bitmap.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009
  1. /*
  2. * lib/bitmap.c
  3. * Helper functions for bitmap.h.
  4. *
  5. * This source code is licensed under the GNU General Public License,
  6. * Version 2. See the file COPYING for more details.
  7. */
  8. #include <linux/module.h>
  9. #include <linux/ctype.h>
  10. #include <linux/errno.h>
  11. #include <linux/bitmap.h>
  12. #include <linux/bitops.h>
  13. #include <asm/uaccess.h>
  14. /*
  15. * bitmaps provide an array of bits, implemented using an an
  16. * array of unsigned longs. The number of valid bits in a
  17. * given bitmap does _not_ need to be an exact multiple of
  18. * BITS_PER_LONG.
  19. *
  20. * The possible unused bits in the last, partially used word
  21. * of a bitmap are 'don't care'. The implementation makes
  22. * no particular effort to keep them zero. It ensures that
  23. * their value will not affect the results of any operation.
  24. * The bitmap operations that return Boolean (bitmap_empty,
  25. * for example) or scalar (bitmap_weight, for example) results
  26. * carefully filter out these unused bits from impacting their
  27. * results.
  28. *
  29. * These operations actually hold to a slightly stronger rule:
  30. * if you don't input any bitmaps to these ops that have some
  31. * unused bits set, then they won't output any set unused bits
  32. * in output bitmaps.
  33. *
  34. * The byte ordering of bitmaps is more natural on little
  35. * endian architectures. See the big-endian headers
  36. * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  37. * for the best explanations of this ordering.
  38. */
  39. int __bitmap_empty(const unsigned long *bitmap, int bits)
  40. {
  41. int k, lim = bits/BITS_PER_LONG;
  42. for (k = 0; k < lim; ++k)
  43. if (bitmap[k])
  44. return 0;
  45. if (bits % BITS_PER_LONG)
  46. if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  47. return 0;
  48. return 1;
  49. }
  50. EXPORT_SYMBOL(__bitmap_empty);
  51. int __bitmap_full(const unsigned long *bitmap, int bits)
  52. {
  53. int k, lim = bits/BITS_PER_LONG;
  54. for (k = 0; k < lim; ++k)
  55. if (~bitmap[k])
  56. return 0;
  57. if (bits % BITS_PER_LONG)
  58. if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  59. return 0;
  60. return 1;
  61. }
  62. EXPORT_SYMBOL(__bitmap_full);
  63. int __bitmap_equal(const unsigned long *bitmap1,
  64. const unsigned long *bitmap2, int bits)
  65. {
  66. int k, lim = bits/BITS_PER_LONG;
  67. for (k = 0; k < lim; ++k)
  68. if (bitmap1[k] != bitmap2[k])
  69. return 0;
  70. if (bits % BITS_PER_LONG)
  71. if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  72. return 0;
  73. return 1;
  74. }
  75. EXPORT_SYMBOL(__bitmap_equal);
  76. void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
  77. {
  78. int k, lim = bits/BITS_PER_LONG;
  79. for (k = 0; k < lim; ++k)
  80. dst[k] = ~src[k];
  81. if (bits % BITS_PER_LONG)
  82. dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
  83. }
  84. EXPORT_SYMBOL(__bitmap_complement);
  85. /**
  86. * __bitmap_shift_right - logical right shift of the bits in a bitmap
  87. * @dst : destination bitmap
  88. * @src : source bitmap
  89. * @shift : shift by this many bits
  90. * @bits : bitmap size, in bits
  91. *
  92. * Shifting right (dividing) means moving bits in the MS -> LS bit
  93. * direction. Zeros are fed into the vacated MS positions and the
  94. * LS bits shifted off the bottom are lost.
  95. */
  96. void __bitmap_shift_right(unsigned long *dst,
  97. const unsigned long *src, int shift, int bits)
  98. {
  99. int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  100. int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  101. unsigned long mask = (1UL << left) - 1;
  102. for (k = 0; off + k < lim; ++k) {
  103. unsigned long upper, lower;
  104. /*
  105. * If shift is not word aligned, take lower rem bits of
  106. * word above and make them the top rem bits of result.
  107. */
  108. if (!rem || off + k + 1 >= lim)
  109. upper = 0;
  110. else {
  111. upper = src[off + k + 1];
  112. if (off + k + 1 == lim - 1 && left)
  113. upper &= mask;
  114. }
  115. lower = src[off + k];
  116. if (left && off + k == lim - 1)
  117. lower &= mask;
  118. dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
  119. if (left && k == lim - 1)
  120. dst[k] &= mask;
  121. }
  122. if (off)
  123. memset(&dst[lim - off], 0, off*sizeof(unsigned long));
  124. }
  125. EXPORT_SYMBOL(__bitmap_shift_right);
  126. /**
  127. * __bitmap_shift_left - logical left shift of the bits in a bitmap
  128. * @dst : destination bitmap
  129. * @src : source bitmap
  130. * @shift : shift by this many bits
  131. * @bits : bitmap size, in bits
  132. *
  133. * Shifting left (multiplying) means moving bits in the LS -> MS
  134. * direction. Zeros are fed into the vacated LS bit positions
  135. * and those MS bits shifted off the top are lost.
