. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1093. }
  1094. if (!x->sel.family)
  1095. x->sel.family = x->props.family;
  1096. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1097. struct sadb_x_nat_t_type* n_type;
  1098. struct xfrm_encap_tmpl *natt;
  1099. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1100. if (!x->encap)
  1101. goto out;
  1102. natt = x->encap;
  1103. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1104. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1105. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1106. struct sadb_x_nat_t_port* n_port =
  1107. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1108. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1109. }
  1110. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1111. struct sadb_x_nat_t_port* n_port =
  1112. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1113. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1114. }
  1115. }
  1116. err = xfrm_init_state(x);
  1117. if (err)
  1118. goto out;
  1119. x->km.seq = hdr->sadb_msg_seq;
  1120. return x;
  1121. out:
  1122. x->km.state = XFRM_STATE_DEAD;
  1123. xfrm_state_put(x);
  1124. return ERR_PTR(err);
  1125. }
  1126. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1127. {
  1128. return -EOPNOTSUPP;
  1129. }
  1130. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1131. {
  1132. struct sk_buff *resp_skb;
  1133. struct sadb_x_sa2 *sa2;
  1134. struct sadb_address *saddr, *daddr;
  1135. struct sadb_msg *out_hdr;
  1136. struct sadb_spirange *range;
  1137. struct xfrm_state *x = NULL;
  1138. int mode;
  1139. int err;
  1140. u32 min_spi, max_spi;
  1141. u32 reqid;
  1142. u8 proto;
  1143. unsigned short family;
  1144. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1145. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1146. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1147. return -EINVAL;
  1148. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1149. if (proto == 0)
  1150. return -EINVAL;
  1151. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1152. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1153. if (mode < 0)
  1154. return -EINVAL;
  1155. reqid = sa2->sadb_x_sa2_reqid;
  1156. } else {
  1157. mode = 0;
  1158. reqid = 0;
  1159. }
  1160. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1161. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1162. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1163. switch (family) {
  1164. case AF_INET:
  1165. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1166. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1167. break;
  1168. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1169. case AF_INET6:
  1170. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1171. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1172. break;
  1173. #endif
  1174. }
  1175. if (hdr->sadb_msg_seq) {
  1176. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1177. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1178. xfrm_state_put(x);
  1179. x = NULL;
  1180. }
  1181. }
  1182. if (!x)
  1183. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1184. if (x == NULL)
  1185. return -ENOENT;
  1186. min_spi = 0x100;
  1187. max_spi = 0x0fffffff;
  1188. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1189. if (range) {
  1190. min_spi = range->sadb_spirange_min;
  1191. max_spi = range->sadb_spirange_max;
  1192. }
  1193. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1194. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1195. if (IS_ERR(resp_skb)) {
  1196. xfrm_state_put(x);
  1197. return PTR_ERR(resp_skb);
  1198. }
  1199. out_hdr = (struct sadb_msg *) resp_skb->data;
  1200. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1201. out_hdr->sadb_msg_type = SADB_GETSPI;
  1202. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1203. out_hdr->sadb_msg_errno = 0;
  1204. out_hdr->sadb_msg_reserved = 0;
  1205. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1206. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1207. xfrm_state_put(x);
  1208. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1209. return 0;
  1210. }
  1211. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1212. {
  1213. struct xfrm_state *x;
  1214. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1215. return -EOPNOTSUPP;
  1216. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1217. return 0;
  1218. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1219. if (x == NULL)
  1220. return 0;
  1221. spin_lock_bh(&x->lock);
  1222. if (x->km.state == XFRM_STATE_ACQ) {
  1223. x->km.state = XFRM_STATE_ERROR;
  1224. wake_up(&km_waitq);
  1225. }
  1226. spin_unlock_bh(&x->lock);
  1227. xfrm_state_put(x);
  1228. return 0;
  1229. }
  1230. static inline int event2poltype(int event)
  1231. {
  1232. switch (event) {
  1233. case XFRM_MSG_DELPOLICY:
  1234. return SADB_X_SPDDELETE;
  1235. case XFRM_MSG_NEWPOLICY:
  1236. return SADB_X_SPDADD;
  1237. case XFRM_MSG_UPDPOLICY:
  1238. return SADB_X_SPDUPDATE;
  1239. case XFRM_MSG_POLEXPIRE:
  1240. // return SADB_X_SPDEXPIRE;
  1241. default:
  1242. printk("pfkey: Unknown policy event %d\n", event);
  1243. break;
  1244. }
  1245. return 0;
  1246. }
  1247. static inline int event2keytype(int event)
  1248. {
  1249. switch (event) {
  1250. case XFRM_MSG_DELSA:
  1251. return SADB_DELETE;
  1252. case XFRM_MSG_NEWSA:
  1253. return SADB_ADD;
  1254. case XFRM_MSG_UPDSA:
  1255. return SADB_UPDATE;
  1256. case XFRM_MSG_EXPIRE:
  1257. return SADB_EXPIRE;
  1258. default:
  1259. printk("pfkey: Unknown SA event %d\n", event);
  1260. break;
  1261. }
  1262. return 0;
  1263. }
  1264. /* ADD/UPD/DEL */
  1265. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1266. {
  1267. struct sk_buff *skb;
  1268. struct sadb_msg *hdr;
  1269. skb = pfkey_xfrm_state2msg(x);
  1270. if (IS_ERR(skb))
  1271. return PTR_ERR(skb);
  1272. hdr = (struct sadb_msg *) skb->data;
  1273. hdr->sadb_msg_version = PF_KEY_V2;
  1274. hdr->sadb_msg_type = event2keytype(c->event);
  1275. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1276. hdr->sadb_msg_errno = 0;
  1277. hdr->sadb_msg_reserved = 0;
  1278. hdr->sadb_msg_seq = c->seq;
  1279. hdr->sadb_msg_pid = c->pid;
  1280. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1281. return 0;
  1282. }
  1283. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1284. {
  1285. struct xfrm_state *x;
  1286. int err;
  1287. struct km_event c;
  1288. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1289. if (IS_ERR(x))
  1290. return PTR_ERR(x);
  1291. xfrm_state_hold(x);
  1292. if (hdr->sadb_msg_type == SADB_ADD)
  1293. err = xfrm_state_add(x);
  1294. else
  1295. err = xfrm_state_update(x);
  1296. xfrm_audit_state_add(x, err ? 0 : 1,
  1297. audit_get_loginuid(current),
  1298. audit_get_sessionid(current), 0);
  1299. if (err < 0) {
  1300. x->km.state = XFRM_STATE_DEAD;
  1301. __xfrm_state_put(x);
  1302. goto out;
  1303. }
  1304. if (hdr->sadb_msg_type == SADB_ADD)
  1305. c.event = XFRM_MSG_NEWSA;
  1306. else
  1307. c.event = XFRM_MSG_UPDSA;
  1308. c.seq = hdr->sadb_msg_seq;
  1309. c.pid = hdr->sadb_msg_pid;
  1310. km_state_notify(x, &c);
  1311. out:
  1312. xfrm_state_put(x);
  1313. return err;
  1314. }
  1315. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1316. {
  1317. struct xfrm_state *x;
  1318. struct km_event c;
  1319. int err;
  1320. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1321. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1322. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1323. return -EINVAL;
  1324. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1325. if (x == NULL)
  1326. return -ESRCH;
  1327. if ((err = security_xfrm_state_delete(x)))
  1328. goto out;
  1329. if (xfrm_state_kern(x)) {
  1330. err = -EPERM;
  1331. goto out;
  1332. }
  1333. err = xfrm_state_delete(x);
  1334. if (err < 0)
  1335. goto out;
  1336. c.seq = hdr->sadb_msg_seq;
  1337. c.pid = hdr->sadb_msg_pid;
  1338. c.event = XFRM_MSG_DELSA;
  1339. km_state_notify(x, &c);
  1340. out:
  1341. xfrm_audit_state_delete(x, err ? 0 : 1,
  1342. audit_get_loginuid(current),
  1343. audit_get_sessionid(current), 0);
  1344. xfrm_state_put(x);
  1345. return err;
  1346. }
  1347. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1348. {
  1349. __u8 proto;
  1350. struct sk_buff *out_skb;
  1351. struct sadb_msg *out_hdr;
  1352. struct xfrm_state *x;
  1353. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1354. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1355. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1356. return -EINVAL;
  1357. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1358. if (x == NULL)
  1359. return -ESRCH;
  1360. out_skb = pfkey_xfrm_state2msg(x);
  1361. proto = x->id.proto;
  1362. xfrm_state_put(x);
  1363. if (IS_ERR(out_skb))
  1364. return PTR_ERR(out_skb);
  1365. out_hdr = (struct sadb_msg *) out_skb->data;
  1366. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1367. out_hdr->sadb_msg_type = SADB_GET;
  1368. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1369. out_hdr->sadb_msg_errno = 0;
  1370. out_hdr->sadb_msg_reserved = 0;
  1371. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1372. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1373. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1374. return 0;
  1375. }
  1376. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1377. gfp_t allocation)
