123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545 |
- /*
- * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
- * policies)
- */
- #ifdef CONFIG_SMP
- static inline int rt_overloaded(struct rq *rq)
- {
- return atomic_read(&rq->rd->rto_count);
- }
- static inline void rt_set_overload(struct rq *rq)
- {
- if (!rq->online)
- return;
- cpu_set(rq->cpu, rq->rd->rto_mask);
- /*
- * Make sure the mask is visible before we set
- * the overload count. That is checked to determine
- * if we should look at the mask. It would be a shame
- * if we looked at the mask, but the mask was not
- * updated yet.
- */
- wmb();
- atomic_inc(&rq->rd->rto_count);
- }
- static inline void rt_clear_overload(struct rq *rq)
- {
- if (!rq->online)
- return;
- /* the order here really doesn't matter */
- atomic_dec(&rq->rd->rto_count);
- cpu_clear(rq->cpu, rq->rd->rto_mask);
- }
- static void update_rt_migration(struct rq *rq)
- {
- if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
- if (!rq->rt.overloaded) {
- rt_set_overload(rq);
- rq->rt.overloaded = 1;
- }
- } else if (rq->rt.overloaded) {
- rt_clear_overload(rq);
- rq->rt.overloaded = 0;
- }
- }
- #endif /* CONFIG_SMP */
- static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
- {
- return container_of(rt_se, struct task_struct, rt);
- }
- static inline int on_rt_rq(struct sched_rt_entity *rt_se)
- {
- return !list_empty(&rt_se->run_list);
- }
- #ifdef CONFIG_RT_GROUP_SCHED
- static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
- {
- if (!rt_rq->tg)
- return RUNTIME_INF;
- return rt_rq->rt_runtime;
- }
- static inline u64 sched_rt_period(struct rt_rq *rt_rq)
- {
- return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
- }
- #define for_each_leaf_rt_rq(rt_rq, rq) \
- list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
- static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
- {
- return rt_rq->rq;
- }
- static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
- {
- return rt_se->rt_rq;
- }
- #define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = rt_se->parent)
- static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
- {
- return rt_se->my_q;
- }
- static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
- static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
- static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
- {
- struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
- struct sched_rt_entity *rt_se = rt_rq->rt_se;
- if (rt_rq->rt_nr_running) {
- if (rt_se && !on_rt_rq(rt_se))
- enqueue_rt_entity(rt_se);
- if (rt_rq->highest_prio < curr->prio)
- resched_task(curr);
- }
- }
- static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
- {
- struct sched_rt_entity *rt_se = rt_rq->rt_se;
- if (rt_se && on_rt_rq(rt_se))
- dequeue_rt_entity(rt_se);
- }
- static inline int rt_rq_throttled(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
- }
- static int rt_se_boosted(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- struct task_struct *p;
- if (rt_rq)
- return !!rt_rq->rt_nr_boosted;
- p = rt_task_of(rt_se);
- return p->prio != p->normal_prio;
- }
- #ifdef CONFIG_SMP
- static inline cpumask_t sched_rt_period_mask(void)
- {
- return cpu_rq(smp_processor_id())->rd->span;
- }
- #else
- static inline cpumask_t sched_rt_period_mask(void)
- {
- return cpu_online_map;
- }
- #endif
- static inline
- struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
- {
- return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
- }
- static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
- {
- return &rt_rq->tg->rt_bandwidth;
- }
- #else /* !CONFIG_RT_GROUP_SCHED */
- static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_runtime;
- }
- static inline u64 sched_rt_period(struct rt_rq *rt_rq)
- {
- return ktime_to_ns(def_rt_bandwidth.rt_period);
- }
- #define for_each_leaf_rt_rq(rt_rq, rq) \
- for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
- static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
- {
- return container_of(rt_rq, struct rq, rt);
- }
- static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
- {
- struct task_struct *p = rt_task_of(rt_se);
- struct rq *rq = task_rq(p);
- return &rq->rt;
- }
- #define for_each_sched_rt_entity(rt_se) \
- for (; rt_se; rt_se = NULL)
- static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
- {
- return NULL;
- }
- static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
- {
- if (rt_rq->rt_nr_running)
- resched_task(rq_of_rt_rq(rt_rq)->curr);
- }
- static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
- {
- }
- static inline int rt_rq_throttled(struct rt_rq *rt_rq)
- {
- return rt_rq->rt_throttled;
- }
- static inline cpumask_t sched_rt_period_mask(void)
- {
- return cpu_online_map;
- }
- static inline
- struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
- {
- return &cpu_rq(cpu)->rt;
- }
- static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
- {
- return &def_rt_bandwidth;
- }
- #endif /* CONFIG_RT_GROUP_SCHED */
- #ifdef CONFIG_SMP
- /*
- * We ran out of runtime, see if we can borrow some from our neighbours.
