vlan_dev.c 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701
  1. /* -*- linux-c -*-
  2. * INET 802.1Q VLAN
  3. * Ethernet-type device handling.
  4. *
  5. * Authors: Ben Greear <greearb@candelatech.com>
  6. * Please send support related email to: netdev@vger.kernel.org
  7. * VLAN Home Page: http://www.candelatech.com/~greear/vlan.html
  8. *
  9. * Fixes: Mar 22 2001: Martin Bokaemper <mbokaemper@unispherenetworks.com>
  10. * - reset skb->pkt_type on incoming packets when MAC was changed
  11. * - see that changed MAC is saddr for outgoing packets
  12. * Oct 20, 2001: Ard van Breeman:
  13. * - Fix MC-list, finally.
  14. * - Flush MC-list on VLAN destroy.
  15. *
  16. *
  17. * This program is free software; you can redistribute it and/or
  18. * modify it under the terms of the GNU General Public License
  19. * as published by the Free Software Foundation; either version
  20. * 2 of the License, or (at your option) any later version.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/skbuff.h>
  24. #include <linux/netdevice.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/ethtool.h>
  27. #include <net/arp.h>
  28. #include "vlan.h"
  29. #include "vlanproc.h"
  30. #include <linux/if_vlan.h>
  31. /*
  32. * Rebuild the Ethernet MAC header. This is called after an ARP
  33. * (or in future other address resolution) has completed on this
  34. * sk_buff. We now let ARP fill in the other fields.
  35. *
  36. * This routine CANNOT use cached dst->neigh!
  37. * Really, it is used only when dst->neigh is wrong.
  38. *
  39. * TODO: This needs a checkup, I'm ignorant here. --BLG
  40. */
  41. static int vlan_dev_rebuild_header(struct sk_buff *skb)
  42. {
  43. struct net_device *dev = skb->dev;
  44. struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
  45. switch (veth->h_vlan_encapsulated_proto) {
  46. #ifdef CONFIG_INET
  47. case htons(ETH_P_IP):
  48. /* TODO: Confirm this will work with VLAN headers... */
  49. return arp_find(veth->h_dest, skb);
  50. #endif
  51. default:
  52. pr_debug("%s: unable to resolve type %X addresses.\n",
  53. dev->name, ntohs(veth->h_vlan_encapsulated_proto));
  54. memcpy(veth->h_source, dev->dev_addr, ETH_ALEN);
  55. break;
  56. }
  57. return 0;
  58. }
  59. static inline struct sk_buff *vlan_check_reorder_header(struct sk_buff *skb)
  60. {
  61. if (vlan_dev_info(skb->dev)->flags & VLAN_FLAG_REORDER_HDR) {
  62. if (skb_cow(skb, skb_headroom(skb)) < 0)
  63. skb = NULL;
  64. if (skb) {
  65. /* Lifted from Gleb's VLAN code... */
  66. memmove(skb->data - ETH_HLEN,
  67. skb->data - VLAN_ETH_HLEN, 12);
  68. skb->mac_header += VLAN_HLEN;
  69. }
  70. }
  71. return skb;
  72. }
  73. static inline void vlan_set_encap_proto(struct sk_buff *skb,
  74. struct vlan_hdr *vhdr)
  75. {
  76. __be16 proto;
  77. unsigned char *rawp;
  78. /*
  79. * Was a VLAN packet, grab the encapsulated protocol, which the layer
  80. * three protocols care about.
  81. */
  82. proto = vhdr->h_vlan_encapsulated_proto;
  83. if (ntohs(proto) >= 1536) {
  84. skb->protocol = proto;
  85. return;
  86. }
  87. rawp = skb->data;
  88. if (*(unsigned short *)rawp == 0xFFFF)
  89. /*
  90. * This is a magic hack to spot IPX packets. Older Novell
  91. * breaks the protocol design and runs IPX over 802.3 without
  92. * an 802.2 LLC layer. We look for FFFF which isn't a used
  93. * 802.2 SSAP/DSAP. This won't work for fault tolerant netware
  94. * but does for the rest.