  1378. {
  1379. struct sk_buff *skb;
  1380. struct sadb_msg *hdr;
  1381. int len, auth_len, enc_len, i;
  1382. auth_len = xfrm_count_auth_supported();
  1383. if (auth_len) {
  1384. auth_len *= sizeof(struct sadb_alg);
  1385. auth_len += sizeof(struct sadb_supported);
  1386. }
  1387. enc_len = xfrm_count_enc_supported();
  1388. if (enc_len) {
  1389. enc_len *= sizeof(struct sadb_alg);
  1390. enc_len += sizeof(struct sadb_supported);
  1391. }
  1392. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1393. skb = alloc_skb(len + 16, allocation);
  1394. if (!skb)
  1395. goto out_put_algs;
  1396. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1397. pfkey_hdr_dup(hdr, orig);
  1398. hdr->sadb_msg_errno = 0;
  1399. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1400. if (auth_len) {
  1401. struct sadb_supported *sp;
  1402. struct sadb_alg *ap;
  1403. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1404. ap = (struct sadb_alg *) (sp + 1);
  1405. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1406. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1407. for (i = 0; ; i++) {
  1408. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1409. if (!aalg)
  1410. break;
  1411. if (aalg->available)
  1412. *ap++ = aalg->desc;
  1413. }
  1414. }
  1415. if (enc_len) {
  1416. struct sadb_supported *sp;
  1417. struct sadb_alg *ap;
  1418. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1419. ap = (struct sadb_alg *) (sp + 1);
  1420. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1421. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1422. for (i = 0; ; i++) {
  1423. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1424. if (!ealg)
  1425. break;
  1426. if (ealg->available)
  1427. *ap++ = ealg->desc;
  1428. }
  1429. }
  1430. out_put_algs:
  1431. return skb;
  1432. }
  1433. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1434. {
  1435. struct pfkey_sock *pfk = pfkey_sk(sk);
  1436. struct sk_buff *supp_skb;
  1437. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1438. return -EINVAL;
  1439. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1440. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1441. return -EEXIST;
  1442. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1443. }
  1444. xfrm_probe_algs();
  1445. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1446. if (!supp_skb) {
  1447. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1448. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1449. return -ENOBUFS;
  1450. }
  1451. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1452. return 0;
  1453. }
  1454. static int key_notify_sa_flush(struct km_event *c)
  1455. {
  1456. struct sk_buff *skb;
  1457. struct sadb_msg *hdr;
  1458. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1459. if (!skb)
  1460. return -ENOBUFS;
  1461. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1462. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1463. hdr->sadb_msg_type = SADB_FLUSH;
  1464. hdr->sadb_msg_seq = c->seq;
  1465. hdr->sadb_msg_pid = c->pid;
  1466. hdr->sadb_msg_version = PF_KEY_V2;
  1467. hdr->sadb_msg_errno = (uint8_t) 0;
  1468. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1469. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1470. return 0;
  1471. }
  1472. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1473. {
  1474. unsigned proto;
  1475. struct km_event c;
  1476. struct xfrm_audit audit_info;
  1477. int err;
  1478. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1479. if (proto == 0)
  1480. return -EINVAL;
  1481. audit_info.loginuid = audit_get_loginuid(current);
  1482. audit_info.sessionid = audit_get_sessionid(current);
  1483. audit_info.secid = 0;
  1484. err = xfrm_state_flush(proto, &audit_info);
  1485. if (err)
  1486. return err;
  1487. c.data.proto = proto;
  1488. c.seq = hdr->sadb_msg_seq;
  1489. c.pid = hdr->sadb_msg_pid;
  1490. c.event = XFRM_MSG_FLUSHSA;
  1491. km_state_notify(NULL, &c);
  1492. return 0;
  1493. }
  1494. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1495. {
  1496. struct pfkey_sock *pfk = ptr;
  1497. struct sk_buff *out_skb;
  1498. struct sadb_msg *out_hdr;
  1499. if (!pfkey_can_dump(&pfk->sk))
  1500. return -ENOBUFS;
  1501. out_skb = pfkey_xfrm_state2msg(x);
  1502. if (IS_ERR(out_skb))
  1503. return PTR_ERR(out_skb);
  1504. out_hdr = (struct sadb_msg *) out_skb->data;
  1505. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1506. out_hdr->sadb_msg_type = SADB_DUMP;
  1507. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1508. out_hdr->sadb_msg_errno = 0;
  1509. out_hdr->sadb_msg_reserved = 0;
  1510. out_hdr->sadb_msg_seq = count + 1;
  1511. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1512. if (pfk->dump.skb)
  1513. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  1514. &pfk->sk);
  1515. pfk->dump.skb = out_skb;
  1516. return 0;
  1517. }
  1518. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1519. {
  1520. return xfrm_state_walk(&pfk->dump.u.state, dump_sa, (void *) pfk);
  1521. }
  1522. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1523. {
  1524. xfrm_state_walk_done(&pfk->dump.u.state);
  1525. }
  1526. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1527. {
  1528. u8 proto;
  1529. struct pfkey_sock *pfk = pfkey_sk(sk);
  1530. if (pfk->dump.dump != NULL)
  1531. return -EBUSY;
  1532. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1533. if (proto == 0)
  1534. return -EINVAL;
  1535. pfk->dump.msg_version = hdr->sadb_msg_version;
  1536. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1537. pfk->dump.dump = pfkey_dump_sa;
  1538. pfk->dump.done = pfkey_dump_sa_done;
  1539. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1540. return pfkey_do_dump(pfk);
  1541. }
  1542. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1543. {
  1544. struct pfkey_sock *pfk = pfkey_sk(sk);
  1545. int satype = hdr->sadb_msg_satype;
  1546. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1547. /* XXX we mangle packet... */
  1548. hdr->sadb_msg_errno = 0;
  1549. if (satype != 0 && satype != 1)
  1550. return -EINVAL;
  1551. pfk->promisc = satype;
  1552. }
  1553. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1554. return 0;
  1555. }
  1556. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1557. {
  1558. int i;
  1559. u32 reqid = *(u32*)ptr;
  1560. for (i=0; i<xp->xfrm_nr; i++) {
  1561. if (xp->xfrm_vec[i].reqid == reqid)
  1562. return -EEXIST;
  1563. }
  1564. return 0;
  1565. }
  1566. static u32 gen_reqid(void)
  1567. {
  1568. struct xfrm_policy_walk walk;
  1569. u32 start;
  1570. int rc;
  1571. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1572. start = reqid;
  1573. do {
  1574. ++reqid;
  1575. if (reqid == 0)
  1576. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1577. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1578. rc = xfrm_policy_walk(&walk, check_reqid, (void*)&reqid);
  1579. xfrm_policy_walk_done(&walk);
  1580. if (rc != -EEXIST)
  1581. return reqid;
  1582. } while (reqid != start);
  1583. return 0;
  1584. }
  1585. static int
  1586. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1587. {
  1588. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1589. int mode;
  1590. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1591. return -ELOOP;
  1592. if (rq->sadb_x_ipsecrequest_mode == 0)
  1593. return -EINVAL;
  1594. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1595. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1596. return -EINVAL;
  1597. t->mode = mode;
  1598. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1599. t->optional = 1;
  1600. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1601. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1602. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1603. t->reqid = 0;
  1604. if (!t->reqid && !(t->reqid = gen_reqid()))
  1605. return -ENOBUFS;
  1606. }
  1607. /* addresses present only in tunnel mode */
  1608. if (t->mode == XFRM_MODE_TUNNEL) {
  1609. u8 *sa = (u8 *) (rq + 1);
  1610. int family, socklen;
  1611. family = pfkey_sockaddr_extract((struct sockaddr *)sa,
  1612. &t->saddr);
  1613. if (!family)
  1614. return -EINVAL;
  1615. socklen = pfkey_sockaddr_len(family);
  1616. if (pfkey_sockaddr_extract((struct sockaddr *)(sa + socklen),
  1617. &t->id.daddr) != family)
  1618. return -EINVAL;
  1619. t->encap_family = family;
  1620. } else
  1621. t->encap_family = xp->family;
  1622. /* No way to set this via kame pfkey */
  1623. t->allalgs = 1;
  1624. xp->xfrm_nr++;
  1625. return 0;
  1626. }
  1627. static int
  1628. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1629. {
  1630. int err;
  1631. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1632. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1633. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1634. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1635. return err;
  1636. len -= rq->sadb_x_ipsecrequest_len;
  1637. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1638. }
  1639. return 0;
  1640. }
  1641. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1642. {
  1643. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1644. if (xfrm_ctx) {
  1645. int len = sizeof(struct sadb_x_sec_ctx);
  1646. len += xfrm_ctx->ctx_len;
  1647. return PFKEY_ALIGN8(len);
  1648. }
  1649. return 0;
  1650. }
  1651. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1652. {
  1653. struct xfrm_tmpl *t;