- */
- static int do_balance_runtime(struct rt_rq *rt_rq)
- {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
- int i, weight, more = 0;
- u64 rt_period;
- weight = cpus_weight(rd->span);
- spin_lock(&rt_b->rt_runtime_lock);
- rt_period = ktime_to_ns(rt_b->rt_period);
- for_each_cpu_mask_nr(i, rd->span) {
- struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
- s64 diff;
- if (iter == rt_rq)
- continue;
- spin_lock(&iter->rt_runtime_lock);
- /*
- * Either all rqs have inf runtime and there's nothing to steal
- * or __disable_runtime() below sets a specific rq to inf to
- * indicate its been disabled and disalow stealing.
- */
- if (iter->rt_runtime == RUNTIME_INF)
- goto next;
- /*
- * From runqueues with spare time, take 1/n part of their
- * spare time, but no more than our period.
- */
- diff = iter->rt_runtime - iter->rt_time;
- if (diff > 0) {
- diff = div_u64((u64)diff, weight);
- if (rt_rq->rt_runtime + diff > rt_period)
- diff = rt_period - rt_rq->rt_runtime;
- iter->rt_runtime -= diff;
- rt_rq->rt_runtime += diff;
- more = 1;
- if (rt_rq->rt_runtime == rt_period) {
- spin_unlock(&iter->rt_runtime_lock);
- break;
- }
- }
- next:
- spin_unlock(&iter->rt_runtime_lock);
- }
- spin_unlock(&rt_b->rt_runtime_lock);
- return more;
- }
- /*
- * Ensure this RQ takes back all the runtime it lend to its neighbours.
- */
- static void __disable_runtime(struct rq *rq)
- {
- struct root_domain *rd = rq->rd;
- struct rt_rq *rt_rq;
- if (unlikely(!scheduler_running))
- return;
- for_each_leaf_rt_rq(rt_rq, rq) {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- s64 want;
- int i;
- spin_lock(&rt_b->rt_runtime_lock);
- spin_lock(&rt_rq->rt_runtime_lock);
- /*
- * Either we're all inf and nobody needs to borrow, or we're
- * already disabled and thus have nothing to do, or we have
- * exactly the right amount of runtime to take out.
- */
- if (rt_rq->rt_runtime == RUNTIME_INF ||
- rt_rq->rt_runtime == rt_b->rt_runtime)
- goto balanced;
- spin_unlock(&rt_rq->rt_runtime_lock);
- /*
- * Calculate the difference between what we started out with
- * and what we current have, that's the amount of runtime
- * we lend and now have to reclaim.
- */
- want = rt_b->rt_runtime - rt_rq->rt_runtime;
- /*
- * Greedy reclaim, take back as much as we can.
- */
- for_each_cpu_mask(i, rd->span) {
- struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
- s64 diff;
- /*
- * Can't reclaim from ourselves or disabled runqueues.
- */
- if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
- continue;
- spin_lock(&iter->rt_runtime_lock);
- if (want > 0) {
- diff = min_t(s64, iter->rt_runtime, want);
- iter->rt_runtime -= diff;
- want -= diff;
- } else {
- iter->rt_runtime -= want;
- want -= want;
- }
- spin_unlock(&iter->rt_runtime_lock);
- if (!want)
- break;
- }
- spin_lock(&rt_rq->rt_runtime_lock);
- /*
- * We cannot be left wanting - that would mean some runtime
- * leaked out of the system.
- */
- BUG_ON(want);
- balanced:
- /*
- * Disable all the borrow logic by pretending we have inf
- * runtime - in which case borrowing doesn't make sense.