  95. */
  96. skb->protocol = htons(ETH_P_802_3);
  97. else
  98. /*
  99. * Real 802.2 LLC
  100. */
  101. skb->protocol = htons(ETH_P_802_2);
  102. }
  103. /*
  104. * Determine the packet's protocol ID. The rule here is that we
  105. * assume 802.3 if the type field is short enough to be a length.
  106. * This is normal practice and works for any 'now in use' protocol.
  107. *
  108. * Also, at this point we assume that we ARE dealing exclusively with
  109. * VLAN packets, or packets that should be made into VLAN packets based
  110. * on a default VLAN ID.
  111. *
  112. * NOTE: Should be similar to ethernet/eth.c.
  113. *
  114. * SANITY NOTE: This method is called when a packet is moving up the stack
  115. * towards userland. To get here, it would have already passed
  116. * through the ethernet/eth.c eth_type_trans() method.
  117. * SANITY NOTE 2: We are referencing to the VLAN_HDR frields, which MAY be
  118. * stored UNALIGNED in the memory. RISC systems don't like
  119. * such cases very much...
  120. * SANITY NOTE 2a: According to Dave Miller & Alexey, it will always be
  121. * aligned, so there doesn't need to be any of the unaligned
  122. * stuff. It has been commented out now... --Ben
  123. *
  124. */
  125. int vlan_skb_recv(struct sk_buff *skb, struct net_device *dev,
  126. struct packet_type *ptype, struct net_device *orig_dev)
  127. {
  128. struct vlan_hdr *vhdr;
  129. struct net_device_stats *stats;
  130. u16 vlan_id;
  131. u16 vlan_tci;
  132. skb = skb_share_check(skb, GFP_ATOMIC);
  133. if (skb == NULL)
  134. goto err_free;
  135. if (unlikely(!pskb_may_pull(skb, VLAN_HLEN)))
  136. goto err_free;
  137. vhdr = (struct vlan_hdr *)skb->data;
  138. vlan_tci = ntohs(vhdr->h_vlan_TCI);
  139. vlan_id = vlan_tci & VLAN_VID_MASK;
  140. rcu_read_lock();
  141. skb->dev = __find_vlan_dev(dev, vlan_id);
  142. if (!skb->dev) {
  143. pr_debug("%s: ERROR: No net_device for VID: %u on dev: %s\n",
  144. __func__, vlan_id, dev->name);
  145. goto err_unlock;
  146. }
  147. skb->dev->last_rx = jiffies;
  148. stats = &skb->dev->stats;
  149. stats->rx_packets++;
  150. stats->rx_bytes += skb->len;
  151. skb_pull_rcsum(skb, VLAN_HLEN);
  152. skb->priority = vlan_get_ingress_priority(skb->dev, vlan_tci);
  153. pr_debug("%s: priority: %u for TCI: %hu\n",
  154. __func__, skb->priority, vlan_tci);
  155. switch (skb->pkt_type) {
  156. case PACKET_BROADCAST: /* Yeah, stats collect these together.. */
  157. /* stats->broadcast ++; // no such counter :-( */
  158. break;
  159. case PACKET_MULTICAST:
  160. stats->multicast++;
  161. break;
  162. case PACKET_OTHERHOST:
  163. /* Our lower layer thinks this is not local, let's make sure.
  164. * This allows the VLAN to have a different MAC than the
  165. * underlying device, and still route correctly.