  1654. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1655. int socklen = 0;
  1656. int i;
  1657. for (i=0; i<xp->xfrm_nr; i++) {
  1658. t = xp->xfrm_vec + i;
  1659. socklen += pfkey_sockaddr_len(t->encap_family);
  1660. }
  1661. return sizeof(struct sadb_msg) +
  1662. (sizeof(struct sadb_lifetime) * 3) +
  1663. (sizeof(struct sadb_address) * 2) +
  1664. (sockaddr_size * 2) +
  1665. sizeof(struct sadb_x_policy) +
  1666. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1667. (socklen * 2) +
  1668. pfkey_xfrm_policy2sec_ctx_size(xp);
  1669. }
  1670. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1671. {
  1672. struct sk_buff *skb;
  1673. int size;
  1674. size = pfkey_xfrm_policy2msg_size(xp);
  1675. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1676. if (skb == NULL)
  1677. return ERR_PTR(-ENOBUFS);
  1678. return skb;
  1679. }
  1680. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1681. {
  1682. struct sadb_msg *hdr;
  1683. struct sadb_address *addr;
  1684. struct sadb_lifetime *lifetime;
  1685. struct sadb_x_policy *pol;
  1686. struct sadb_x_sec_ctx *sec_ctx;
  1687. struct xfrm_sec_ctx *xfrm_ctx;
  1688. int i;
  1689. int size;
  1690. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1691. int socklen = pfkey_sockaddr_len(xp->family);
  1692. size = pfkey_xfrm_policy2msg_size(xp);
  1693. /* call should fill header later */
  1694. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1695. memset(hdr, 0, size); /* XXX do we need this ? */
  1696. /* src address */
  1697. addr = (struct sadb_address*) skb_put(skb,
  1698. sizeof(struct sadb_address)+sockaddr_size);
  1699. addr->sadb_address_len =
  1700. (sizeof(struct sadb_address)+sockaddr_size)/
  1701. sizeof(uint64_t);
  1702. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1703. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1704. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1705. addr->sadb_address_reserved = 0;
  1706. if (!pfkey_sockaddr_fill(&xp->selector.saddr,
  1707. xp->selector.sport,
  1708. (struct sockaddr *) (addr + 1),
  1709. xp->family))
  1710. BUG();
  1711. /* dst address */
  1712. addr = (struct sadb_address*) skb_put(skb,
  1713. sizeof(struct sadb_address)+sockaddr_size);
  1714. addr->sadb_address_len =
  1715. (sizeof(struct sadb_address)+sockaddr_size)/
  1716. sizeof(uint64_t);
  1717. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1718. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1719. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1720. addr->sadb_address_reserved = 0;
  1721. pfkey_sockaddr_fill(&xp->selector.daddr, xp->selector.dport,
  1722. (struct sockaddr *) (addr + 1),
  1723. xp->family);
  1724. /* hard time */
  1725. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1726. sizeof(struct sadb_lifetime));
  1727. lifetime->sadb_lifetime_len =
  1728. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1729. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1730. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1731. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1732. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1733. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1734. /* soft time */
  1735. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1736. sizeof(struct sadb_lifetime));
  1737. lifetime->sadb_lifetime_len =
  1738. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1739. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1740. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1741. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1742. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1743. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1744. /* current time */
  1745. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1746. sizeof(struct sadb_lifetime));
  1747. lifetime->sadb_lifetime_len =
  1748. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1749. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1750. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1751. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1752. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1753. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1754. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1755. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1756. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1757. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1758. if (xp->action == XFRM_POLICY_ALLOW) {
  1759. if (xp->xfrm_nr)
  1760. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1761. else
  1762. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1763. }
  1764. pol->sadb_x_policy_dir = dir+1;
  1765. pol->sadb_x_policy_id = xp->index;
  1766. pol->sadb_x_policy_priority = xp->priority;
  1767. for (i=0; i<xp->xfrm_nr; i++) {
  1768. struct sadb_x_ipsecrequest *rq;
  1769. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1770. int req_size;
  1771. int mode;
  1772. req_size = sizeof(struct sadb_x_ipsecrequest);
  1773. if (t->mode == XFRM_MODE_TUNNEL) {
  1774. socklen = pfkey_sockaddr_len(t->encap_family);
  1775. req_size += socklen * 2;
  1776. } else {
  1777. size -= 2*socklen;
  1778. socklen = 0;
  1779. }
  1780. rq = (void*)skb_put(skb, req_size);
  1781. pol->sadb_x_policy_len += req_size/8;
  1782. memset(rq, 0, sizeof(*rq));
  1783. rq->sadb_x_ipsecrequest_len = req_size;
  1784. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1785. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1786. return -EINVAL;
  1787. rq->sadb_x_ipsecrequest_mode = mode;
  1788. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1789. if (t->reqid)
  1790. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1791. if (t->optional)
  1792. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1793. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1794. if (t->mode == XFRM_MODE_TUNNEL) {
  1795. u8 *sa = (void *)(rq + 1);
  1796. pfkey_sockaddr_fill(&t->saddr, 0,
  1797. (struct sockaddr *)sa,
  1798. t->encap_family);
  1799. pfkey_sockaddr_fill(&t->id.daddr, 0,
  1800. (struct sockaddr *) (sa + socklen),
  1801. t->encap_family);
  1802. }
  1803. }
  1804. /* security context */
  1805. if ((xfrm_ctx = xp->security)) {
  1806. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1807. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1808. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1809. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1810. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1811. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1812. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1813. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1814. xfrm_ctx->ctx_len);
  1815. }
  1816. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1817. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1818. return 0;
  1819. }
  1820. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1821. {
  1822. struct sk_buff *out_skb;
  1823. struct sadb_msg *out_hdr;
  1824. int err;
  1825. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1826. if (IS_ERR(out_skb)) {
  1827. err = PTR_ERR(out_skb);
  1828. goto out;
  1829. }
  1830. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1831. if (err < 0)
  1832. return err;
  1833. out_hdr = (struct sadb_msg *) out_skb->data;
  1834. out_hdr->sadb_msg_version = PF_KEY_V2;
  1835. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1836. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1837. else
  1838. out_hdr->sadb_msg_type = event2poltype(c->event);
  1839. out_hdr->sadb_msg_errno = 0;
  1840. out_hdr->sadb_msg_seq = c->seq;
  1841. out_hdr->sadb_msg_pid = c->pid;
  1842. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1843. out:
  1844. return 0;
  1845. }
  1846. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1847. {
  1848. int err = 0;
  1849. struct sadb_lifetime *lifetime;
  1850. struct sadb_address *sa;
  1851. struct sadb_x_policy *pol;
  1852. struct xfrm_policy *xp;
  1853. struct km_event c;
  1854. struct sadb_x_sec_ctx *sec_ctx;
  1855. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1856. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1857. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1858. return -EINVAL;
  1859. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1860. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1861. return -EINVAL;
  1862. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1863. return -EINVAL;
  1864. xp = xfrm_policy_alloc(GFP_KERNEL);
  1865. if (xp == NULL)
  1866. return -ENOBUFS;
  1867. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1868. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1869. xp->priority = pol->sadb_x_policy_priority;
  1870. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1871. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1872. if (!xp->family) {
  1873. err = -EINVAL;
  1874. goto out;
  1875. }
  1876. xp->selector.family = xp->family;
  1877. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1878. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1879. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1880. if (xp->selector.sport)
  1881. xp->selector.sport_mask = htons(0xffff);
  1882. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1883. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1884. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1885. /* Amusing, we set this twice. KAME apps appear to set same value
  1886. * in both addresses.