- */
- rt_rq->rt_runtime = RUNTIME_INF;
- spin_unlock(&rt_rq->rt_runtime_lock);
- spin_unlock(&rt_b->rt_runtime_lock);
- }
- }
- static void disable_runtime(struct rq *rq)
- {
- unsigned long flags;
- spin_lock_irqsave(&rq->lock, flags);
- __disable_runtime(rq);
- spin_unlock_irqrestore(&rq->lock, flags);
- }
- static void __enable_runtime(struct rq *rq)
- {
- struct rt_rq *rt_rq;
- if (unlikely(!scheduler_running))
- return;
- /*
- * Reset each runqueue's bandwidth settings
- */
- for_each_leaf_rt_rq(rt_rq, rq) {
- struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
- spin_lock(&rt_b->rt_runtime_lock);
- spin_lock(&rt_rq->rt_runtime_lock);
- rt_rq->rt_runtime = rt_b->rt_runtime;
- rt_rq->rt_time = 0;
- rt_rq->rt_throttled = 0;
- spin_unlock(&rt_rq->rt_runtime_lock);
- spin_unlock(&rt_b->rt_runtime_lock);
- }
- }
- static void enable_runtime(struct rq *rq)
- {
- unsigned long flags;
- spin_lock_irqsave(&rq->lock, flags);
- __enable_runtime(rq);
- spin_unlock_irqrestore(&rq->lock, flags);
- }
- static int balance_runtime(struct rt_rq *rt_rq)
- {
- int more = 0;
- if (rt_rq->rt_time > rt_rq->rt_runtime) {
- spin_unlock(&rt_rq->rt_runtime_lock);
- more = do_balance_runtime(rt_rq);
- spin_lock(&rt_rq->rt_runtime_lock);
- }
- return more;
- }
- #else /* !CONFIG_SMP */
- static inline int balance_runtime(struct rt_rq *rt_rq)
- {
- return 0;
- }
- #endif /* CONFIG_SMP */
- static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
- {
- int i, idle = 1;
- cpumask_t span;
- if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
- return 1;
- span = sched_rt_period_mask();
- for_each_cpu_mask(i, span) {
- int enqueue = 0;
- struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
- struct rq *rq = rq_of_rt_rq(rt_rq);
- spin_lock(&rq->lock);
- if (rt_rq->rt_time) {
- u64 runtime;
- spin_lock(&rt_rq->rt_runtime_lock);
- if (rt_rq->rt_throttled)
- balance_runtime(rt_rq);
- runtime = rt_rq->rt_runtime;
- rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
- if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
- rt_rq->rt_throttled = 0;
- enqueue = 1;
- }
- if (rt_rq->rt_time || rt_rq->rt_nr_running)
- idle = 0;
- spin_unlock(&rt_rq->rt_runtime_lock);
- } else if (rt_rq->rt_nr_running)
- idle = 0;
- if (enqueue)
- sched_rt_rq_enqueue(rt_rq);
- spin_unlock(&rq->lock);
- }
- return idle;
- }
- static inline int rt_se_prio(struct sched_rt_entity *rt_se)
- {
- #ifdef CONFIG_RT_GROUP_SCHED
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- if (rt_rq)
- return rt_rq->highest_prio;
- #endif
- return rt_task_of(rt_se)->prio;
- }
- static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
- {
- u64 runtime = sched_rt_runtime(rt_rq);
- if (rt_rq->rt_throttled)
- return rt_rq_throttled(rt_rq);
- if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
- return 0;
- balance_runtime(rt_rq);
- runtime = sched_rt_runtime(rt_rq);
- if (runtime == RUNTIME_INF)
- return 0;
- if (rt_rq->rt_time > runtime) {
- rt_rq->rt_throttled = 1;
- if (rt_rq_throttled(rt_rq)) {
- sched_rt_rq_dequeue(rt_rq);
- return 1;
- }
- }
- return 0;
- }
- /*
- * Update the current task's runtime statistics. Skip current tasks that
- * are not in our scheduling class.
- */
- static void update_curr_rt(struct rq *rq)
- {
- struct task_struct *curr = rq->curr;
- struct sched_rt_entity *rt_se = &curr->rt;
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- u64 delta_exec;
- if (!task_has_rt_policy(curr))
- return;
- delta_exec = rq->clock - curr->se.exec_start;
- if (unlikely((s64)delta_exec < 0))
- delta_exec = 0;
- schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
- curr->se.sum_exec_runtime += delta_exec;
- curr->se.exec_start = rq->clock;
- cpuacct_charge(curr, delta_exec);
- if (!rt_bandwidth_enabled())
- return;
- for_each_sched_rt_entity(rt_se) {
- rt_rq = rt_rq_of_se(rt_se);
- spin_lock(&rt_rq->rt_runtime_lock);
- if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
- rt_rq->rt_time += delta_exec;
- if (sched_rt_runtime_exceeded(rt_rq))
- resched_task(curr);
- }
- spin_unlock(&rt_rq->rt_runtime_lock);
- }
- }
- static inline
- void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- WARN_ON(!rt_prio(rt_se_prio(rt_se)));
- rt_rq->rt_nr_running++;
- #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
- if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
- #ifdef CONFIG_SMP
- struct rq *rq = rq_of_rt_rq(rt_rq);
- #endif
- rt_rq->highest_prio = rt_se_prio(rt_se);
- #ifdef CONFIG_SMP
- if (rq->online)
- cpupri_set(&rq->rd->cpupri, rq->cpu,
- rt_se_prio(rt_se));
- #endif
- }
- #endif
- #ifdef CONFIG_SMP
- if (rt_se->nr_cpus_allowed > 1) {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- rq->rt.rt_nr_migratory++;
- }
- update_rt_migration(rq_of_rt_rq(rt_rq));
- #endif
- #ifdef CONFIG_RT_GROUP_SCHED
- if (rt_se_boosted(rt_se))
- rt_rq->rt_nr_boosted++;
- if (rt_rq->tg)