  166. */
  167. if (!compare_ether_addr(eth_hdr(skb)->h_dest,
  168. skb->dev->dev_addr))
  169. skb->pkt_type = PACKET_HOST;
  170. break;
  171. default:
  172. break;
  173. }
  174. vlan_set_encap_proto(skb, vhdr);
  175. skb = vlan_check_reorder_header(skb);
  176. if (!skb) {
  177. stats->rx_errors++;
  178. goto err_unlock;
  179. }
  180. netif_rx(skb);
  181. rcu_read_unlock();
  182. return NET_RX_SUCCESS;
  183. err_unlock:
  184. rcu_read_unlock();
  185. err_free:
  186. kfree_skb(skb);
  187. return NET_RX_DROP;
  188. }
  189. static inline u16
  190. vlan_dev_get_egress_qos_mask(struct net_device *dev, struct sk_buff *skb)
  191. {
  192. struct vlan_priority_tci_mapping *mp;
  193. mp = vlan_dev_info(dev)->egress_priority_map[(skb->priority & 0xF)];
  194. while (mp) {
  195. if (mp->priority == skb->priority) {
  196. return mp->vlan_qos; /* This should already be shifted
  197. * to mask correctly with the
  198. * VLAN's TCI */
  199. }
  200. mp = mp->next;
  201. }
  202. return 0;
  203. }
  204. /*
  205. * Create the VLAN header for an arbitrary protocol layer
  206. *
  207. * saddr=NULL means use device source address
  208. * daddr=NULL means leave destination address (eg unresolved arp)
  209. *
  210. * This is called when the SKB is moving down the stack towards the
  211. * physical devices.
  212. */
  213. static int vlan_dev_hard_header(struct sk_buff *skb, struct net_device *dev,
  214. unsigned short type,
  215. const void *daddr, const void *saddr,
  216. unsigned int len)
  217. {
  218. struct vlan_hdr *vhdr;
  219. unsigned int vhdrlen = 0;
  220. u16 vlan_tci = 0;
  221. int rc;
  222. if (WARN_ON(skb_headroom(skb) < dev->hard_header_len))
  223. return -ENOSPC;
  224. if (!(vlan_dev_info(dev)->flags & VLAN_FLAG_REORDER_HDR)) {
  225. vhdr = (struct vlan_hdr *) skb_push(skb, VLAN_HLEN);
  226. vlan_tci = vlan_dev_info(dev)->vlan_id;
  227. vlan_tci |= vlan_dev_get_egress_qos_mask(dev, skb);
  228. vhdr->h_vlan_TCI = htons(vlan_tci);
  229. /*
  230. * Set the protocol type. For a packet of type ETH_P_802_3 we
  231. * put the length in here instead. It is up to the 802.2
  232. * layer to carry protocol information.
  233. */
  234. if (type != ETH_P_802_3)
  235. vhdr->h_vlan_encapsulated_proto = htons(type);
  236. else
  237. vhdr->h_vlan_encapsulated_proto = htons(len);
  238. skb->protocol = htons(ETH_P_8021Q);
  239. type = ETH_P_8021Q;
  240. vhdrlen = VLAN_HLEN;
  241. }
  242. /* Before delegating work to the lower layer, enter our MAC-address */
  243. if (saddr == NULL)
  244. saddr = dev->dev_addr;
  245. /* Now make the underlying real hard header */
  246. dev = vlan_dev_info(dev)->real_dev;
  247. rc = dev_hard_header(skb, dev, type, daddr, saddr, len + vhdrlen);
  248. if (rc > 0)
  249. rc += vhdrlen;
  250. return rc;
  251. }
  252. static int vlan_dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
  253. {
  254. struct net_device_stats *stats = &dev->stats;
  255. struct vlan_ethhdr *veth = (struct vlan_ethhdr *)(skb->data);
  256. /* Handle non-VLAN frames if they are sent to us, for example by DHCP.
  257. *
  258. * NOTE: THIS ASSUMES DIX ETHERNET, SPECIFICALLY NOT SUPPORTING
  259. * OTHER THINGS LIKE FDDI/TokenRing/802.3 SNAPs...