  136. */
  137. void __bitmap_shift_left(unsigned long *dst,
  138. const unsigned long *src, int shift, int bits)
  139. {
  140. int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
  141. int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  142. for (k = lim - off - 1; k >= 0; --k) {
  143. unsigned long upper, lower;
  144. /*
  145. * If shift is not word aligned, take upper rem bits of
  146. * word below and make them the bottom rem bits of result.
  147. */
  148. if (rem && k > 0)
  149. lower = src[k - 1];
  150. else
  151. lower = 0;
  152. upper = src[k];
  153. if (left && k == lim - 1)
  154. upper &= (1UL << left) - 1;
  155. dst[k + off] = lower >> (BITS_PER_LONG - rem) | upper << rem;
  156. if (left && k + off == lim - 1)
  157. dst[k + off] &= (1UL << left) - 1;
  158. }
  159. if (off)
  160. memset(dst, 0, off*sizeof(unsigned long));
  161. }
  162. EXPORT_SYMBOL(__bitmap_shift_left);
  163. void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
  164. const unsigned long *bitmap2, int bits)
  165. {
  166. int k;
  167. int nr = BITS_TO_LONGS(bits);
  168. for (k = 0; k < nr; k++)
  169. dst[k] = bitmap1[k] & bitmap2[k];
  170. }
  171. EXPORT_SYMBOL(__bitmap_and);
  172. void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
  173. const unsigned long *bitmap2, int bits)
  174. {
  175. int k;
  176. int nr = BITS_TO_LONGS(bits);
  177. for (k = 0; k < nr; k++)
  178. dst[k] = bitmap1[k] | bitmap2[k];
  179. }
  180. EXPORT_SYMBOL(__bitmap_or);
  181. void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
  182. const unsigned long *bitmap2, int bits)
  183. {
  184. int k;
  185. int nr = BITS_TO_LONGS(bits);
  186. for (k = 0; k < nr; k++)
  187. dst[k] = bitmap1[k] ^ bitmap2[k];
  188. }
  189. EXPORT_SYMBOL(__bitmap_xor);
  190. void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
  191. const unsigned long *bitmap2, int bits)
  192. {
  193. int k;
  194. int nr = BITS_TO_LONGS(bits);
  195. for (k = 0; k < nr; k++)
  196. dst[k] = bitmap1[k] & ~bitmap2[k];
  197. }
  198. EXPORT_SYMBOL(__bitmap_andnot);
  199. int __bitmap_intersects(const unsigned long *bitmap1,
  200. const unsigned long *bitmap2, int bits)
  201. {
  202. int k, lim = bits/BITS_PER_LONG;
  203. for (k = 0; k < lim; ++k)
  204. if (bitmap1[k] & bitmap2[k])
  205. return 1;
  206. if (bits % BITS_PER_LONG)
  207. if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  208. return 1;
  209. return 0;
  210. }
  211. EXPORT_SYMBOL(__bitmap_intersects);
  212. int __bitmap_subset(const unsigned long *bitmap1,
  213. const unsigned long *bitmap2, int bits)
  214. {
  215. int k, lim = bits/BITS_PER_LONG;
  216. for (k = 0; k < lim; ++k)
  217. if (bitmap1[k] & ~bitmap2[k])
  218. return 0;
  219. if (bits % BITS_PER_LONG)
  220. if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  221. return 0;
  222. return 1;
  223. }
  224. EXPORT_SYMBOL(__bitmap_subset);
  225. int __bitmap_weight(const unsigned long *bitmap, int bits)
  226. {
  227. int k, w = 0, lim = bits/BITS_PER_LONG;
  228. for (k = 0; k < lim; k++)
  229. w += hweight_long(bitmap[k]);
  230. if (bits % BITS_PER_LONG)
  231. w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
  232. return w;
  233. }
  234. EXPORT_SYMBOL(__bitmap_weight);
  235. /*
  236. * Bitmap printing & parsing functions: first version by Bill Irwin,
  237. * second version by Paul Jackson, third by Joe Korty.
  238. */
  239. #define CHUNKSZ 32
  240. #define nbits_to_hold_value(val) fls(val)
  241. #define unhex(c) (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
  242. #define BASEDEC 10 /* fancier cpuset lists input in decimal */
  243. /**
  244. * bitmap_scnprintf - convert bitmap to an ASCII hex string.
