cpuset.c 71 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455
  1. /*
  2. * kernel/cpuset.c
  3. *
  4. * Processor and Memory placement constraints for sets of tasks.
  5. *
  6. * Copyright (C) 2003 BULL SA.
  7. * Copyright (C) 2004-2007 Silicon Graphics, Inc.
  8. * Copyright (C) 2006 Google, Inc
  9. *
  10. * Portions derived from Patrick Mochel's sysfs code.
  11. * sysfs is Copyright (c) 2001-3 Patrick Mochel
  12. *
  13. * 2003-10-10 Written by Simon Derr.
  14. * 2003-10-22 Updates by Stephen Hemminger.
  15. * 2004 May-July Rework by Paul Jackson.
  16. * 2006 Rework by Paul Menage to use generic cgroups
  17. * 2008 Rework of the scheduler domains and CPU hotplug handling
  18. * by Max Krasnyansky
  19. *
  20. * This file is subject to the terms and conditions of the GNU General Public
  21. * License. See the file COPYING in the main directory of the Linux
  22. * distribution for more details.
  23. */
  24. #include <linux/cpu.h>
  25. #include <linux/cpumask.h>
  26. #include <linux/cpuset.h>
  27. #include <linux/err.h>
  28. #include <linux/errno.h>
  29. #include <linux/file.h>
  30. #include <linux/fs.h>
  31. #include <linux/init.h>
  32. #include <linux/interrupt.h>
  33. #include <linux/kernel.h>
  34. #include <linux/kmod.h>
  35. #include <linux/list.h>
  36. #include <linux/mempolicy.h>
  37. #include <linux/mm.h>
  38. #include <linux/module.h>
  39. #include <linux/mount.h>
  40. #include <linux/namei.h>
  41. #include <linux/pagemap.h>
  42. #include <linux/proc_fs.h>
  43. #include <linux/rcupdate.h>
  44. #include <linux/sched.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/security.h>
  47. #include <linux/slab.h>
  48. #include <linux/spinlock.h>
  49. #include <linux/stat.h>
  50. #include <linux/string.h>
  51. #include <linux/time.h>
  52. #include <linux/backing-dev.h>
  53. #include <linux/sort.h>
  54. #include <asm/uaccess.h>
  55. #include <asm/atomic.h>
  56. #include <linux/mutex.h>
  57. #include <linux/workqueue.h>
  58. #include <linux/cgroup.h>
  59. /*
  60. * Tracks how many cpusets are currently defined in system.
  61. * When there is only one cpuset (the root cpuset) we can
  62. * short circuit some hooks.
  63. */
  64. int number_of_cpusets __read_mostly;
  65. /* Forward declare cgroup structures */
  66. struct cgroup_subsys cpuset_subsys;
  67. struct cpuset;
  68. /* See "Frequency meter" comments, below. */
  69. struct fmeter {
  70. int cnt; /* unprocessed events count */
  71. int val; /* most recent output value */
  72. time_t time; /* clock (secs) when val computed */
  73. spinlock_t lock; /* guards read or write of above */
  74. };
  75. struct cpuset {
  76. struct cgroup_subsys_state css;
  77. unsigned long flags; /* "unsigned long" so bitops work */
  78. cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
  79. nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
  80. struct cpuset *parent; /* my parent */
  81. /*
  82. * Copy of global cpuset_mems_generation as of the most
  83. * recent time this cpuset changed its mems_allowed.