  260. */
  261. if (veth->h_vlan_proto != htons(ETH_P_8021Q) ||
  262. vlan_dev_info(dev)->flags & VLAN_FLAG_REORDER_HDR) {
  263. unsigned int orig_headroom = skb_headroom(skb);
  264. u16 vlan_tci;
  265. vlan_dev_info(dev)->cnt_encap_on_xmit++;
  266. vlan_tci = vlan_dev_info(dev)->vlan_id;
  267. vlan_tci |= vlan_dev_get_egress_qos_mask(dev, skb);
  268. skb = __vlan_put_tag(skb, vlan_tci);
  269. if (!skb) {
  270. stats->tx_dropped++;
  271. return NETDEV_TX_OK;
  272. }
  273. if (orig_headroom < VLAN_HLEN)
  274. vlan_dev_info(dev)->cnt_inc_headroom_on_tx++;
  275. }
  276. stats->tx_packets++;
  277. stats->tx_bytes += skb->len;
  278. skb->dev = vlan_dev_info(dev)->real_dev;
  279. dev_queue_xmit(skb);
  280. return NETDEV_TX_OK;
  281. }
  282. static int vlan_dev_hwaccel_hard_start_xmit(struct sk_buff *skb,
  283. struct net_device *dev)
  284. {
  285. struct net_device_stats *stats = &dev->stats;
  286. u16 vlan_tci;
  287. vlan_tci = vlan_dev_info(dev)->vlan_id;
  288. vlan_tci |= vlan_dev_get_egress_qos_mask(dev, skb);
  289. skb = __vlan_hwaccel_put_tag(skb, vlan_tci);
  290. stats->tx_packets++;
  291. stats->tx_bytes += skb->len;
  292. skb->dev = vlan_dev_info(dev)->real_dev;
  293. dev_queue_xmit(skb);
  294. return NETDEV_TX_OK;
  295. }
  296. static int vlan_dev_change_mtu(struct net_device *dev, int new_mtu)
  297. {
  298. /* TODO: gotta make sure the underlying layer can handle it,
  299. * maybe an IFF_VLAN_CAPABLE flag for devices?
  300. */
  301. if (vlan_dev_info(dev)->real_dev->mtu < new_mtu)
  302. return -ERANGE;
  303. dev->mtu = new_mtu;
  304. return 0;
  305. }
  306. void vlan_dev_set_ingress_priority(const struct net_device *dev,
  307. u32 skb_prio, u16 vlan_prio)
  308. {
  309. struct vlan_dev_info *vlan = vlan_dev_info(dev);
  310. if (vlan->ingress_priority_map[vlan_prio & 0x7] && !skb_prio)
  311. vlan->nr_ingress_mappings--;
  312. else if (!vlan->ingress_priority_map[vlan_prio & 0x7] && skb_prio)
  313. vlan->nr_ingress_mappings++;
  314. vlan->ingress_priority_map[vlan_prio & 0x7] = skb_prio;
  315. }
  316. int vlan_dev_set_egress_priority(const struct net_device *dev,
  317. u32 skb_prio, u16 vlan_prio)
  318. {
  319. struct vlan_dev_info *vlan = vlan_dev_info(dev);
  320. struct vlan_priority_tci_mapping *mp = NULL;
  321. struct vlan_priority_tci_mapping *np;
  322. u32 vlan_qos = (vlan_prio << 13) & 0xE000;
  323. /* See if a priority mapping exists.. */
  324. mp = vlan->egress_priority_map[skb_prio & 0xF];
  325. while (mp) {
  326. if (mp->priority == skb_prio) {
  327. if (mp->vlan_qos && !vlan_qos)
  328. vlan->nr_egress_mappings--;
  329. else if (!mp->vlan_qos && vlan_qos)
  330. vlan->nr_egress_mappings++;
  331. mp->vlan_qos = vlan_qos;
  332. return 0;
  333. }
  334. mp = mp->next;
  335. }
  336. /* Create a new mapping then. */
  337. mp = vlan->egress_priority_map[skb_prio & 0xF];
  338. np = kmalloc(sizeof(struct vlan_priority_tci_mapping), GFP_KERNEL);
  339. if (!np)
  340. return -ENOBUFS;
  341. np->next = mp;
  342. np->priority = skb_prio;
  343. np->vlan_qos = vlan_qos;