  245. * @buf: byte buffer into which string is placed
  246. * @buflen: reserved size of @buf, in bytes
  247. * @maskp: pointer to bitmap to convert
  248. * @nmaskbits: size of bitmap, in bits
  249. *
  250. * Exactly @nmaskbits bits are displayed. Hex digits are grouped into
  251. * comma-separated sets of eight digits per set.
  252. */
  253. int bitmap_scnprintf(char *buf, unsigned int buflen,
  254. const unsigned long *maskp, int nmaskbits)
  255. {
  256. int i, word, bit, len = 0;
  257. unsigned long val;
  258. const char *sep = "";
  259. int chunksz;
  260. u32 chunkmask;
  261. chunksz = nmaskbits & (CHUNKSZ - 1);
  262. if (chunksz == 0)
  263. chunksz = CHUNKSZ;
  264. i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
  265. for (; i >= 0; i -= CHUNKSZ) {
  266. chunkmask = ((1ULL << chunksz) - 1);
  267. word = i / BITS_PER_LONG;
  268. bit = i % BITS_PER_LONG;
  269. val = (maskp[word] >> bit) & chunkmask;
  270. len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
  271. (chunksz+3)/4, val);
  272. chunksz = CHUNKSZ;
  273. sep = ",";
  274. }
  275. return len;
  276. }
  277. EXPORT_SYMBOL(bitmap_scnprintf);
  278. /**
  279. * bitmap_scnprintf_len - return buffer length needed to convert
  280. * bitmap to an ASCII hex string
  281. * @nr_bits: number of bits to be converted
  282. */
  283. int bitmap_scnprintf_len(unsigned int nr_bits)
  284. {
  285. unsigned int nr_nibbles = ALIGN(nr_bits, 4) / 4;
  286. return nr_nibbles + ALIGN(nr_nibbles, CHUNKSZ / 4) / (CHUNKSZ / 4) - 1;
  287. }
  288. /**
  289. * __bitmap_parse - convert an ASCII hex string into a bitmap.
  290. * @buf: pointer to buffer containing string.
  291. * @buflen: buffer size in bytes. If string is smaller than this
  292. * then it must be terminated with a \0.
  293. * @is_user: location of buffer, 0 indicates kernel space
  294. * @maskp: pointer to bitmap array that will contain result.
  295. * @nmaskbits: size of bitmap, in bits.
  296. *
  297. * Commas group hex digits into chunks. Each chunk defines exactly 32
  298. * bits of the resultant bitmask. No chunk may specify a value larger
  299. * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
  300. * then leading 0-bits are prepended. %-EINVAL is returned for illegal
  301. * characters and for grouping errors such as "1,,5", ",44", "," and "".
  302. * Leading and trailing whitespace accepted, but not embedded whitespace.
  303. */
  304. int __bitmap_parse(const char *buf, unsigned int buflen,
  305. int is_user, unsigned long *maskp,
  306. int nmaskbits)
  307. {
  308. int c, old_c, totaldigits, ndigits, nchunks, nbits;
  309. u32 chunk;
  310. const char __user *ubuf = buf;
  311. bitmap_zero(maskp, nmaskbits);
  312. nchunks = nbits = totaldigits = c = 0;
  313. do {
  314. chunk = ndigits = 0;
  315. /* Get the next chunk of the bitmap */
  316. while (buflen) {
  317. old_c = c;
  318. if (is_user) {
  319. if (__get_user(c, ubuf++))
  320. return -EFAULT;
  321. }
  322. else
  323. c = *buf++;
  324. buflen--;
  325. if (isspace(c))
  326. continue;
  327. /*
  328. * If the last character was a space and the current
  329. * character isn't '\0', we've got embedded whitespace.
  330. * This is a no-no, so throw an error.
  331. */
  332. if (totaldigits && c && isspace(old_c))
  333. return -EINVAL;
  334. /* A '\0' or a ',' signal the end of the chunk */
  335. if (c == '\0' || c == ',')
  336. break;
  337. if (!isxdigit(c))
  338. return -EINVAL;
  339. /*
  340. * Make sure there are at least 4 free bits in 'chunk'.
  341. * If not, this hexdigit will overflow 'chunk', so
  342. * throw an error.
  343. */
  344. if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
  345. return -EOVERFLOW;
  346. chunk = (chunk << 4) | unhex(c);
  347. ndigits++; totaldigits++;
  348. }
  349. if (ndigits == 0)
  350. return -EINVAL;
  351. if (nchunks == 0 && chunk == 0)
  352. continue;
  353. __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
  354. *maskp |= chunk;
  355. nchunks++;
  356. nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
  357. if (nbits > nmaskbits)
  358. return -EOVERFLOW;
  359. } while (buflen && c == ',');
  360. return 0;
  361. }
  362. EXPORT_SYMBOL(__bitmap_parse);
  363. /**
  364. * bitmap_parse_user()
  365. *
  366. * @ubuf: pointer to user buffer containing string.