  1887. */
  1888. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1889. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1890. if (xp->selector.dport)
  1891. xp->selector.dport_mask = htons(0xffff);
  1892. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1893. if (sec_ctx != NULL) {
  1894. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1895. if (!uctx) {
  1896. err = -ENOBUFS;
  1897. goto out;
  1898. }
  1899. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1900. kfree(uctx);
  1901. if (err)
  1902. goto out;
  1903. }
  1904. xp->lft.soft_byte_limit = XFRM_INF;
  1905. xp->lft.hard_byte_limit = XFRM_INF;
  1906. xp->lft.soft_packet_limit = XFRM_INF;
  1907. xp->lft.hard_packet_limit = XFRM_INF;
  1908. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1909. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1910. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1911. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1912. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1913. }
  1914. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  1915. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1916. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1917. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1918. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1919. }
  1920. xp->xfrm_nr = 0;
  1921. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  1922. (err = parse_ipsecrequests(xp, pol)) < 0)
  1923. goto out;
  1924. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  1925. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  1926. xfrm_audit_policy_add(xp, err ? 0 : 1,
  1927. audit_get_loginuid(current),
  1928. audit_get_sessionid(current), 0);
  1929. if (err)
  1930. goto out;
  1931. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  1932. c.event = XFRM_MSG_UPDPOLICY;
  1933. else
  1934. c.event = XFRM_MSG_NEWPOLICY;
  1935. c.seq = hdr->sadb_msg_seq;
  1936. c.pid = hdr->sadb_msg_pid;
  1937. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  1938. xfrm_pol_put(xp);
  1939. return 0;
  1940. out:
  1941. xp->walk.dead = 1;
  1942. xfrm_policy_destroy(xp);
  1943. return err;
  1944. }
  1945. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1946. {
  1947. int err;
  1948. struct sadb_address *sa;
  1949. struct sadb_x_policy *pol;
  1950. struct xfrm_policy *xp;
  1951. struct xfrm_selector sel;
  1952. struct km_event c;
  1953. struct sadb_x_sec_ctx *sec_ctx;
  1954. struct xfrm_sec_ctx *pol_ctx = NULL;
  1955. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1956. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1957. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1958. return -EINVAL;
  1959. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1960. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1961. return -EINVAL;
  1962. memset(&sel, 0, sizeof(sel));
  1963. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1964. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  1965. sel.prefixlen_s = sa->sadb_address_prefixlen;
  1966. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1967. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1968. if (sel.sport)
  1969. sel.sport_mask = htons(0xffff);
  1970. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1971. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  1972. sel.prefixlen_d = sa->sadb_address_prefixlen;
  1973. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1974. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1975. if (sel.dport)
  1976. sel.dport_mask = htons(0xffff);
  1977. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1978. if (sec_ctx != NULL) {
  1979. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1980. if (!uctx)
  1981. return -ENOMEM;
  1982. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  1983. kfree(uctx);
  1984. if (err)
  1985. return err;
  1986. }
  1987. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN,
  1988. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  1989. 1, &err);
  1990. security_xfrm_policy_free(pol_ctx);
  1991. if (xp == NULL)
  1992. return -ENOENT;
  1993. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  1994. audit_get_loginuid(current),
  1995. audit_get_sessionid(current), 0);
  1996. if (err)
  1997. goto out;
  1998. c.seq = hdr->sadb_msg_seq;
  1999. c.pid = hdr->sadb_msg_pid;
  2000. c.data.byid = 0;
  2001. c.event = XFRM_MSG_DELPOLICY;
  2002. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2003. out:
  2004. xfrm_pol_put(xp);
  2005. return err;
  2006. }
  2007. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2008. {
  2009. int err;
  2010. struct sk_buff *out_skb;
  2011. struct sadb_msg *out_hdr;
  2012. err = 0;
  2013. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2014. if (IS_ERR(out_skb)) {
  2015. err = PTR_ERR(out_skb);
  2016. goto out;
  2017. }
  2018. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2019. if (err < 0)
  2020. goto out;
  2021. out_hdr = (struct sadb_msg *) out_skb->data;
  2022. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2023. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2024. out_hdr->sadb_msg_satype = 0;
  2025. out_hdr->sadb_msg_errno = 0;
  2026. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2027. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2028. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2029. err = 0;
  2030. out:
  2031. return err;
  2032. }
  2033. #ifdef CONFIG_NET_KEY_MIGRATE
  2034. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2035. {
  2036. return PFKEY_ALIGN8(pfkey_sockaddr_len(family) * 2);
  2037. }
  2038. static int parse_sockaddr_pair(struct sockaddr *sa, int ext_len,
  2039. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2040. u16 *family)
  2041. {
  2042. int af, socklen;
  2043. if (ext_len < pfkey_sockaddr_pair_size(sa->sa_family))
  2044. return -EINVAL;
  2045. af = pfkey_sockaddr_extract(sa, saddr);
  2046. if (!af)
  2047. return -EINVAL;
  2048. socklen = pfkey_sockaddr_len(af);
  2049. if (pfkey_sockaddr_extract((struct sockaddr *) (((u8 *)sa) + socklen),
  2050. daddr) != af)
  2051. return -EINVAL;
  2052. *family = af;
  2053. return 0;
  2054. }
  2055. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2056. struct xfrm_migrate *m)
  2057. {
  2058. int err;
  2059. struct sadb_x_ipsecrequest *rq2;
  2060. int mode;
  2061. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2062. len < rq1->sadb_x_ipsecrequest_len)
  2063. return -EINVAL;
  2064. /* old endoints */
  2065. err = parse_sockaddr_pair((struct sockaddr *)(rq1 + 1),
  2066. rq1->sadb_x_ipsecrequest_len,
  2067. &m->old_saddr, &m->old_daddr,
  2068. &m->old_family);
  2069. if (err)
  2070. return err;
  2071. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2072. len -= rq1->sadb_x_ipsecrequest_len;
  2073. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2074. len < rq2->sadb_x_ipsecrequest_len)
  2075. return -EINVAL;
  2076. /* new endpoints */
  2077. err = parse_sockaddr_pair((struct sockaddr *)(rq2 + 1),
  2078. rq2->sadb_x_ipsecrequest_len,
  2079. &m->new_saddr, &m->new_daddr,
  2080. &m->new_family);
  2081. if (err)
  2082. return err;
  2083. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2084. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2085. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2086. return -EINVAL;
  2087. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2088. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2089. return -EINVAL;
  2090. m->mode = mode;
  2091. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2092. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2093. rq2->sadb_x_ipsecrequest_len));
  2094. }
  2095. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2096. struct sadb_msg *hdr, void **ext_hdrs)
  2097. {
  2098. int i, len, ret, err = -EINVAL;
  2099. u8 dir;
  2100. struct sadb_address *sa;
  2101. struct sadb_x_kmaddress *kma;
  2102. struct sadb_x_policy *pol;
  2103. struct sadb_x_ipsecrequest *rq;
  2104. struct xfrm_selector sel;
  2105. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2106. struct xfrm_kmaddress k;
  2107. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2108. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2109. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2110. err = -EINVAL;
  2111. goto out;
  2112. }
  2113. kma = ext_hdrs[SADB_X_EXT_KMADDRESS - 1];
  2114. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2115. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2116. err = -EINVAL;
  2117. goto out;
  2118. }
  2119. if (kma) {
  2120. /* convert sadb_x_kmaddress to xfrm_kmaddress */
  2121. k.reserved = kma->sadb_x_kmaddress_reserved;
  2122. ret = parse_sockaddr_pair((struct sockaddr *)(kma + 1),
  2123. 8*(kma->sadb_x_kmaddress_len) - sizeof(*kma),
  2124. &k.local, &k.remote, &k.family);
  2125. if (ret < 0) {
  2126. err = ret;
  2127. goto out;
  2128. }
  2129. }
  2130. dir = pol->sadb_x_policy_dir - 1;
  2131. memset(&sel, 0, sizeof(sel));
  2132. /* set source address info of selector */
  2133. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2134. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2135. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2136. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2137. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2138. if (sel.sport)