  344. vlan->egress_priority_map[skb_prio & 0xF] = np;
  345. if (vlan_qos)
  346. vlan->nr_egress_mappings++;
  347. return 0;
  348. }
  349. /* Flags are defined in the vlan_flags enum in include/linux/if_vlan.h file. */
  350. int vlan_dev_change_flags(const struct net_device *dev, u32 flags, u32 mask)
  351. {
  352. struct vlan_dev_info *vlan = vlan_dev_info(dev);
  353. u32 old_flags = vlan->flags;
  354. if (mask & ~(VLAN_FLAG_REORDER_HDR | VLAN_FLAG_GVRP))
  355. return -EINVAL;
  356. vlan->flags = (old_flags & ~mask) | (flags & mask);
  357. if (netif_running(dev) && (vlan->flags ^ old_flags) & VLAN_FLAG_GVRP) {
  358. if (vlan->flags & VLAN_FLAG_GVRP)
  359. vlan_gvrp_request_join(dev);
  360. else
  361. vlan_gvrp_request_leave(dev);
  362. }
  363. return 0;
  364. }
  365. void vlan_dev_get_realdev_name(const struct net_device *dev, char *result)
  366. {
  367. strncpy(result, vlan_dev_info(dev)->real_dev->name, 23);
  368. }
  369. static int vlan_dev_open(struct net_device *dev)
  370. {
  371. struct vlan_dev_info *vlan = vlan_dev_info(dev);
  372. struct net_device *real_dev = vlan->real_dev;
  373. int err;
  374. if (!(real_dev->flags & IFF_UP))
  375. return -ENETDOWN;
  376. if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr)) {
  377. err = dev_unicast_add(real_dev, dev->dev_addr, ETH_ALEN);
  378. if (err < 0)
  379. goto out;
  380. }
  381. if (dev->flags & IFF_ALLMULTI) {
  382. err = dev_set_allmulti(real_dev, 1);
  383. if (err < 0)
  384. goto del_unicast;
  385. }
  386. if (dev->flags & IFF_PROMISC) {
  387. err = dev_set_promiscuity(real_dev, 1);
  388. if (err < 0)
  389. goto clear_allmulti;
  390. }
  391. memcpy(vlan->real_dev_addr, real_dev->dev_addr, ETH_ALEN);
  392. if (vlan->flags & VLAN_FLAG_GVRP)
  393. vlan_gvrp_request_join(dev);
  394. return 0;
  395. clear_allmulti:
  396. if (dev->flags & IFF_ALLMULTI)
  397. dev_set_allmulti(real_dev, -1);
  398. del_unicast:
  399. if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr))
  400. dev_unicast_delete(real_dev, dev->dev_addr, ETH_ALEN);
  401. out:
  402. return err;
  403. }
  404. static int vlan_dev_stop(struct net_device *dev)
  405. {
  406. struct vlan_dev_info *vlan = vlan_dev_info(dev);
  407. struct net_device *real_dev = vlan->real_dev;
  408. if (vlan->flags & VLAN_FLAG_GVRP)
  409. vlan_gvrp_request_leave(dev);
  410. dev_mc_unsync(real_dev, dev);
  411. dev_unicast_unsync(real_dev, dev);
  412. if (dev->flags & IFF_ALLMULTI)
  413. dev_set_allmulti(real_dev, -1);
  414. if (dev->flags & IFF_PROMISC)
  415. dev_set_promiscuity(real_dev, -1);
  416. if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr))
  417. dev_unicast_delete(real_dev, dev->dev_addr, dev->addr_len);
  418. return 0;
  419. }
  420. static int vlan_dev_set_mac_address(struct net_device *dev, void *p)
  421. {
  422. struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
  423. struct sockaddr *addr = p;
  424. int err;
  425. if (!is_valid_ether_addr(addr->sa_data))
  426. return -EADDRNOTAVAIL;
  427. if (!(dev->flags & IFF_UP))
  428. goto out;
  429. if (compare_ether_addr(addr->sa_data, real_dev->dev_addr)) {