  84. */
  85. int mems_generation;
  86. struct fmeter fmeter; /* memory_pressure filter */
  87. /* partition number for rebuild_sched_domains() */
  88. int pn;
  89. /* for custom sched domain */
  90. int relax_domain_level;
  91. /* used for walking a cpuset heirarchy */
  92. struct list_head stack_list;
  93. };
  94. /* Retrieve the cpuset for a cgroup */
  95. static inline struct cpuset *cgroup_cs(struct cgroup *cont)
  96. {
  97. return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
  98. struct cpuset, css);
  99. }
  100. /* Retrieve the cpuset for a task */
  101. static inline struct cpuset *task_cs(struct task_struct *task)
  102. {
  103. return container_of(task_subsys_state(task, cpuset_subsys_id),
  104. struct cpuset, css);
  105. }
  106. struct cpuset_hotplug_scanner {
  107. struct cgroup_scanner scan;
  108. struct cgroup *to;
  109. };
  110. /* bits in struct cpuset flags field */
  111. typedef enum {
  112. CS_CPU_EXCLUSIVE,
  113. CS_MEM_EXCLUSIVE,
  114. CS_MEM_HARDWALL,
  115. CS_MEMORY_MIGRATE,
  116. CS_SCHED_LOAD_BALANCE,
  117. CS_SPREAD_PAGE,
  118. CS_SPREAD_SLAB,
  119. } cpuset_flagbits_t;
  120. /* convenient tests for these bits */
  121. static inline int is_cpu_exclusive(const struct cpuset *cs)
  122. {
  123. return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
  124. }
  125. static inline int is_mem_exclusive(const struct cpuset *cs)
  126. {
  127. return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
  128. }
  129. static inline int is_mem_hardwall(const struct cpuset *cs)
  130. {
  131. return test_bit(CS_MEM_HARDWALL, &cs->flags);
  132. }
  133. static inline int is_sched_load_balance(const struct cpuset *cs)
  134. {
  135. return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  136. }
  137. static inline int is_memory_migrate(const struct cpuset *cs)
  138. {
  139. return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
  140. }
  141. static inline int is_spread_page(const struct cpuset *cs)
  142. {
  143. return test_bit(CS_SPREAD_PAGE, &cs->flags);
  144. }
  145. static inline int is_spread_slab(const struct cpuset *cs)
  146. {
  147. return test_bit(CS_SPREAD_SLAB, &cs->flags);
  148. }
  149. /*
  150. * Increment this integer everytime any cpuset changes its
  151. * mems_allowed value. Users of cpusets can track this generation
  152. * number, and avoid having to lock and reload mems_allowed unless
  153. * the cpuset they're using changes generation.
  154. *
  155. * A single, global generation is needed because cpuset_attach_task() could
  156. * reattach a task to a different cpuset, which must not have its
  157. * generation numbers aliased with those of that tasks previous cpuset.
  158. *
  159. * Generations are needed for mems_allowed because one task cannot
  160. * modify another's memory placement. So we must enable every task,
  161. * on every visit to __alloc_pages(), to efficiently check whether
  162. * its current->cpuset->mems_allowed has changed, requiring an update
  163. * of its current->mems_allowed.
  164. *
  165. * Since writes to cpuset_mems_generation are guarded by the cgroup lock
  166. * there is no need to mark it atomic.
  167. */
  168. static int cpuset_mems_generation;
  169. static struct cpuset top_cpuset = {
  170. .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
  171. .cpus_allowed = CPU_MASK_ALL,
  172. .mems_allowed = NODE_MASK_ALL,
  173. };
  174. /*
  175. * There are two global mutexes guarding cpuset structures. The first
  176. * is the main control groups cgroup_mutex, accessed via
  177. * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
  178. * callback_mutex, below. They can nest. It is ok to first take
  179. * cgroup_mutex, then nest callback_mutex. We also require taking
  180. * task_lock() when dereferencing a task's cpuset pointer. See "The
  181. * task_lock() exception", at the end of this comment.
  182. *
  183. * A task must hold both mutexes to modify cpusets. If a task
  184. * holds cgroup_mutex, then it blocks others wanting that mutex,
  185. * ensuring that it is the only task able to also acquire callback_mutex
  186. * and be able to modify cpusets. It can perform various checks on
  187. * the cpuset structure first, knowing nothing will change. It can
  188. * also allocate memory while just holding cgroup_mutex. While it is
  189. * performing these checks, various callback routines can briefly
  190. * acquire callback_mutex to query cpusets. Once it is ready to make
  191. * the changes, it takes callback_mutex, blocking everyone else.
  192. *
  193. * Calls to the kernel memory allocator can not be made while holding
  194. * callback_mutex, as that would risk double tripping on callback_mutex
  195. * from one of the callbacks into the cpuset code from within
  196. * __alloc_pages().
  197. *
  198. * If a task is only holding callback_mutex, then it has read-only
  199. * access to cpusets.
  200. *
  201. * The task_struct fields mems_allowed and mems_generation may only
  202. * be accessed in the context of that task, so require no locks.
  203. *
  204. * The cpuset_common_file_read() handlers only hold callback_mutex across
  205. * small pieces of code, such as when reading out possibly multi-word
  206. * cpumasks and nodemasks.