- start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
- #else
- start_rt_bandwidth(&def_rt_bandwidth);
- #endif
- }
- static inline
- void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
- {
- #ifdef CONFIG_SMP
- int highest_prio = rt_rq->highest_prio;
- #endif
- WARN_ON(!rt_prio(rt_se_prio(rt_se)));
- WARN_ON(!rt_rq->rt_nr_running);
- rt_rq->rt_nr_running--;
- #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
- if (rt_rq->rt_nr_running) {
- struct rt_prio_array *array;
- WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
- if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
- /* recalculate */
- array = &rt_rq->active;
- rt_rq->highest_prio =
- sched_find_first_bit(array->bitmap);
- } /* otherwise leave rq->highest prio alone */
- } else
- rt_rq->highest_prio = MAX_RT_PRIO;
- #endif
- #ifdef CONFIG_SMP
- if (rt_se->nr_cpus_allowed > 1) {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- rq->rt.rt_nr_migratory--;
- }
- if (rt_rq->highest_prio != highest_prio) {
- struct rq *rq = rq_of_rt_rq(rt_rq);
- if (rq->online)
- cpupri_set(&rq->rd->cpupri, rq->cpu,
- rt_rq->highest_prio);
- }
- update_rt_migration(rq_of_rt_rq(rt_rq));
- #endif /* CONFIG_SMP */
- #ifdef CONFIG_RT_GROUP_SCHED
- if (rt_se_boosted(rt_se))
- rt_rq->rt_nr_boosted--;
- WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
- #endif
- }
- static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- struct rt_prio_array *array = &rt_rq->active;
- struct rt_rq *group_rq = group_rt_rq(rt_se);
- struct list_head *queue = array->queue + rt_se_prio(rt_se);
- /*
- * Don't enqueue the group if its throttled, or when empty.
- * The latter is a consequence of the former when a child group
- * get throttled and the current group doesn't have any other
- * active members.
- */
- if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
- return;
- list_add_tail(&rt_se->run_list, queue);
- __set_bit(rt_se_prio(rt_se), array->bitmap);
- inc_rt_tasks(rt_se, rt_rq);
- }
- static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
- {
- struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
- struct rt_prio_array *array = &rt_rq->active;
- list_del_init(&rt_se->run_list);
- if (list_empty(array->queue + rt_se_prio(rt_se)))
- __clear_bit(rt_se_prio(rt_se), array->bitmap);
- dec_rt_tasks(rt_se, rt_rq);
- }
- /*
- * Because the prio of an upper entry depends on the lower
- * entries, we must remove entries top - down.
- */
- static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
- {
- struct sched_rt_entity *back = NULL;
- for_each_sched_rt_entity(rt_se) {
- rt_se->back = back;
- back = rt_se;
- }
- for (rt_se = back; rt_se; rt_se = rt_se->back) {
- if (on_rt_rq(rt_se))
- __dequeue_rt_entity(rt_se);
- }
- }
- static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
- {
- dequeue_rt_stack(rt_se);
- for_each_sched_rt_entity(rt_se)
- __enqueue_rt_entity(rt_se);
- }
- static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
- {
- dequeue_rt_stack(rt_se);
- for_each_sched_rt_entity(rt_se) {
- struct rt_rq *rt_rq = group_rt_rq(rt_se);
- if (rt_rq && rt_rq->rt_nr_running)
- __enqueue_rt_entity(rt_se);
- }
- }
- /*
- * Adding/removing a task to/from a priority array:
- */
- static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- if (wakeup)
- rt_se->timeout = 0;
- enqueue_rt_entity(rt_se);
- inc_cpu_load(rq, p->se.load.weight);
- }
- static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- update_curr_rt(rq);
- dequeue_rt_entity(rt_se);
- dec_cpu_load(rq, p->se.load.weight);
- }
- /*
- * Put task to the end of the run list without the overhead of dequeue
- * followed by enqueue.
- */
- static void
- requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
- {
- if (on_rt_rq(rt_se)) {
- struct rt_prio_array *array = &rt_rq->active;
- struct list_head *queue = array->queue + rt_se_prio(rt_se);
- if (head)
- list_move(&rt_se->run_list, queue);
- else
- list_move_tail(&rt_se->run_list, queue);
- }
- }
- static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
- {
- struct sched_rt_entity *rt_se = &p->rt;
- struct rt_rq *rt_rq;
- for_each_sched_rt_entity(rt_se) {
- rt_rq = rt_rq_of_se(rt_se);
- requeue_rt_entity(rt_rq, rt_se, head);
- }
- }
- static void yield_task_rt(struct rq *rq)
- {
- requeue_task_rt(rq, rq->curr, 0);
- }
- #ifdef CONFIG_SMP
- static int find_lowest_rq(struct task_struct *task);
- static int select_task_rq_rt(struct task_struct *p, int sync)
- {
- struct rq *rq = task_rq(p);
- /*
- * If the current task is an RT task, then
- * try to see if we can wake this RT task up on another
- * runqueue. Otherwise simply start this RT task
- * on its current runqueue.
- *
- * We want to avoid overloading runqueues. Even if
- * the RT task is of higher priority than the current RT task.
- * RT tasks behave differently than other tasks. If
- * one gets preempted, we try to push it off to another queue.