  2139. sel.sport_mask = htons(0xffff);
  2140. /* set destination address info of selector */
  2141. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2142. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2143. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2144. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2145. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2146. if (sel.dport)
  2147. sel.dport_mask = htons(0xffff);
  2148. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2149. /* extract ipsecrequests */
  2150. i = 0;
  2151. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2152. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2153. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2154. if (ret < 0) {
  2155. err = ret;
  2156. goto out;
  2157. } else {
  2158. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2159. len -= ret;
  2160. i++;
  2161. }
  2162. }
  2163. if (!i || len > 0) {
  2164. err = -EINVAL;
  2165. goto out;
  2166. }
  2167. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i,
  2168. kma ? &k : NULL);
  2169. out:
  2170. return err;
  2171. }
  2172. #else
  2173. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2174. struct sadb_msg *hdr, void **ext_hdrs)
  2175. {
  2176. return -ENOPROTOOPT;
  2177. }
  2178. #endif
  2179. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2180. {
  2181. unsigned int dir;
  2182. int err = 0, delete;
  2183. struct sadb_x_policy *pol;
  2184. struct xfrm_policy *xp;
  2185. struct km_event c;
  2186. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2187. return -EINVAL;
  2188. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2189. if (dir >= XFRM_POLICY_MAX)
  2190. return -EINVAL;
  2191. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2192. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2193. delete, &err);
  2194. if (xp == NULL)
  2195. return -ENOENT;
  2196. if (delete) {
  2197. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2198. audit_get_loginuid(current),
  2199. audit_get_sessionid(current), 0);
  2200. if (err)
  2201. goto out;
  2202. c.seq = hdr->sadb_msg_seq;
  2203. c.pid = hdr->sadb_msg_pid;
  2204. c.data.byid = 1;
  2205. c.event = XFRM_MSG_DELPOLICY;
  2206. km_policy_notify(xp, dir, &c);
  2207. } else {
  2208. err = key_pol_get_resp(sk, xp, hdr, dir);
  2209. }
  2210. out:
  2211. xfrm_pol_put(xp);
  2212. return err;
  2213. }
  2214. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2215. {
  2216. struct pfkey_sock *pfk = ptr;
  2217. struct sk_buff *out_skb;
  2218. struct sadb_msg *out_hdr;
  2219. int err;
  2220. if (!pfkey_can_dump(&pfk->sk))
  2221. return -ENOBUFS;
  2222. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2223. if (IS_ERR(out_skb))
  2224. return PTR_ERR(out_skb);
  2225. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2226. if (err < 0)
  2227. return err;
  2228. out_hdr = (struct sadb_msg *) out_skb->data;
  2229. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2230. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2231. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2232. out_hdr->sadb_msg_errno = 0;
  2233. out_hdr->sadb_msg_seq = count + 1;
  2234. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2235. if (pfk->dump.skb)
  2236. pfkey_broadcast(pfk->dump.skb, GFP_ATOMIC, BROADCAST_ONE,
  2237. &pfk->sk);
  2238. pfk->dump.skb = out_skb;
  2239. return 0;
  2240. }
  2241. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2242. {
  2243. return xfrm_policy_walk(&pfk->dump.u.policy, dump_sp, (void *) pfk);
  2244. }
  2245. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2246. {
  2247. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2248. }
  2249. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2250. {
  2251. struct pfkey_sock *pfk = pfkey_sk(sk);
  2252. if (pfk->dump.dump != NULL)
  2253. return -EBUSY;
  2254. pfk->dump.msg_version = hdr->sadb_msg_version;
  2255. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2256. pfk->dump.dump = pfkey_dump_sp;
  2257. pfk->dump.done = pfkey_dump_sp_done;
  2258. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2259. return pfkey_do_dump(pfk);
  2260. }
  2261. static int key_notify_policy_flush(struct km_event *c)
  2262. {
  2263. struct sk_buff *skb_out;
  2264. struct sadb_msg *hdr;
  2265. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2266. if (!skb_out)
  2267. return -ENOBUFS;
  2268. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2269. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2270. hdr->sadb_msg_seq = c->seq;
  2271. hdr->sadb_msg_pid = c->pid;
  2272. hdr->sadb_msg_version = PF_KEY_V2;
  2273. hdr->sadb_msg_errno = (uint8_t) 0;
  2274. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2275. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2276. return 0;
  2277. }
  2278. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2279. {
  2280. struct km_event c;
  2281. struct xfrm_audit audit_info;
  2282. int err;
  2283. audit_info.loginuid = audit_get_loginuid(current);
  2284. audit_info.sessionid = audit_get_sessionid(current);
  2285. audit_info.secid = 0;
  2286. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2287. if (err)
  2288. return err;
  2289. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2290. c.event = XFRM_MSG_FLUSHPOLICY;
  2291. c.pid = hdr->sadb_msg_pid;
  2292. c.seq = hdr->sadb_msg_seq;
  2293. km_policy_notify(NULL, 0, &c);
  2294. return 0;
  2295. }
  2296. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2297. struct sadb_msg *hdr, void **ext_hdrs);
  2298. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2299. [SADB_RESERVED] = pfkey_reserved,
  2300. [SADB_GETSPI] = pfkey_getspi,
  2301. [SADB_UPDATE] = pfkey_add,
  2302. [SADB_ADD] = pfkey_add,
  2303. [SADB_DELETE] = pfkey_delete,
  2304. [SADB_GET] = pfkey_get,
  2305. [SADB_ACQUIRE] = pfkey_acquire,
  2306. [SADB_REGISTER] = pfkey_register,
  2307. [SADB_EXPIRE] = NULL,
  2308. [SADB_FLUSH] = pfkey_flush,
  2309. [SADB_DUMP] = pfkey_dump,
  2310. [SADB_X_PROMISC] = pfkey_promisc,
  2311. [SADB_X_PCHANGE] = NULL,
  2312. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2313. [SADB_X_SPDADD] = pfkey_spdadd,
  2314. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2315. [SADB_X_SPDGET] = pfkey_spdget,
  2316. [SADB_X_SPDACQUIRE] = NULL,
  2317. [SADB_X_SPDDUMP] = pfkey_spddump,
  2318. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2319. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2320. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2321. [SADB_X_MIGRATE] = pfkey_migrate,
  2322. };
  2323. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2324. {
  2325. void *ext_hdrs[SADB_EXT_MAX];
  2326. int err;
  2327. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2328. BROADCAST_PROMISC_ONLY, NULL);
  2329. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2330. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2331. if (!err) {
  2332. err = -EOPNOTSUPP;
  2333. if (pfkey_funcs[hdr->sadb_msg_type])
  2334. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2335. }
  2336. return err;
  2337. }
  2338. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2339. {
  2340. struct sadb_msg *hdr = NULL;
  2341. if (skb->len < sizeof(*hdr)) {
  2342. *errp = -EMSGSIZE;
  2343. } else {
  2344. hdr = (struct sadb_msg *) skb->data;
  2345. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2346. hdr->sadb_msg_reserved != 0 ||
  2347. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2348. hdr->sadb_msg_type > SADB_MAX)) {
  2349. hdr = NULL;
  2350. *errp = -EINVAL;
  2351. } else if (hdr->sadb_msg_len != (skb->len /
  2352. sizeof(uint64_t)) ||
  2353. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2354. sizeof(uint64_t))) {
  2355. hdr = NULL;
  2356. *errp = -EMSGSIZE;
  2357. } else {
  2358. *errp = 0;
  2359. }
  2360. }
  2361. return hdr;
  2362. }
  2363. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2364. {
  2365. unsigned int id = d->desc.sadb_alg_id;
  2366. if (id >= sizeof(t->aalgos) * 8)
  2367. return 0;
  2368. return (t->aalgos >> id) & 1;
  2369. }
  2370. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2371. {
  2372. unsigned int id = d->desc.sadb_alg_id;
  2373. if (id >= sizeof(t->ealgos) * 8)
  2374. return 0;
  2375. return (t->ealgos >> id) & 1;
  2376. }
  2377. static int count_ah_combs(struct xfrm_tmpl *t)
  2378. {
  2379. int i, sz = 0;
  2380. for (i = 0; ; i++) {
  2381. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2382. if (!aalg)
  2383. break;
  2384. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2385. sz += sizeof(struct sadb_comb);
  2386. }
  2387. return sz + sizeof(struct sadb_prop);
  2388. }
  2389. static int count_esp_combs(struct xfrm_tmpl *t)
  2390. {
  2391. int i, k, sz = 0;
  2392. for (i = 0; ; i++) {
  2393. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2394. if (!ealg)
  2395. break;
  2396. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2397. continue;
  2398. for (k = 1; ; k++) {
  2399. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2400. if (!aalg)
  2401. break;
  2402. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2403. sz += sizeof(struct sadb_comb);
  2404. }
  2405. }
  2406. return sz + sizeof(struct sadb_prop);
  2407. }
  2408. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2409. {