  430. err = dev_unicast_add(real_dev, addr->sa_data, ETH_ALEN);
  431. if (err < 0)
  432. return err;
  433. }
  434. if (compare_ether_addr(dev->dev_addr, real_dev->dev_addr))
  435. dev_unicast_delete(real_dev, dev->dev_addr, ETH_ALEN);
  436. out:
  437. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  438. return 0;
  439. }
  440. static int vlan_dev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  441. {
  442. struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
  443. struct ifreq ifrr;
  444. int err = -EOPNOTSUPP;
  445. strncpy(ifrr.ifr_name, real_dev->name, IFNAMSIZ);
  446. ifrr.ifr_ifru = ifr->ifr_ifru;
  447. switch (cmd) {
  448. case SIOCGMIIPHY:
  449. case SIOCGMIIREG:
  450. case SIOCSMIIREG:
  451. if (real_dev->do_ioctl && netif_device_present(real_dev))
  452. err = real_dev->do_ioctl(real_dev, &ifrr, cmd);
  453. break;
  454. }
  455. if (!err)
  456. ifr->ifr_ifru = ifrr.ifr_ifru;
  457. return err;
  458. }
  459. static void vlan_dev_change_rx_flags(struct net_device *dev, int change)
  460. {
  461. struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
  462. if (change & IFF_ALLMULTI)
  463. dev_set_allmulti(real_dev, dev->flags & IFF_ALLMULTI ? 1 : -1);
  464. if (change & IFF_PROMISC)
  465. dev_set_promiscuity(real_dev, dev->flags & IFF_PROMISC ? 1 : -1);
  466. }
  467. static void vlan_dev_set_rx_mode(struct net_device *vlan_dev)
  468. {
  469. dev_mc_sync(vlan_dev_info(vlan_dev)->real_dev, vlan_dev);
  470. dev_unicast_sync(vlan_dev_info(vlan_dev)->real_dev, vlan_dev);
  471. }
  472. /*
  473. * vlan network devices have devices nesting below it, and are a special
  474. * "super class" of normal network devices; split their locks off into a
  475. * separate class since they always nest.
  476. */
  477. static struct lock_class_key vlan_netdev_xmit_lock_key;
  478. static struct lock_class_key vlan_netdev_addr_lock_key;
  479. static void vlan_dev_set_lockdep_one(struct net_device *dev,
  480. struct netdev_queue *txq,
  481. void *_subclass)
  482. {
  483. lockdep_set_class_and_subclass(&txq->_xmit_lock,
  484. &vlan_netdev_xmit_lock_key,
  485. *(int *)_subclass);
  486. }
  487. static void vlan_dev_set_lockdep_class(struct net_device *dev, int subclass)
  488. {
  489. lockdep_set_class_and_subclass(&dev->addr_list_lock,
  490. &vlan_netdev_addr_lock_key,
  491. subclass);
  492. netdev_for_each_tx_queue(dev, vlan_dev_set_lockdep_one, &subclass);
  493. }
  494. static const struct header_ops vlan_header_ops = {
  495. .create = vlan_dev_hard_header,
  496. .rebuild = vlan_dev_rebuild_header,
  497. .parse = eth_header_parse,
  498. };
  499. static int vlan_dev_init(struct net_device *dev)
  500. {
  501. struct net_device *real_dev = vlan_dev_info(dev)->real_dev;
  502. int subclass = 0;
  503. /* IFF_BROADCAST|IFF_MULTICAST; ??? */
  504. dev->flags = real_dev->flags & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI);
  505. dev->iflink = real_dev->ifindex;
  506. dev->state = (real_dev->state & ((1<<__LINK_STATE_NOCARRIER) |
  507. (1<<__LINK_STATE_DORMANT))) |