- * So trying to keep a preempting RT task on the same
- * cache hot CPU will force the running RT task to
- * a cold CPU. So we waste all the cache for the lower
- * RT task in hopes of saving some of a RT task
- * that is just being woken and probably will have
- * cold cache anyway.
- */
- if (unlikely(rt_task(rq->curr)) &&
- (p->rt.nr_cpus_allowed > 1)) {
- int cpu = find_lowest_rq(p);
- return (cpu == -1) ? task_cpu(p) : cpu;
- }
- /*
- * Otherwise, just let it ride on the affined RQ and the
- * post-schedule router will push the preempted task away
- */
- return task_cpu(p);
- }
- static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
- {
- cpumask_t mask;
- if (rq->curr->rt.nr_cpus_allowed == 1)
- return;
- if (p->rt.nr_cpus_allowed != 1
- && cpupri_find(&rq->rd->cpupri, p, &mask))
- return;
- if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
- return;
- /*
- * There appears to be other cpus that can accept
- * current and none to run 'p', so lets reschedule
- * to try and push current away:
- */
- requeue_task_rt(rq, p, 1);
- resched_task(rq->curr);
- }
- #endif /* CONFIG_SMP */
- /*
- * Preempt the current task with a newly woken task if needed:
- */
- static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
- {
- if (p->prio < rq->curr->prio) {
- resched_task(rq->curr);
- return;
- }
- #ifdef CONFIG_SMP
- /*
- * If:
- *
- * - the newly woken task is of equal priority to the current task
- * - the newly woken task is non-migratable while current is migratable
- * - current will be preempted on the next reschedule
- *
- * we should check to see if current can readily move to a different
- * cpu. If so, we will reschedule to allow the push logic to try
- * to move current somewhere else, making room for our non-migratable
- * task.
- */
- if (p->prio == rq->curr->prio && !need_resched())
- check_preempt_equal_prio(rq, p);
- #endif
- }
- static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
- struct rt_rq *rt_rq)
- {
- struct rt_prio_array *array = &rt_rq->active;
- struct sched_rt_entity *next = NULL;
- struct list_head *queue;
- int idx;
- idx = sched_find_first_bit(array->bitmap);
- BUG_ON(idx >= MAX_RT_PRIO);
- queue = array->queue + idx;
- next = list_entry(queue->next, struct sched_rt_entity, run_list);
- return next;
- }
- static struct task_struct *pick_next_task_rt(struct rq *rq)
- {
- struct sched_rt_entity *rt_se;
- struct task_struct *p;
- struct rt_rq *rt_rq;
- rt_rq = &rq->rt;
- if (unlikely(!rt_rq->rt_nr_running))
- return NULL;
- if (rt_rq_throttled(rt_rq))
- return NULL;
- do {
- rt_se = pick_next_rt_entity(rq, rt_rq);
- BUG_ON(!rt_se);
- rt_rq = group_rt_rq(rt_se);
- } while (rt_rq);
- p = rt_task_of(rt_se);
- p->se.exec_start = rq->clock;
- return p;
- }
- static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
- {
- update_curr_rt(rq);
- p->se.exec_start = 0;
- }
- #ifdef CONFIG_SMP
- /* Only try algorithms three times */
- #define RT_MAX_TRIES 3
- static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
- static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
- static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
- static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
- {
- if (!task_running(rq, p) &&
- (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
- (p->rt.nr_cpus_allowed > 1))
- return 1;
- return 0;
- }
- /* Return the second highest RT task, NULL otherwise */
- static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
- {
- struct task_struct *next = NULL;
- struct sched_rt_entity *rt_se;
- struct rt_prio_array *array;
- struct rt_rq *rt_rq;
- int idx;
- for_each_leaf_rt_rq(rt_rq, rq) {
- array = &rt_rq->active;
- idx = sched_find_first_bit(array->bitmap);
- next_idx:
- if (idx >= MAX_RT_PRIO)
- continue;
- if (next && next->prio < idx)
- continue;
- list_for_each_entry(rt_se, array->queue + idx, run_list) {
- struct task_struct *p = rt_task_of(rt_se);
- if (pick_rt_task(rq, p, cpu)) {
- next = p;
- break;
- }
- }
- if (!next) {
- idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
- goto next_idx;
- }
- }
- return next;
- }
- static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
- static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
- {
- int first;
- /* "this_cpu" is cheaper to preempt than a remote processor */
- if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
- return this_cpu;
- first = first_cpu(*mask);
- if (first != NR_CPUS)
- return first;
- return -1;
- }
- static int find_lowest_rq(struct task_struct *task)
- {
- struct sched_domain *sd;
- cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
- int this_cpu = smp_processor_id();
- int cpu = task_cpu(task);
- if (task->rt.nr_cpus_allowed == 1)
- return -1; /* No other targets possible */
- if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
- return -1; /* No targets found */
- /*
- * Only consider CPUs that are usable for migration.