  2410. struct sadb_prop *p;
  2411. int i;
  2412. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2413. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2414. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2415. p->sadb_prop_replay = 32;
  2416. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2417. for (i = 0; ; i++) {
  2418. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2419. if (!aalg)
  2420. break;
  2421. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2422. struct sadb_comb *c;
  2423. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2424. memset(c, 0, sizeof(*c));
  2425. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2426. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2427. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2428. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2429. c->sadb_comb_hard_addtime = 24*60*60;
  2430. c->sadb_comb_soft_addtime = 20*60*60;
  2431. c->sadb_comb_hard_usetime = 8*60*60;
  2432. c->sadb_comb_soft_usetime = 7*60*60;
  2433. }
  2434. }
  2435. }
  2436. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2437. {
  2438. struct sadb_prop *p;
  2439. int i, k;
  2440. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2441. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2442. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2443. p->sadb_prop_replay = 32;
  2444. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2445. for (i=0; ; i++) {
  2446. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2447. if (!ealg)
  2448. break;
  2449. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2450. continue;
  2451. for (k = 1; ; k++) {
  2452. struct sadb_comb *c;
  2453. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2454. if (!aalg)
  2455. break;
  2456. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2457. continue;
  2458. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2459. memset(c, 0, sizeof(*c));
  2460. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2461. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2462. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2463. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2464. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2465. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2466. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2467. c->sadb_comb_hard_addtime = 24*60*60;
  2468. c->sadb_comb_soft_addtime = 20*60*60;
  2469. c->sadb_comb_hard_usetime = 8*60*60;
  2470. c->sadb_comb_soft_usetime = 7*60*60;
  2471. }
  2472. }
  2473. }
  2474. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2475. {
  2476. return 0;
  2477. }
  2478. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2479. {
  2480. struct sk_buff *out_skb;
  2481. struct sadb_msg *out_hdr;
  2482. int hard;
  2483. int hsc;
  2484. hard = c->data.hard;
  2485. if (hard)
  2486. hsc = 2;
  2487. else
  2488. hsc = 1;
  2489. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2490. if (IS_ERR(out_skb))
  2491. return PTR_ERR(out_skb);
  2492. out_hdr = (struct sadb_msg *) out_skb->data;
  2493. out_hdr->sadb_msg_version = PF_KEY_V2;
  2494. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2495. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2496. out_hdr->sadb_msg_errno = 0;
  2497. out_hdr->sadb_msg_reserved = 0;
  2498. out_hdr->sadb_msg_seq = 0;
  2499. out_hdr->sadb_msg_pid = 0;
  2500. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2501. return 0;
  2502. }
  2503. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2504. {
  2505. if (atomic_read(&pfkey_socks_nr) == 0)
  2506. return 0;
  2507. switch (c->event) {
  2508. case XFRM_MSG_EXPIRE:
  2509. return key_notify_sa_expire(x, c);
  2510. case XFRM_MSG_DELSA:
  2511. case XFRM_MSG_NEWSA:
  2512. case XFRM_MSG_UPDSA:
  2513. return key_notify_sa(x, c);
  2514. case XFRM_MSG_FLUSHSA:
  2515. return key_notify_sa_flush(c);
  2516. case XFRM_MSG_NEWAE: /* not yet supported */
  2517. break;
  2518. default:
  2519. printk("pfkey: Unknown SA event %d\n", c->event);
  2520. break;
  2521. }
  2522. return 0;
  2523. }
  2524. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2525. {
  2526. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2527. return 0;
  2528. switch (c->event) {
  2529. case XFRM_MSG_POLEXPIRE:
  2530. return key_notify_policy_expire(xp, c);
  2531. case XFRM_MSG_DELPOLICY:
  2532. case XFRM_MSG_NEWPOLICY:
  2533. case XFRM_MSG_UPDPOLICY:
  2534. return key_notify_policy(xp, dir, c);
  2535. case XFRM_MSG_FLUSHPOLICY:
  2536. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2537. break;
  2538. return key_notify_policy_flush(c);
  2539. default:
  2540. printk("pfkey: Unknown policy event %d\n", c->event);
  2541. break;
  2542. }
  2543. return 0;
  2544. }
  2545. static u32 get_acqseq(void)
  2546. {
  2547. u32 res;
  2548. static u32 acqseq;
  2549. static DEFINE_SPINLOCK(acqseq_lock);
  2550. spin_lock_bh(&acqseq_lock);
  2551. res = (++acqseq ? : ++acqseq);
  2552. spin_unlock_bh(&acqseq_lock);
  2553. return res;
  2554. }
  2555. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2556. {
  2557. struct sk_buff *skb;
  2558. struct sadb_msg *hdr;
  2559. struct sadb_address *addr;
  2560. struct sadb_x_policy *pol;
  2561. int sockaddr_size;
  2562. int size;
  2563. struct sadb_x_sec_ctx *sec_ctx;
  2564. struct xfrm_sec_ctx *xfrm_ctx;
  2565. int ctx_size = 0;
  2566. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2567. if (!sockaddr_size)
  2568. return -EINVAL;
  2569. size = sizeof(struct sadb_msg) +
  2570. (sizeof(struct sadb_address) * 2) +
  2571. (sockaddr_size * 2) +
  2572. sizeof(struct sadb_x_policy);
  2573. if (x->id.proto == IPPROTO_AH)
  2574. size += count_ah_combs(t);
  2575. else if (x->id.proto == IPPROTO_ESP)
  2576. size += count_esp_combs(t);
  2577. if ((xfrm_ctx = x->security)) {
  2578. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2579. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2580. }
  2581. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2582. if (skb == NULL)
  2583. return -ENOMEM;
  2584. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2585. hdr->sadb_msg_version = PF_KEY_V2;
  2586. hdr->sadb_msg_type = SADB_ACQUIRE;
  2587. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2588. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2589. hdr->sadb_msg_errno = 0;
  2590. hdr->sadb_msg_reserved = 0;
  2591. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2592. hdr->sadb_msg_pid = 0;
  2593. /* src address */
  2594. addr = (struct sadb_address*) skb_put(skb,
  2595. sizeof(struct sadb_address)+sockaddr_size);
  2596. addr->sadb_address_len =
  2597. (sizeof(struct sadb_address)+sockaddr_size)/
  2598. sizeof(uint64_t);
  2599. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2600. addr->sadb_address_proto = 0;
  2601. addr->sadb_address_reserved = 0;
  2602. addr->sadb_address_prefixlen =
  2603. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2604. (struct sockaddr *) (addr + 1),
  2605. x->props.family);
  2606. if (!addr->sadb_address_prefixlen)
  2607. BUG();
  2608. /* dst address */
  2609. addr = (struct sadb_address*) skb_put(skb,
  2610. sizeof(struct sadb_address)+sockaddr_size);
  2611. addr->sadb_address_len =
  2612. (sizeof(struct sadb_address)+sockaddr_size)/
  2613. sizeof(uint64_t);
  2614. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2615. addr->sadb_address_proto = 0;
  2616. addr->sadb_address_reserved = 0;
  2617. addr->sadb_address_prefixlen =
  2618. pfkey_sockaddr_fill(&x->id.daddr, 0,
  2619. (struct sockaddr *) (addr + 1),
  2620. x->props.family);
  2621. if (!addr->sadb_address_prefixlen)
  2622. BUG();
  2623. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2624. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2625. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2626. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2627. pol->sadb_x_policy_dir = dir+1;
  2628. pol->sadb_x_policy_id = xp->index;
  2629. /* Set sadb_comb's. */
  2630. if (x->id.proto == IPPROTO_AH)
  2631. dump_ah_combs(skb, t);
  2632. else if (x->id.proto == IPPROTO_ESP)
  2633. dump_esp_combs(skb, t);
  2634. /* security context */
  2635. if (xfrm_ctx) {
  2636. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2637. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2638. sec_ctx->sadb_x_sec_len =
  2639. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2640. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2641. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2642. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2643. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2644. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2645. xfrm_ctx->ctx_len);
  2646. }
  2647. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2648. }
  2649. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2650. u8 *data, int len, int *dir)
  2651. {
  2652. struct xfrm_policy *xp;
  2653. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2654. struct sadb_x_sec_ctx *sec_ctx;
  2655. switch (sk->sk_family) {
  2656. case AF_INET:
  2657. if (opt != IP_IPSEC_POLICY) {
  2658. *dir = -EOPNOTSUPP;
  2659. return NULL;
  2660. }
  2661. break;
  2662. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2663. case AF_INET6:
  2664. if (opt != IPV6_IPSEC_POLICY) {