  367. * @ulen: buffer size in bytes. If string is smaller than this
  368. * then it must be terminated with a \0.
  369. * @maskp: pointer to bitmap array that will contain result.
  370. * @nmaskbits: size of bitmap, in bits.
  371. *
  372. * Wrapper for __bitmap_parse(), providing it with user buffer.
  373. *
  374. * We cannot have this as an inline function in bitmap.h because it needs
  375. * linux/uaccess.h to get the access_ok() declaration and this causes
  376. * cyclic dependencies.
  377. */
  378. int bitmap_parse_user(const char __user *ubuf,
  379. unsigned int ulen, unsigned long *maskp,
  380. int nmaskbits)
  381. {
  382. if (!access_ok(VERIFY_READ, ubuf, ulen))
  383. return -EFAULT;
  384. return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
  385. }
  386. EXPORT_SYMBOL(bitmap_parse_user);
  387. /*
  388. * bscnl_emit(buf, buflen, rbot, rtop, bp)
  389. *
  390. * Helper routine for bitmap_scnlistprintf(). Write decimal number
  391. * or range to buf, suppressing output past buf+buflen, with optional
  392. * comma-prefix. Return len of what would be written to buf, if it
  393. * all fit.
  394. */
  395. static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
  396. {
  397. if (len > 0)
  398. len += scnprintf(buf + len, buflen - len, ",");
  399. if (rbot == rtop)
  400. len += scnprintf(buf + len, buflen - len, "%d", rbot);
  401. else
  402. len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
  403. return len;
  404. }
  405. /**
  406. * bitmap_scnlistprintf - convert bitmap to list format ASCII string
  407. * @buf: byte buffer into which string is placed
  408. * @buflen: reserved size of @buf, in bytes
  409. * @maskp: pointer to bitmap to convert
  410. * @nmaskbits: size of bitmap, in bits
  411. *
  412. * Output format is a comma-separated list of decimal numbers and
  413. * ranges. Consecutively set bits are shown as two hyphen-separated
  414. * decimal numbers, the smallest and largest bit numbers set in
  415. * the range. Output format is compatible with the format
  416. * accepted as input by bitmap_parselist().
  417. *
  418. * The return value is the number of characters which would be
  419. * generated for the given input, excluding the trailing '\0', as
  420. * per ISO C99.
  421. */
  422. int bitmap_scnlistprintf(char *buf, unsigned int buflen,
  423. const unsigned long *maskp, int nmaskbits)
  424. {
  425. int len = 0;
  426. /* current bit is 'cur', most recently seen range is [rbot, rtop] */
  427. int cur, rbot, rtop;
  428. if (buflen == 0)
  429. return 0;
  430. buf[0] = 0;
  431. rbot = cur = find_first_bit(maskp, nmaskbits);
  432. while (cur < nmaskbits) {
  433. rtop = cur;
  434. cur = find_next_bit(maskp, nmaskbits, cur+1);
  435. if (cur >= nmaskbits || cur > rtop + 1) {
  436. len = bscnl_emit(buf, buflen, rbot, rtop, len);
  437. rbot = cur;
  438. }
  439. }
  440. return len;
  441. }
  442. EXPORT_SYMBOL(bitmap_scnlistprintf);
  443. /**
  444. * bitmap_parselist - convert list format ASCII string to bitmap
  445. * @bp: read nul-terminated user string from this buffer
  446. * @maskp: write resulting mask here
  447. * @nmaskbits: number of bits in mask to be written
  448. *
  449. * Input format is a comma-separated list of decimal numbers and
  450. * ranges. Consecutively set bits are shown as two hyphen-separated
  451. * decimal numbers, the smallest and largest bit numbers set in
  452. * the range.
  453. *
  454. * Returns 0 on success, -errno on invalid input strings.