- * I guess we might want to change cpupri_find() to ignore those
- * in the first place.
- */
- cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
- /*
- * At this point we have built a mask of cpus representing the
- * lowest priority tasks in the system. Now we want to elect
- * the best one based on our affinity and topology.
- *
- * We prioritize the last cpu that the task executed on since
- * it is most likely cache-hot in that location.
- */
- if (cpu_isset(cpu, *lowest_mask))
- return cpu;
- /*
- * Otherwise, we consult the sched_domains span maps to figure
- * out which cpu is logically closest to our hot cache data.
- */
- if (this_cpu == cpu)
- this_cpu = -1; /* Skip this_cpu opt if the same */
- for_each_domain(cpu, sd) {
- if (sd->flags & SD_WAKE_AFFINE) {
- cpumask_t domain_mask;
- int best_cpu;
- cpus_and(domain_mask, sd->span, *lowest_mask);
- best_cpu = pick_optimal_cpu(this_cpu,
- &domain_mask);
- if (best_cpu != -1)
- return best_cpu;
- }
- }
- /*
- * And finally, if there were no matches within the domains
- * just give the caller *something* to work with from the compatible
- * locations.
- */
- return pick_optimal_cpu(this_cpu, lowest_mask);
- }
- /* Will lock the rq it finds */
- static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
- {
- struct rq *lowest_rq = NULL;
- int tries;
- int cpu;
- for (tries = 0; tries < RT_MAX_TRIES; tries++) {
- cpu = find_lowest_rq(task);
- if ((cpu == -1) || (cpu == rq->cpu))
- break;
- lowest_rq = cpu_rq(cpu);
- /* if the prio of this runqueue changed, try again */
- if (double_lock_balance(rq, lowest_rq)) {
- /*
- * We had to unlock the run queue. In
- * the mean time, task could have
- * migrated already or had its affinity changed.
- * Also make sure that it wasn't scheduled on its rq.
- */
- if (unlikely(task_rq(task) != rq ||
- !cpu_isset(lowest_rq->cpu,
- task->cpus_allowed) ||
- task_running(rq, task) ||
- !task->se.on_rq)) {
- spin_unlock(&lowest_rq->lock);
- lowest_rq = NULL;
- break;
- }
- }
- /* If this rq is still suitable use it. */
- if (lowest_rq->rt.highest_prio > task->prio)
- break;
- /* try again */
- double_unlock_balance(rq, lowest_rq);
- lowest_rq = NULL;
- }
- return lowest_rq;
- }
- /*
- * If the current CPU has more than one RT task, see if the non
- * running task can migrate over to a CPU that is running a task
- * of lesser priority.
- */
- static int push_rt_task(struct rq *rq)
- {
- struct task_struct *next_task;
- struct rq *lowest_rq;
- int ret = 0;
- int paranoid = RT_MAX_TRIES;
- if (!rq->rt.overloaded)
- return 0;
- next_task = pick_next_highest_task_rt(rq, -1);
- if (!next_task)
- return 0;
- retry:
- if (unlikely(next_task == rq->curr)) {
- WARN_ON(1);
- return 0;
- }
- /*
- * It's possible that the next_task slipped in of
- * higher priority than current. If that's the case
- * just reschedule current.
- */
- if (unlikely(next_task->prio < rq->curr->prio)) {
- resched_task(rq->curr);
- return 0;
- }
- /* We might release rq lock */
- get_task_struct(next_task);
- /* find_lock_lowest_rq locks the rq if found */
- lowest_rq = find_lock_lowest_rq(next_task, rq);
- if (!lowest_rq) {
- struct task_struct *task;
- /*
- * find lock_lowest_rq releases rq->lock
- * so it is possible that next_task has changed.
- * If it has, then try again.
- */
- task = pick_next_highest_task_rt(rq, -1);
- if (unlikely(task != next_task) && task && paranoid--) {
- put_task_struct(next_task);
- next_task = task;
- goto retry;
- }
- goto out;
- }
- deactivate_task(rq, next_task, 0);
- set_task_cpu(next_task, lowest_rq->cpu);
- activate_task(lowest_rq, next_task, 0);
- resched_task(lowest_rq->curr);
- double_unlock_balance(rq, lowest_rq);
- ret = 1;
- out:
- put_task_struct(next_task);
- return ret;
- }
- /*
- * TODO: Currently we just use the second highest prio task on
- * the queue, and stop when it can't migrate (or there's
- * no more RT tasks). There may be a case where a lower
- * priority RT task has a different affinity than the
- * higher RT task. In this case the lower RT task could
- * possibly be able to migrate where as the higher priority
- * RT task could not. We currently ignore this issue.
- * Enhancements are welcome!