  2665. *dir = -EOPNOTSUPP;
  2666. return NULL;
  2667. }
  2668. break;
  2669. #endif
  2670. default:
  2671. *dir = -EINVAL;
  2672. return NULL;
  2673. }
  2674. *dir = -EINVAL;
  2675. if (len < sizeof(struct sadb_x_policy) ||
  2676. pol->sadb_x_policy_len*8 > len ||
  2677. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2678. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2679. return NULL;
  2680. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2681. if (xp == NULL) {
  2682. *dir = -ENOBUFS;
  2683. return NULL;
  2684. }
  2685. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2686. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2687. xp->lft.soft_byte_limit = XFRM_INF;
  2688. xp->lft.hard_byte_limit = XFRM_INF;
  2689. xp->lft.soft_packet_limit = XFRM_INF;
  2690. xp->lft.hard_packet_limit = XFRM_INF;
  2691. xp->family = sk->sk_family;
  2692. xp->xfrm_nr = 0;
  2693. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2694. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2695. goto out;
  2696. /* security context too */
  2697. if (len >= (pol->sadb_x_policy_len*8 +
  2698. sizeof(struct sadb_x_sec_ctx))) {
  2699. char *p = (char *)pol;
  2700. struct xfrm_user_sec_ctx *uctx;
  2701. p += pol->sadb_x_policy_len*8;
  2702. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2703. if (len < pol->sadb_x_policy_len*8 +
  2704. sec_ctx->sadb_x_sec_len) {
  2705. *dir = -EINVAL;
  2706. goto out;
  2707. }
  2708. if ((*dir = verify_sec_ctx_len(p)))
  2709. goto out;
  2710. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2711. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2712. kfree(uctx);
  2713. if (*dir)
  2714. goto out;
  2715. }
  2716. *dir = pol->sadb_x_policy_dir-1;
  2717. return xp;
  2718. out:
  2719. xfrm_policy_destroy(xp);
  2720. return NULL;
  2721. }
  2722. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2723. {
  2724. struct sk_buff *skb;
  2725. struct sadb_msg *hdr;
  2726. struct sadb_sa *sa;
  2727. struct sadb_address *addr;
  2728. struct sadb_x_nat_t_port *n_port;
  2729. int sockaddr_size;
  2730. int size;
  2731. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2732. struct xfrm_encap_tmpl *natt = NULL;
  2733. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2734. if (!sockaddr_size)
  2735. return -EINVAL;
  2736. if (!satype)
  2737. return -EINVAL;
  2738. if (!x->encap)
  2739. return -EINVAL;
  2740. natt = x->encap;
  2741. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2742. *
  2743. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2744. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2745. */
  2746. size = sizeof(struct sadb_msg) +
  2747. sizeof(struct sadb_sa) +
  2748. (sizeof(struct sadb_address) * 2) +
  2749. (sockaddr_size * 2) +
  2750. (sizeof(struct sadb_x_nat_t_port) * 2);
  2751. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2752. if (skb == NULL)
  2753. return -ENOMEM;
  2754. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2755. hdr->sadb_msg_version = PF_KEY_V2;
  2756. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2757. hdr->sadb_msg_satype = satype;
  2758. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2759. hdr->sadb_msg_errno = 0;
  2760. hdr->sadb_msg_reserved = 0;
  2761. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2762. hdr->sadb_msg_pid = 0;
  2763. /* SA */
  2764. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2765. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2766. sa->sadb_sa_exttype = SADB_EXT_SA;
  2767. sa->sadb_sa_spi = x->id.spi;
  2768. sa->sadb_sa_replay = 0;
  2769. sa->sadb_sa_state = 0;
  2770. sa->sadb_sa_auth = 0;
  2771. sa->sadb_sa_encrypt = 0;
  2772. sa->sadb_sa_flags = 0;
  2773. /* ADDRESS_SRC (old addr) */
  2774. addr = (struct sadb_address*)
  2775. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2776. addr->sadb_address_len =
  2777. (sizeof(struct sadb_address)+sockaddr_size)/
  2778. sizeof(uint64_t);
  2779. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2780. addr->sadb_address_proto = 0;
  2781. addr->sadb_address_reserved = 0;
  2782. addr->sadb_address_prefixlen =
  2783. pfkey_sockaddr_fill(&x->props.saddr, 0,
  2784. (struct sockaddr *) (addr + 1),
  2785. x->props.family);
  2786. if (!addr->sadb_address_prefixlen)
  2787. BUG();
  2788. /* NAT_T_SPORT (old port) */
  2789. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2790. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2791. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2792. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2793. n_port->sadb_x_nat_t_port_reserved = 0;
  2794. /* ADDRESS_DST (new addr) */
  2795. addr = (struct sadb_address*)
  2796. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2797. addr->sadb_address_len =
  2798. (sizeof(struct sadb_address)+sockaddr_size)/
  2799. sizeof(uint64_t);
  2800. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2801. addr->sadb_address_proto = 0;
  2802. addr->sadb_address_reserved = 0;
  2803. addr->sadb_address_prefixlen =
  2804. pfkey_sockaddr_fill(ipaddr, 0,
  2805. (struct sockaddr *) (addr + 1),
  2806. x->props.family);
  2807. if (!addr->sadb_address_prefixlen)
  2808. BUG();
  2809. /* NAT_T_DPORT (new port) */
  2810. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2811. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2812. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2813. n_port->sadb_x_nat_t_port_port = sport;
  2814. n_port->sadb_x_nat_t_port_reserved = 0;
  2815. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2816. }
  2817. #ifdef CONFIG_NET_KEY_MIGRATE
  2818. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2819. struct xfrm_selector *sel)
  2820. {
  2821. struct sadb_address *addr;
  2822. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2823. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  2824. addr->sadb_address_exttype = type;
  2825. addr->sadb_address_proto = sel->proto;
  2826. addr->sadb_address_reserved = 0;
  2827. switch (type) {
  2828. case SADB_EXT_ADDRESS_SRC:
  2829. addr->sadb_address_prefixlen = sel->prefixlen_s;
  2830. pfkey_sockaddr_fill(&sel->saddr, 0,
  2831. (struct sockaddr *)(addr + 1),
  2832. sel->family);
  2833. break;
  2834. case SADB_EXT_ADDRESS_DST:
  2835. addr->sadb_address_prefixlen = sel->prefixlen_d;
  2836. pfkey_sockaddr_fill(&sel->daddr, 0,
  2837. (struct sockaddr *)(addr + 1),
  2838. sel->family);
  2839. break;
  2840. default:
  2841. return -EINVAL;
  2842. }
  2843. return 0;
  2844. }
  2845. static int set_sadb_kmaddress(struct sk_buff *skb, struct xfrm_kmaddress *k)
  2846. {
  2847. struct sadb_x_kmaddress *kma;
  2848. u8 *sa;
  2849. int family = k->family;
  2850. int socklen = pfkey_sockaddr_len(family);
  2851. int size_req;
  2852. size_req = (sizeof(struct sadb_x_kmaddress) +
  2853. pfkey_sockaddr_pair_size(family));
  2854. kma = (struct sadb_x_kmaddress *)skb_put(skb, size_req);
  2855. memset(kma, 0, size_req);
  2856. kma->sadb_x_kmaddress_len = size_req / 8;
  2857. kma->sadb_x_kmaddress_exttype = SADB_X_EXT_KMADDRESS;
  2858. kma->sadb_x_kmaddress_reserved = k->reserved;
  2859. sa = (u8 *)(kma + 1);
  2860. if (!pfkey_sockaddr_fill(&k->local, 0, (struct sockaddr *)sa, family) ||
  2861. !pfkey_sockaddr_fill(&k->remote, 0, (struct sockaddr *)(sa+socklen), family))
  2862. return -EINVAL;
  2863. return 0;
  2864. }
  2865. static int set_ipsecrequest(struct sk_buff *skb,
  2866. uint8_t proto, uint8_t mode, int level,
  2867. uint32_t reqid, uint8_t family,
  2868. xfrm_address_t *src, xfrm_address_t *dst)
  2869. {
  2870. struct sadb_x_ipsecrequest *rq;
  2871. u8 *sa;
  2872. int socklen = pfkey_sockaddr_len(family);
  2873. int size_req;
  2874. size_req = sizeof(struct sadb_x_ipsecrequest) +
  2875. pfkey_sockaddr_pair_size(family);
  2876. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  2877. memset(rq, 0, size_req);
  2878. rq->sadb_x_ipsecrequest_len = size_req;
  2879. rq->sadb_x_ipsecrequest_proto = proto;
  2880. rq->sadb_x_ipsecrequest_mode = mode;
  2881. rq->sadb_x_ipsecrequest_level = level;
  2882. rq->sadb_x_ipsecrequest_reqid = reqid;
  2883. sa = (u8 *) (rq + 1);
  2884. if (!pfkey_sockaddr_fill(src, 0, (struct sockaddr *)sa, family) ||
  2885. !pfkey_sockaddr_fill(dst, 0, (struct sockaddr *)(sa + socklen), family))
  2886. return -EINVAL;
  2887. return 0;
  2888. }
  2889. #endif
  2890. #ifdef CONFIG_NET_KEY_MIGRATE
  2891. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2892. struct xfrm_migrate *m, int num_bundles,
  2893. struct xfrm_kmaddress *k)
  2894. {
  2895. int i;
  2896. int sasize_sel;
  2897. int size = 0;
  2898. int size_pol = 0;
  2899. struct sk_buff *skb;
  2900. struct sadb_msg *hdr;
  2901. struct sadb_x_policy *pol;
  2902. struct xfrm_migrate *mp;
  2903. if (type != XFRM_POLICY_TYPE_MAIN)
  2904. return 0;
  2905. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  2906. return -EINVAL;
  2907. if (k != NULL) {
  2908. /* addresses for KM */
  2909. size += PFKEY_ALIGN8(sizeof(struct sadb_x_kmaddress) +
  2910. pfkey_sockaddr_pair_size(k->family));
  2911. }
  2912. /* selector */
  2913. sasize_sel = pfkey_sockaddr_size(sel->family);
  2914. if (!sasize_sel)
  2915. return -EINVAL;
  2916. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  2917. /* policy info */
  2918. size_pol += sizeof(struct sadb_x_policy);