  508. (1<<__LINK_STATE_PRESENT);
  509. dev->features |= real_dev->features & real_dev->vlan_features;
  510. dev->gso_max_size = real_dev->gso_max_size;
  511. /* ipv6 shared card related stuff */
  512. dev->dev_id = real_dev->dev_id;
  513. if (is_zero_ether_addr(dev->dev_addr))
  514. memcpy(dev->dev_addr, real_dev->dev_addr, dev->addr_len);
  515. if (is_zero_ether_addr(dev->broadcast))
  516. memcpy(dev->broadcast, real_dev->broadcast, dev->addr_len);
  517. if (real_dev->features & NETIF_F_HW_VLAN_TX) {
  518. dev->header_ops = real_dev->header_ops;
  519. dev->hard_header_len = real_dev->hard_header_len;
  520. dev->hard_start_xmit = vlan_dev_hwaccel_hard_start_xmit;
  521. } else {
  522. dev->header_ops = &vlan_header_ops;
  523. dev->hard_header_len = real_dev->hard_header_len + VLAN_HLEN;
  524. dev->hard_start_xmit = vlan_dev_hard_start_xmit;
  525. }
  526. if (is_vlan_dev(real_dev))
  527. subclass = 1;
  528. vlan_dev_set_lockdep_class(dev, subclass);
  529. return 0;
  530. }
  531. static void vlan_dev_uninit(struct net_device *dev)
  532. {
  533. struct vlan_priority_tci_mapping *pm;
  534. struct vlan_dev_info *vlan = vlan_dev_info(dev);
  535. int i;
  536. for (i = 0; i < ARRAY_SIZE(vlan->egress_priority_map); i++) {
  537. while ((pm = vlan->egress_priority_map[i]) != NULL) {
  538. vlan->egress_priority_map[i] = pm->next;
  539. kfree(pm);
  540. }
  541. }
  542. }
  543. static u32 vlan_ethtool_get_rx_csum(struct net_device *dev)
  544. {
  545. const struct vlan_dev_info *vlan = vlan_dev_info(dev);
  546. struct net_device *real_dev = vlan->real_dev;
  547. if (real_dev->ethtool_ops == NULL ||
  548. real_dev->ethtool_ops->get_rx_csum == NULL)
  549. return 0;
  550. return real_dev->ethtool_ops->get_rx_csum(real_dev);
  551. }
  552. static u32 vlan_ethtool_get_flags(struct net_device *dev)
  553. {
  554. const struct vlan_dev_info *vlan = vlan_dev_info(dev);
  555. struct net_device *real_dev = vlan->real_dev;
  556. if (!(real_dev->features & NETIF_F_HW_VLAN_RX) ||
  557. real_dev->ethtool_ops == NULL ||
  558. real_dev->ethtool_ops->get_flags == NULL)
  559. return 0;
  560. return real_dev->ethtool_ops->get_flags(real_dev);
  561. }
  562. static const struct ethtool_ops vlan_ethtool_ops = {
  563. .get_link = ethtool_op_get_link,
  564. .get_rx_csum = vlan_ethtool_get_rx_csum,
  565. .get_flags = vlan_ethtool_get_flags,
  566. };
  567. void vlan_setup(struct net_device *dev)
  568. {
  569. ether_setup(dev);
  570. dev->priv_flags |= IFF_802_1Q_VLAN;
  571. dev->tx_queue_len = 0;
  572. dev->change_mtu = vlan_dev_change_mtu;
  573. dev->init = vlan_dev_init;
  574. dev->uninit = vlan_dev_uninit;
  575. dev->open = vlan_dev_open;
  576. dev->stop = vlan_dev_stop;
  577. dev->set_mac_address = vlan_dev_set_mac_address;
  578. dev->set_rx_mode = vlan_dev_set_rx_mode;
  579. dev->set_multicast_list = vlan_dev_set_rx_mode;
  580. dev->change_rx_flags = vlan_dev_change_rx_flags;
  581. dev->do_ioctl = vlan_dev_ioctl;
  582. dev->destructor = free_netdev;
  583. dev->ethtool_ops = &vlan_ethtool_ops;
  584. memset(dev->broadcast, 0, ETH_ALEN);
  585. }