- */
- static void push_rt_tasks(struct rq *rq)
- {
- /* push_rt_task will return true if it moved an RT */
- while (push_rt_task(rq))
- ;
- }
- static int pull_rt_task(struct rq *this_rq)
- {
- int this_cpu = this_rq->cpu, ret = 0, cpu;
- struct task_struct *p, *next;
- struct rq *src_rq;
- if (likely(!rt_overloaded(this_rq)))
- return 0;
- next = pick_next_task_rt(this_rq);
- for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
- if (this_cpu == cpu)
- continue;
- src_rq = cpu_rq(cpu);
- /*
- * We can potentially drop this_rq's lock in
- * double_lock_balance, and another CPU could
- * steal our next task - hence we must cause
- * the caller to recalculate the next task
- * in that case:
- */
- if (double_lock_balance(this_rq, src_rq)) {
- struct task_struct *old_next = next;
- next = pick_next_task_rt(this_rq);
- if (next != old_next)
- ret = 1;
- }
- /*
- * Are there still pullable RT tasks?
- */
- if (src_rq->rt.rt_nr_running <= 1)
- goto skip;
- p = pick_next_highest_task_rt(src_rq, this_cpu);
- /*
- * Do we have an RT task that preempts
- * the to-be-scheduled task?
- */
- if (p && (!next || (p->prio < next->prio))) {
- WARN_ON(p == src_rq->curr);
- WARN_ON(!p->se.on_rq);
- /*
- * There's a chance that p is higher in priority
- * than what's currently running on its cpu.
- * This is just that p is wakeing up and hasn't
- * had a chance to schedule. We only pull
- * p if it is lower in priority than the
- * current task on the run queue or
- * this_rq next task is lower in prio than
- * the current task on that rq.
- */
- if (p->prio < src_rq->curr->prio ||
- (next && next->prio < src_rq->curr->prio))
- goto skip;
- ret = 1;
- deactivate_task(src_rq, p, 0);
- set_task_cpu(p, this_cpu);
- activate_task(this_rq, p, 0);
- /*
- * We continue with the search, just in
- * case there's an even higher prio task
- * in another runqueue. (low likelyhood
- * but possible)
- *
- * Update next so that we won't pick a task
- * on another cpu with a priority lower (or equal)
- * than the one we just picked.
- */
- next = p;
- }
- skip:
- double_unlock_balance(this_rq, src_rq);
- }
- return ret;
- }
- static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
- {
- /* Try to pull RT tasks here if we lower this rq's prio */
- if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
- pull_rt_task(rq);
- }
- static void post_schedule_rt(struct rq *rq)
- {
- /*
- * If we have more than one rt_task queued, then
- * see if we can push the other rt_tasks off to other CPUS.
- * Note we may release the rq lock, and since
- * the lock was owned by prev, we need to release it
- * first via finish_lock_switch and then reaquire it here.
- */
- if (unlikely(rq->rt.overloaded)) {
- spin_lock_irq(&rq->lock);
- push_rt_tasks(rq);
- spin_unlock_irq(&rq->lock);
- }
- }
- /*
- * If we are not running and we are not going to reschedule soon, we should
- * try to push tasks away now
- */
- static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
- {
- if (!task_running(rq, p) &&
- !test_tsk_need_resched(rq->curr) &&
- rq->rt.overloaded)
- push_rt_tasks(rq);
- }
- static unsigned long
- load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
- unsigned long max_load_move,
- struct sched_domain *sd, enum cpu_idle_type idle,
- int *all_pinned, int *this_best_prio)
- {
- /* don't touch RT tasks */
- return 0;
- }
- static int
- move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
- struct sched_domain *sd, enum cpu_idle_type idle)
- {
- /* don't touch RT tasks */
- return 0;
- }
- static void set_cpus_allowed_rt(struct task_struct *p,
- const cpumask_t *new_mask)
- {
- int weight = cpus_weight(*new_mask);
- BUG_ON(!rt_task(p));
- /*
- * Update the migration status of the RQ if we have an RT task
- * which is running AND changing its weight value.
- */
- if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
- struct rq *rq = task_rq(p);
- if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
- rq->rt.rt_nr_migratory++;
- } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
- BUG_ON(!rq->rt.rt_nr_migratory);
- rq->rt.rt_nr_migratory--;
- }
- update_rt_migration(rq);
- }
- p->cpus_allowed = *new_mask;
- p->rt.nr_cpus_allowed = weight;
- }
- /* Assumes rq->lock is held */
- static void rq_online_rt(struct rq *rq)
- {
- if (rq->rt.overloaded)
- rt_set_overload(rq);
- __enable_runtime(rq);
- cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
- }
- /* Assumes rq->lock is held */
- static void rq_offline_rt(struct rq *rq)
- {
- if (rq->rt.overloaded)
- rt_clear_overload(rq);
- __disable_runtime(rq);
- cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
- }
- /*
- * When switch from the rt queue, we bring ourselves to a position
- * that we might want to pull RT tasks from other runqueues.