  2919. /* ipsecrequests */
  2920. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2921. /* old locator pair */
  2922. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2923. pfkey_sockaddr_pair_size(mp->old_family);
  2924. /* new locator pair */
  2925. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  2926. pfkey_sockaddr_pair_size(mp->new_family);
  2927. }
  2928. size += sizeof(struct sadb_msg) + size_pol;
  2929. /* alloc buffer */
  2930. skb = alloc_skb(size, GFP_ATOMIC);
  2931. if (skb == NULL)
  2932. return -ENOMEM;
  2933. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  2934. hdr->sadb_msg_version = PF_KEY_V2;
  2935. hdr->sadb_msg_type = SADB_X_MIGRATE;
  2936. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  2937. hdr->sadb_msg_len = size / 8;
  2938. hdr->sadb_msg_errno = 0;
  2939. hdr->sadb_msg_reserved = 0;
  2940. hdr->sadb_msg_seq = 0;
  2941. hdr->sadb_msg_pid = 0;
  2942. /* Addresses to be used by KM for negotiation, if ext is available */
  2943. if (k != NULL && (set_sadb_kmaddress(skb, k) < 0))
  2944. return -EINVAL;
  2945. /* selector src */
  2946. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  2947. /* selector dst */
  2948. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  2949. /* policy information */
  2950. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  2951. pol->sadb_x_policy_len = size_pol / 8;
  2952. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2953. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2954. pol->sadb_x_policy_dir = dir + 1;
  2955. pol->sadb_x_policy_id = 0;
  2956. pol->sadb_x_policy_priority = 0;
  2957. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  2958. /* old ipsecrequest */
  2959. int mode = pfkey_mode_from_xfrm(mp->mode);
  2960. if (mode < 0)
  2961. goto err;
  2962. if (set_ipsecrequest(skb, mp->proto, mode,
  2963. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2964. mp->reqid, mp->old_family,
  2965. &mp->old_saddr, &mp->old_daddr) < 0)
  2966. goto err;
  2967. /* new ipsecrequest */
  2968. if (set_ipsecrequest(skb, mp->proto, mode,
  2969. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  2970. mp->reqid, mp->new_family,
  2971. &mp->new_saddr, &mp->new_daddr) < 0)
  2972. goto err;
  2973. }
  2974. /* broadcast migrate message to sockets */
  2975. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2976. return 0;
  2977. err:
  2978. kfree_skb(skb);
  2979. return -EINVAL;
  2980. }
  2981. #else
  2982. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  2983. struct xfrm_migrate *m, int num_bundles,
  2984. struct xfrm_kmaddress *k)
  2985. {
  2986. return -ENOPROTOOPT;
  2987. }
  2988. #endif
  2989. static int pfkey_sendmsg(struct kiocb *kiocb,
  2990. struct socket *sock, struct msghdr *msg, size_t len)
  2991. {
  2992. struct sock *sk = sock->sk;
  2993. struct sk_buff *skb = NULL;
  2994. struct sadb_msg *hdr = NULL;
  2995. int err;
  2996. err = -EOPNOTSUPP;
  2997. if (msg->msg_flags & MSG_OOB)
  2998. goto out;
  2999. err = -EMSGSIZE;
  3000. if ((unsigned)len > sk->sk_sndbuf - 32)
  3001. goto out;
  3002. err = -ENOBUFS;
  3003. skb = alloc_skb(len, GFP_KERNEL);
  3004. if (skb == NULL)
  3005. goto out;
  3006. err = -EFAULT;
  3007. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3008. goto out;
  3009. hdr = pfkey_get_base_msg(skb, &err);
  3010. if (!hdr)
  3011. goto out;
  3012. mutex_lock(&xfrm_cfg_mutex);
  3013. err = pfkey_process(sk, skb, hdr);
  3014. mutex_unlock(&xfrm_cfg_mutex);
  3015. out:
  3016. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3017. err = 0;
  3018. if (skb)
  3019. kfree_skb(skb);
  3020. return err ? : len;
  3021. }
  3022. static int pfkey_recvmsg(struct kiocb *kiocb,
  3023. struct socket *sock, struct msghdr *msg, size_t len,
  3024. int flags)
  3025. {
  3026. struct sock *sk = sock->sk;
  3027. struct pfkey_sock *pfk = pfkey_sk(sk);
  3028. struct sk_buff *skb;
  3029. int copied, err;
  3030. err = -EINVAL;
  3031. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3032. goto out;
  3033. msg->msg_namelen = 0;
  3034. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3035. if (skb == NULL)
  3036. goto out;
  3037. copied = skb->len;
  3038. if (copied > len) {
  3039. msg->msg_flags |= MSG_TRUNC;
  3040. copied = len;
  3041. }
  3042. skb_reset_transport_header(skb);
  3043. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3044. if (err)
  3045. goto out_free;
  3046. sock_recv_timestamp(msg, sk, skb);
  3047. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3048. if (pfk->dump.dump != NULL &&
  3049. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3050. pfkey_do_dump(pfk);
  3051. out_free:
  3052. skb_free_datagram(sk, skb);
  3053. out:
  3054. return err;
  3055. }
  3056. static const struct proto_ops pfkey_ops = {
  3057. .family = PF_KEY,
  3058. .owner = THIS_MODULE,
  3059. /* Operations that make no sense on pfkey sockets. */
  3060. .bind = sock_no_bind,
  3061. .connect = sock_no_connect,
  3062. .socketpair = sock_no_socketpair,
  3063. .accept = sock_no_accept,
  3064. .getname = sock_no_getname,
  3065. .ioctl = sock_no_ioctl,
  3066. .listen = sock_no_listen,
  3067. .shutdown = sock_no_shutdown,
  3068. .setsockopt = sock_no_setsockopt,
  3069. .getsockopt = sock_no_getsockopt,
  3070. .mmap = sock_no_mmap,
  3071. .sendpage = sock_no_sendpage,
  3072. /* Now the operations that really occur. */
  3073. .release = pfkey_release,
  3074. .poll = datagram_poll,
  3075. .sendmsg = pfkey_sendmsg,
  3076. .recvmsg = pfkey_recvmsg,
  3077. };
  3078. static struct net_proto_family pfkey_family_ops = {
  3079. .family = PF_KEY,
  3080. .create = pfkey_create,
  3081. .owner = THIS_MODULE,
  3082. };
  3083. #ifdef CONFIG_PROC_FS
  3084. static int pfkey_seq_show(struct seq_file *f, void *v)
  3085. {
  3086. struct sock *s;
  3087. s = (struct sock *)v;
  3088. if (v == SEQ_START_TOKEN)
  3089. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3090. else
  3091. seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
  3092. s,
  3093. atomic_read(&s->sk_refcnt),
  3094. atomic_read(&s->sk_rmem_alloc),
  3095. atomic_read(&s->sk_wmem_alloc),
  3096. sock_i_uid(s),
  3097. sock_i_ino(s)
  3098. );
  3099. return 0;
  3100. }
  3101. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3102. {
  3103. struct sock *s;
  3104. struct hlist_node *node;
  3105. loff_t pos = *ppos;
  3106. read_lock(&pfkey_table_lock);
  3107. if (pos == 0)
  3108. return SEQ_START_TOKEN;
  3109. sk_for_each(s, node, &pfkey_table)
  3110. if (pos-- == 1)
  3111. return s;
  3112. return NULL;
  3113. }
  3114. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3115. {
  3116. ++*ppos;
  3117. return (v == SEQ_START_TOKEN) ?
  3118. sk_head(&pfkey_table) :
  3119. sk_next((struct sock *)v);
  3120. }
  3121. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3122. {
  3123. read_unlock(&pfkey_table_lock);
  3124. }
  3125. static struct seq_operations pfkey_seq_ops = {
  3126. .start = pfkey_seq_start,
  3127. .next = pfkey_seq_next,
  3128. .stop = pfkey_seq_stop,
  3129. .show = pfkey_seq_show,
  3130. };
  3131. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3132. {
  3133. return seq_open(file, &pfkey_seq_ops);
  3134. }
  3135. static struct file_operations pfkey_proc_ops = {
  3136. .open = pfkey_seq_open,
  3137. .read = seq_read,
  3138. .llseek = seq_lseek,
  3139. .release = seq_release,
  3140. };
  3141. static int pfkey_init_proc(void)
  3142. {
  3143. struct proc_dir_entry *e;
  3144. e = proc_net_fops_create(&init_net, "pfkey", 0, &pfkey_proc_ops);
  3145. if (e == NULL)
  3146. return -ENOMEM;
  3147. return 0;
  3148. }
  3149. static void pfkey_exit_proc(void)
  3150. {
  3151. proc_net_remove(&init_net, "pfkey");
  3152. }
  3153. #else
  3154. static inline int pfkey_init_proc(void)
  3155. {
  3156. return 0;
  3157. }
  3158. static inline void pfkey_exit_proc(void)
  3159. {
  3160. }
  3161. #endif
  3162. static struct xfrm_mgr pfkeyv2_mgr =
  3163. {
  3164. .id = "pfkeyv2",
  3165. .notify = pfkey_send_notify,
  3166. .acquire = pfkey_send_acquire,
  3167. .compile_policy = pfkey_compile_policy,
  3168. .new_mapping = pfkey_send_new_mapping,
  3169. .notify_policy = pfkey_send_policy_notify,
  3170. .migrate = pfkey_send_migrate,
  3171. };
  3172. static void __exit ipsec_pfkey_exit(void)
  3173. {
  3174. xfrm_unregister_km(&pfkeyv2_mgr);
  3175. pfkey_exit_proc();
  3176. sock_unregister(PF_KEY);
  3177. proto_unregister(&key_proto);
  3178. }
  3179. static int __init ipsec_pfkey_init(void)
  3180. {
  3181. int err = proto_register(&key_proto, 0);
  3182. if (err != 0)
  3183. goto out;
  3184. err = sock_register(&pfkey_family_ops);
  3185. if (err != 0)
  3186. goto out_unregister_key_proto;
  3187. err = pfkey_init_proc();
  3188. if (err != 0)
  3189. goto out_sock_unregister;
  3190. err = xfrm_register_km(&pfkeyv2_mgr);
  3191. if (err != 0)
  3192. goto out_remove_proc_entry;
  3193. out:
  3194. return err;
  3195. out_remove_proc_entry:
  3196. pfkey_exit_proc();
  3197. out_sock_unregister:
  3198. sock_unregister(PF_KEY);
  3199. out_unregister_key_proto:
  3200. proto_unregister(&key_proto);
  3201. goto out;
  3202. }
  3203. module_init(ipsec_pfkey_init);
  3204. module_exit(ipsec_pfkey_exit);
  3205. MODULE_LICENSE("GPL");
  3206. MODULE_ALIAS_NETPROTO(PF_KEY);