  455. * Error values:
  456. * %-EINVAL: second number in range smaller than first
  457. * %-EINVAL: invalid character in string
  458. * %-ERANGE: bit number specified too large for mask
  459. */
  460. int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
  461. {
  462. unsigned a, b;
  463. bitmap_zero(maskp, nmaskbits);
  464. do {
  465. if (!isdigit(*bp))
  466. return -EINVAL;
  467. b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
  468. if (*bp == '-') {
  469. bp++;
  470. if (!isdigit(*bp))
  471. return -EINVAL;
  472. b = simple_strtoul(bp, (char **)&bp, BASEDEC);
  473. }
  474. if (!(a <= b))
  475. return -EINVAL;
  476. if (b >= nmaskbits)
  477. return -ERANGE;
  478. while (a <= b) {
  479. set_bit(a, maskp);
  480. a++;
  481. }
  482. if (*bp == ',')
  483. bp++;
  484. } while (*bp != '\0' && *bp != '\n');
  485. return 0;
  486. }
  487. EXPORT_SYMBOL(bitmap_parselist);
  488. /**
  489. * bitmap_pos_to_ord(buf, pos, bits)
  490. * @buf: pointer to a bitmap
  491. * @pos: a bit position in @buf (0 <= @pos < @bits)
  492. * @bits: number of valid bit positions in @buf
  493. *
  494. * Map the bit at position @pos in @buf (of length @bits) to the
  495. * ordinal of which set bit it is. If it is not set or if @pos
  496. * is not a valid bit position, map to -1.
  497. *
  498. * If for example, just bits 4 through 7 are set in @buf, then @pos
  499. * values 4 through 7 will get mapped to 0 through 3, respectively,
  500. * and other @pos values will get mapped to 0. When @pos value 7
  501. * gets mapped to (returns) @ord value 3 in this example, that means
  502. * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
  503. *
  504. * The bit positions 0 through @bits are valid positions in @buf.
  505. */
  506. static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
  507. {
  508. int i, ord;
  509. if (pos < 0 || pos >= bits || !test_bit(pos, buf))
  510. return -1;
  511. i = find_first_bit(buf, bits);
  512. ord = 0;
  513. while (i < pos) {
  514. i = find_next_bit(buf, bits, i + 1);
  515. ord++;
  516. }
  517. BUG_ON(i != pos);
  518. return ord;
  519. }
  520. /**
  521. * bitmap_ord_to_pos(buf, ord, bits)
  522. * @buf: pointer to bitmap
  523. * @ord: ordinal bit position (n-th set bit, n >= 0)
  524. * @bits: number of valid bit positions in @buf
  525. *
  526. * Map the ordinal offset of bit @ord in @buf to its position in @buf.
  527. * Value of @ord should be in range 0 <= @ord < weight(buf), else
  528. * results are undefined.
  529. *
  530. * If for example, just bits 4 through 7 are set in @buf, then @ord
  531. * values 0 through 3 will get mapped to 4 through 7, respectively,
  532. * and all other @ord values return undefined values. When @ord value 3
  533. * gets mapped to (returns) @pos value 7 in this example, that means
  534. * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
  535. *
  536. * The bit positions 0 through @bits are valid positions in @buf.
  537. */
  538. static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
  539. {
  540. int pos = 0;
  541. if (ord >= 0 && ord < bits) {
  542. int i;
  543. for (i = find_first_bit(buf, bits);
  544. i < bits && ord > 0;
  545. i = find_next_bit(buf, bits, i + 1))
  546. ord--;
  547. if (i < bits && ord == 0)
  548. pos = i;
  549. }
  550. return pos;
  551. }
  552. /**
  553. * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
  554. * @dst: remapped result
  555. * @src: subset to be remapped
  556. * @old: defines domain of map
  557. * @new: defines range of map
  558. * @bits: number of bits in each of these bitmaps
  559. *
  560. * Let @old and @new define a mapping of bit positions, such that
  561. * whatever position is held by the n-th set bit in @old is mapped
  562. * to the n-th set bit in @new. In the more general case, allowing
  563. * for the possibility that the weight 'w' of @new is less than the
  564. * weight of @old, map the position of the n-th set bit in @old to
  565. * the position of the m-th set bit in @new, where m == n % w.
  566. *
  567. * If either of the @old and @new bitmaps are empty, or if @src and
  568. * @dst point to the same location, then this routine copies @src
  569. * to @dst.
  570. *
  571. * The positions of unset bits in @old are mapped to themselves
  572. * (the identify map).
  573. *
  574. * Apply the above specified mapping to @src, placing the result in
  575. * @dst, clearing any bits previously set in @dst.
  576. *
  577. * For example, lets say that @old has bits 4 through 7 set, and
  578. * @new has bits 12 through 15 set. This defines the mapping of bit
  579. * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  580. * bit positions unchanged. So if say @src comes into this routine
  581. * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
  582. * 13 and 15 set.