- */
- static void switched_from_rt(struct rq *rq, struct task_struct *p,
- int running)
- {
- /*
- * If there are other RT tasks then we will reschedule
- * and the scheduling of the other RT tasks will handle
- * the balancing. But if we are the last RT task
- * we may need to handle the pulling of RT tasks
- * now.
- */
- if (!rq->rt.rt_nr_running)
- pull_rt_task(rq);
- }
- #endif /* CONFIG_SMP */
- /*
- * When switching a task to RT, we may overload the runqueue
- * with RT tasks. In this case we try to push them off to
- * other runqueues.
- */
- static void switched_to_rt(struct rq *rq, struct task_struct *p,
- int running)
- {
- int check_resched = 1;
- /*
- * If we are already running, then there's nothing
- * that needs to be done. But if we are not running
- * we may need to preempt the current running task.
- * If that current running task is also an RT task
- * then see if we can move to another run queue.
- */
- if (!running) {
- #ifdef CONFIG_SMP
- if (rq->rt.overloaded && push_rt_task(rq) &&
- /* Don't resched if we changed runqueues */
- rq != task_rq(p))
- check_resched = 0;
- #endif /* CONFIG_SMP */
- if (check_resched && p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
- }
- /*
- * Priority of the task has changed. This may cause
- * us to initiate a push or pull.
- */
- static void prio_changed_rt(struct rq *rq, struct task_struct *p,
- int oldprio, int running)
- {
- if (running) {
- #ifdef CONFIG_SMP
- /*
- * If our priority decreases while running, we
- * may need to pull tasks to this runqueue.
- */
- if (oldprio < p->prio)
- pull_rt_task(rq);
- /*
- * If there's a higher priority task waiting to run
- * then reschedule. Note, the above pull_rt_task
- * can release the rq lock and p could migrate.
- * Only reschedule if p is still on the same runqueue.
- */
- if (p->prio > rq->rt.highest_prio && rq->curr == p)
- resched_task(p);
- #else
- /* For UP simply resched on drop of prio */
- if (oldprio < p->prio)
- resched_task(p);
- #endif /* CONFIG_SMP */
- } else {
- /*
- * This task is not running, but if it is
- * greater than the current running task
- * then reschedule.
- */
- if (p->prio < rq->curr->prio)
- resched_task(rq->curr);
- }
- }
- static void watchdog(struct rq *rq, struct task_struct *p)
- {
- unsigned long soft, hard;
- if (!p->signal)
- return;
- soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
- hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
- if (soft != RLIM_INFINITY) {
- unsigned long next;
- p->rt.timeout++;
- next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
- if (p->rt.timeout > next)
- p->it_sched_expires = p->se.sum_exec_runtime;
- }
- }
- static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
- {
- update_curr_rt(rq);
- watchdog(rq, p);
- /*
- * RR tasks need a special form of timeslice management.
- * FIFO tasks have no timeslices.
- */
- if (p->policy != SCHED_RR)
- return;
- if (--p->rt.time_slice)
- return;
- p->rt.time_slice = DEF_TIMESLICE;
- /*
- * Requeue to the end of queue if we are not the only element
- * on the queue:
- */
- if (p->rt.run_list.prev != p->rt.run_list.next) {
- requeue_task_rt(rq, p, 0);
- set_tsk_need_resched(p);
- }
- }
- static void set_curr_task_rt(struct rq *rq)
- {
- struct task_struct *p = rq->curr;
- p->se.exec_start = rq->clock;
- }
- static const struct sched_class rt_sched_class = {
- .next = &fair_sched_class,
- .enqueue_task = enqueue_task_rt,
- .dequeue_task = dequeue_task_rt,
- .yield_task = yield_task_rt,
- #ifdef CONFIG_SMP
- .select_task_rq = select_task_rq_rt,
- #endif /* CONFIG_SMP */
- .check_preempt_curr = check_preempt_curr_rt,
- .pick_next_task = pick_next_task_rt,
- .put_prev_task = put_prev_task_rt,
- #ifdef CONFIG_SMP
- .load_balance = load_balance_rt,
- .move_one_task = move_one_task_rt,
- .set_cpus_allowed = set_cpus_allowed_rt,
- .rq_online = rq_online_rt,
- .rq_offline = rq_offline_rt,
- .pre_schedule = pre_schedule_rt,
- .post_schedule = post_schedule_rt,
- .task_wake_up = task_wake_up_rt,
- .switched_from = switched_from_rt,
- #endif
- .set_curr_task = set_curr_task_rt,
- .task_tick = task_tick_rt,
- .prio_changed = prio_changed_rt,
- .switched_to = switched_to_rt,
- };
- #ifdef CONFIG_SCHED_DEBUG
- extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
- static void print_rt_stats(struct seq_file *m, int cpu)
- {
- struct rt_rq *rt_rq;
- rcu_read_lock();
- for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
- print_rt_rq(m, cpu, rt_rq);
- rcu_read_unlock();
- }
- #endif /* CONFIG_SCHED_DEBUG */
|