  583. */
  584. void bitmap_remap(unsigned long *dst, const unsigned long *src,
  585. const unsigned long *old, const unsigned long *new,
  586. int bits)
  587. {
  588. int oldbit, w;
  589. if (dst == src) /* following doesn't handle inplace remaps */
  590. return;
  591. bitmap_zero(dst, bits);
  592. w = bitmap_weight(new, bits);
  593. for (oldbit = find_first_bit(src, bits);
  594. oldbit < bits;
  595. oldbit = find_next_bit(src, bits, oldbit + 1)) {
  596. int n = bitmap_pos_to_ord(old, oldbit, bits);
  597. if (n < 0 || w == 0)
  598. set_bit(oldbit, dst); /* identity map */
  599. else
  600. set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
  601. }
  602. }
  603. EXPORT_SYMBOL(bitmap_remap);
  604. /**
  605. * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
  606. * @oldbit: bit position to be mapped
  607. * @old: defines domain of map
  608. * @new: defines range of map
  609. * @bits: number of bits in each of these bitmaps
  610. *
  611. * Let @old and @new define a mapping of bit positions, such that
  612. * whatever position is held by the n-th set bit in @old is mapped
  613. * to the n-th set bit in @new. In the more general case, allowing
  614. * for the possibility that the weight 'w' of @new is less than the
  615. * weight of @old, map the position of the n-th set bit in @old to
  616. * the position of the m-th set bit in @new, where m == n % w.
  617. *
  618. * The positions of unset bits in @old are mapped to themselves
  619. * (the identify map).
  620. *
  621. * Apply the above specified mapping to bit position @oldbit, returning
  622. * the new bit position.
  623. *
  624. * For example, lets say that @old has bits 4 through 7 set, and
  625. * @new has bits 12 through 15 set. This defines the mapping of bit
  626. * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
  627. * bit positions unchanged. So if say @oldbit is 5, then this routine
  628. * returns 13.
  629. */
  630. int bitmap_bitremap(int oldbit, const unsigned long *old,
  631. const unsigned long *new, int bits)
  632. {
  633. int w = bitmap_weight(new, bits);
  634. int n = bitmap_pos_to_ord(old, oldbit, bits);
  635. if (n < 0 || w == 0)
  636. return oldbit;
  637. else
  638. return bitmap_ord_to_pos(new, n % w, bits);
  639. }
  640. EXPORT_SYMBOL(bitmap_bitremap);
  641. /**
  642. * bitmap_onto - translate one bitmap relative to another
  643. * @dst: resulting translated bitmap
  644. * @orig: original untranslated bitmap
  645. * @relmap: bitmap relative to which translated
  646. * @bits: number of bits in each of these bitmaps
  647. *
  648. * Set the n-th bit of @dst iff there exists some m such that the
  649. * n-th bit of @relmap is set, the m-th bit of @orig is set, and
  650. * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
  651. * (If you understood the previous sentence the first time your
  652. * read it, you're overqualified for your current job.)
  653. *
  654. * In other words, @orig is mapped onto (surjectively) @dst,
  655. * using the the map { <n, m> | the n-th bit of @relmap is the
  656. * m-th set bit of @relmap }.
  657. *
  658. * Any set bits in @orig above bit number W, where W is the
  659. * weight of (number of set bits in) @relmap are mapped nowhere.
  660. * In particular, if for all bits m set in @orig, m >= W, then
  661. * @dst will end up empty. In situations where the possibility
  662. * of such an empty result is not desired, one way to avoid it is
  663. * to use the bitmap_fold() operator, below, to first fold the
  664. * @orig bitmap over itself so that all its set bits x are in the
  665. * range 0 <= x < W. The bitmap_fold() operator does this by
  666. * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
  667. *
  668. * Example [1] for bitmap_onto():
  669. * Let's say @relmap has bits 30-39 set, and @orig has bits
  670. * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
  671. * @dst will have bits 31, 33, 35, 37 and 39 set.
  672. *
  673. * When bit 0 is set in @orig, it means turn on the bit in
  674. * @dst corresponding to whatever is the first bit (if any)
  675. * that is turned on in @relmap. Since bit 0 was off in the
  676. * above example, we leave off that bit (bit 30) in @dst.
  677. *
  678. * When bit 1 is set in @orig (as in the above example), it
  679. * means turn on the bit in @dst corresponding to whatever
  680. * is the second bit that is turned on in @relmap. The second
  681. * bit in @relmap that was turned on in the above example was
  682. * bit 31, so we turned on bit 31 in @dst.
  683. *
  684. * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
  685. * because they were the 4th, 6th, 8th and 10th set bits
  686. * set in @relmap, and the 4th, 6th, 8th and 10th bits of
  687. * @orig (i.e. bits 3, 5, 7 and 9) were also set.
  688. *
  689. * When bit 11 is set in @orig, it means turn on the bit in
  690. * @dst corresponding to whatever is the twelth bit that is
  691. * turned on in @relmap. In the above example, there were
  692. * only ten bits turned on in @relmap (30..39), so that bit
  693. * 11 was set in @orig had no affect on @dst.
  694. *
  695. * Example [2] for bitmap_fold() + bitmap_onto():
  696. * Let's say @relmap has these ten bits set:
  697. * 40 41 42 43 45 48 53 61 74 95
  698. * (for the curious, that's 40 plus the first ten terms of the
  699. * Fibonacci sequence.)
  700. *
  701. * Further lets say we use the following code, invoking
  702. * bitmap_fold() then bitmap_onto, as suggested above to
  703. * avoid the possitility of an empty @dst result:
  704. *
  705. * unsigned long *tmp; // a temporary bitmap's bits
  706. *
  707. * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
  708. * bitmap_onto(dst, tmp, relmap, bits);
  709. *
  710. * Then this table shows what various values of @dst would be, for
  711. * various @orig's. I list the zero-based positions of each set bit.
  712. * The tmp column shows the intermediate result, as computed by
  713. * using bitmap_fold() to fold the @orig bitmap modulo ten
  714. * (the weight of @relmap).
  715. *
  716. * @orig tmp @dst
  717. * 0 0 40
  718. * 1 1 41
  719. * 9 9 95
  720. * 10 0 40 (*)
  721. * 1 3 5 7 1 3 5 7 41 43 48 61
  722. * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
  723. * 0 9 18 27 0 9 8 7 40 61 74 95
  724. * 0 10 20 30 0 40
  725. * 0 11 22 33 0 1 2 3 40 41 42 43
  726. * 0 12 24 36 0 2 4 6 40 42 45 53
  727. * 78 102 211 1 2 8 41 42 74 (*)
  728. *
  729. * (*) For these marked lines, if we hadn't first done bitmap_fold()
  730. * into tmp, then the @dst result would have been empty.
  731. *
  732. * If either of @orig or @relmap is empty (no set bits), then @dst
  733. * will be returned empty.
  734. *
  735. * If (as explained above) the only set bits in @orig are in positions
  736. * m where m >= W, (where W is the weight of @relmap) then @dst will
  737. * once again be returned empty.
  738. *
  739. * All bits in @dst not set by the above rule are cleared.
  740. */
  741. void bitmap_onto(unsigned long *dst, const unsigned long *orig,
  742. const unsigned long *relmap, int bits)
  743. {
  744. int n, m; /* same meaning as in above comment */
  745. if (dst == orig) /* following doesn't handle inplace mappings */
  746. return;
  747. bitmap_zero(dst, bits);
  748. /*
  749. * The following code is a more efficient, but less
  750. * obvious, equivalent to the loop:
  751. * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
  752. * n = bitmap_ord_to_pos(orig, m, bits);
  753. * if (test_bit(m, orig))
  754. * set_bit(n, dst);
  755. * }
  756. */
  757. m = 0;
  758. for (n = find_first_bit(relmap, bits);
  759. n < bits;
  760. n = find_next_bit(relmap, bits, n + 1)) {
  761. /* m == bitmap_pos_to_ord(relmap, n, bits) */
  762. if (test_bit(m, orig))
  763. set_bit(n, dst);
  764. m++;
  765. }
  766. }
  767. EXPORT_SYMBOL(bitmap_onto);
  768. /**
  769. * bitmap_fold - fold larger bitmap into smaller, modulo specified size
  770. * @dst: resulting smaller bitmap
  771. * @orig: original larger bitmap
  772. * @sz: specified size
  773. * @bits: number of bits in each of these bitmaps
  774. *
  775. * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
  776. * Clear all other bits in @dst. See further the comment and
  777. * Example [2] for bitmap_onto() for why and how to use this.
  778. */
  779. void bitmap_fold(unsigned long *dst, const unsigned long *orig,
  780. int sz, int bits)
  781. {
  782. int oldbit;
  783. if (dst == orig) /* following doesn't handle inplace mappings */
  784. return;
  785. bitmap_zero(dst, bits);
  786. for (oldbit = find_first_bit(orig, bits);
  787. oldbit < bits;
  788. oldbit = find_next_bit(orig, bits, oldbit + 1))
  789. set_bit(oldbit % sz, dst);
  790. }
  791. EXPORT_SYMBOL(bitmap_fold);
  792. /*
  793. * Common code for bitmap_*_region() routines.
  794. * bitmap: array of unsigned longs corresponding to the bitmap
  795. * pos: the beginning of the region
  796. * order: region size (log base 2 of number of bits)
  797. * reg_op: operation(s) to perform on that region of bitmap
  798. *
  799. * Can set, verify and/or release a region of bits in a bitmap,
  800. * depending on which combination of REG_OP_* flag bits is set.
  801. *
  802. * A region of a bitmap is a sequence of bits in the bitmap, of
  803. * some size '1 << order' (a power of two), aligned to that same
  804. * '1 << order' power of two.
  805. *
  806. * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
  807. * Returns 0 in all other cases and reg_ops.
  808. */
  809. enum {
  810. REG_OP_ISFREE, /* true if region is all zero bits */
  811. REG_OP_ALLOC, /* set all bits in region */
  812. REG_OP_RELEASE, /* clear all bits in region */
  813. };
  814. static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
  815. {
  816. int nbits_reg; /* number of bits in region */
  817. int index; /* index first long of region in bitmap */
  818. int offset; /* bit offset region in bitmap[index] */
  819. int nlongs_reg; /* num longs spanned by region in bitmap */
  820. int nbitsinlong; /* num bits of region in each spanned long */
  821. unsigned long mask; /* bitmask for one long of region */
  822. int i; /* scans bitmap by longs */
  823. int ret = 0; /* return value */
  824. /*
  825. * Either nlongs_reg == 1 (for small orders that fit in one long)
  826. * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
  827. */
  828. nbits_reg = 1 << order;
  829. index = pos / BITS_PER_LONG;
  830. offset = pos - (index * BITS_PER_LONG);
  831. nlongs_reg = BITS_TO_LONGS(nbits_reg);
  832. nbitsinlong = min(nbits_reg, BITS_PER_LONG);
  833. /*
  834. * Can't do "mask = (1UL << nbitsinlong) - 1", as that
  835. * overflows if nbitsinlong == BITS_PER_LONG.
  836. */
  837. mask = (1UL << (nbitsinlong - 1));
  838. mask += mask - 1;
  839. mask <<= offset;
  840. switch (reg_op) {
  841. case REG_OP_ISFREE:
  842. for (i = 0; i < nlongs_reg; i++) {
  843. if (bitmap[index + i] & mask)
  844. goto done;
  845. }
  846. ret = 1; /* all bits in region free (zero) */
  847. break;
  848. case REG_OP_ALLOC:
  849. for (i = 0; i < nlongs_reg; i++)
  850. bitmap[index + i] |= mask;
  851. break;
  852. case REG_OP_RELEASE:
  853. for (i = 0; i < nlongs_reg; i++)
  854. bitmap[index + i] &= ~mask;
  855. break;
  856. }
  857. done:
  858. return ret;
  859. }
  860. /**
  861. * bitmap_find_free_region - find a contiguous aligned mem region
  862. * @bitmap: array of unsigned longs corresponding to the bitmap
  863. * @bits: number of bits in the bitmap
  864. * @order: region size (log base 2 of number of bits) to find
  865. *
  866. * Find a region of free (zero) bits in a @bitmap of @bits bits and
  867. * allocate them (set them to one). Only consider regions of length
  868. * a power (@order) of two, aligned to that power of two, which
  869. * makes the search algorithm much faster.
  870. *
  871. * Return the bit offset in bitmap of the allocated region,
  872. * or -errno on failure.
  873. */
  874. int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
  875. {
  876. int pos; /* scans bitmap by regions of size order */
  877. for (pos = 0; pos < bits; pos += (1 << order))
  878. if (__reg_op(bitmap, pos, order, REG_OP_ISFREE))
  879. break;
  880. if (pos == bits)
  881. return -ENOMEM;
  882. __reg_op(bitmap, pos, order, REG_OP_ALLOC);
  883. return pos;
  884. }
  885. EXPORT_SYMBOL(bitmap_find_free_region);
  886. /**
  887. * bitmap_release_region - release allocated bitmap region
  888. * @bitmap: array of unsigned longs corresponding to the bitmap
  889. * @pos: beginning of bit region to release
  890. * @order: region size (log base 2 of number of bits) to release
  891. *
  892. * This is the complement to __bitmap_find_free_region() and releases
  893. * the found region (by clearing it in the bitmap).
  894. *
  895. * No return value.
  896. */
  897. void bitmap_release_region(unsigned long *bitmap, int pos, int order)
  898. {
  899. __reg_op(bitmap, pos, order, REG_OP_RELEASE);
  900. }
  901. EXPORT_SYMBOL(bitmap_release_region);
  902. /**
  903. * bitmap_allocate_region - allocate bitmap region
  904. * @bitmap: array of unsigned longs corresponding to the bitmap
  905. * @pos: beginning of bit region to allocate
  906. * @order: region size (log base 2 of number of bits) to allocate
  907. *
  908. * Allocate (set bits in) a specified region of a bitmap.
  909. *
  910. * Return 0 on success, or %-EBUSY if specified region wasn't
  911. * free (not all bits were zero).
  912. */
  913. int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
  914. {
  915. if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
  916. return -EBUSY;
  917. __reg_op(bitmap, pos, order, REG_OP_ALLOC);
  918. return 0;
  919. }
  920. EXPORT_SYMBOL(bitmap_allocate_region);