  207. *
  208. * Accessing a task's cpuset should be done in accordance with the
  209. * guidelines for accessing subsystem state in kernel/cgroup.c
  210. */
  211. static DEFINE_MUTEX(callback_mutex);
  212. /*
  213. * This is ugly, but preserves the userspace API for existing cpuset
  214. * users. If someone tries to mount the "cpuset" filesystem, we
  215. * silently switch it to mount "cgroup" instead
  216. */
  217. static int cpuset_get_sb(struct file_system_type *fs_type,
  218. int flags, const char *unused_dev_name,
  219. void *data, struct vfsmount *mnt)
  220. {
  221. struct file_system_type *cgroup_fs = get_fs_type("cgroup");
  222. int ret = -ENODEV;
  223. if (cgroup_fs) {
  224. char mountopts[] =
  225. "cpuset,noprefix,"
  226. "release_agent=/sbin/cpuset_release_agent";
  227. ret = cgroup_fs->get_sb(cgroup_fs, flags,
  228. unused_dev_name, mountopts, mnt);
  229. put_filesystem(cgroup_fs);
  230. }
  231. return ret;
  232. }
  233. static struct file_system_type cpuset_fs_type = {
  234. .name = "cpuset",
  235. .get_sb = cpuset_get_sb,
  236. };
  237. /*
  238. * Return in *pmask the portion of a cpusets's cpus_allowed that
  239. * are online. If none are online, walk up the cpuset hierarchy
  240. * until we find one that does have some online cpus. If we get
  241. * all the way to the top and still haven't found any online cpus,
  242. * return cpu_online_map. Or if passed a NULL cs from an exit'ing
  243. * task, return cpu_online_map.
  244. *
  245. * One way or another, we guarantee to return some non-empty subset
  246. * of cpu_online_map.
  247. *
  248. * Call with callback_mutex held.
  249. */
  250. static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
  251. {
  252. while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
  253. cs = cs->parent;
  254. if (cs)
  255. cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
  256. else
  257. *pmask = cpu_online_map;
  258. BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
  259. }
  260. /*
  261. * Return in *pmask the portion of a cpusets's mems_allowed that
  262. * are online, with memory. If none are online with memory, walk
  263. * up the cpuset hierarchy until we find one that does have some
  264. * online mems. If we get all the way to the top and still haven't
  265. * found any online mems, return node_states[N_HIGH_MEMORY].
  266. *
  267. * One way or another, we guarantee to return some non-empty subset
  268. * of node_states[N_HIGH_MEMORY].
  269. *
  270. * Call with callback_mutex held.
  271. */
  272. static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
  273. {
  274. while (cs && !nodes_intersects(cs->mems_allowed,
  275. node_states[N_HIGH_MEMORY]))
  276. cs = cs->parent;
  277. if (cs)
  278. nodes_and(*pmask, cs->mems_allowed,
  279. node_states[N_HIGH_MEMORY]);
  280. else
  281. *pmask = node_states[N_HIGH_MEMORY];
  282. BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
  283. }
  284. /**
  285. * cpuset_update_task_memory_state - update task memory placement
  286. *
  287. * If the current tasks cpusets mems_allowed changed behind our
  288. * backs, update current->mems_allowed, mems_generation and task NUMA
  289. * mempolicy to the new value.
  290. *
  291. * Task mempolicy is updated by rebinding it relative to the
  292. * current->cpuset if a task has its memory placement changed.
  293. * Do not call this routine if in_interrupt().
  294. *
  295. * Call without callback_mutex or task_lock() held. May be
  296. * called with or without cgroup_mutex held. Thanks in part to
  297. * 'the_top_cpuset_hack', the task's cpuset pointer will never
  298. * be NULL. This routine also might acquire callback_mutex during
  299. * call.
  300. *
  301. * Reading current->cpuset->mems_generation doesn't need task_lock
  302. * to guard the current->cpuset derefence, because it is guarded
  303. * from concurrent freeing of current->cpuset using RCU.
  304. *
  305. * The rcu_dereference() is technically probably not needed,
  306. * as I don't actually mind if I see a new cpuset pointer but
  307. * an old value of mems_generation. However this really only
  308. * matters on alpha systems using cpusets heavily. If I dropped
  309. * that rcu_dereference(), it would save them a memory barrier.
  310. * For all other arch's, rcu_dereference is a no-op anyway, and for
  311. * alpha systems not using cpusets, another planned optimization,
  312. * avoiding the rcu critical section for tasks in the root cpuset
  313. * which is statically allocated, so can't vanish, will make this
  314. * irrelevant. Better to use RCU as intended, than to engage in
  315. * some cute trick to save a memory barrier that is impossible to
  316. * test, for alpha systems using cpusets heavily, which might not
  317. * even exist.
  318. *
  319. * This routine is needed to update the per-task mems_allowed data,
  320. * within the tasks context, when it is trying to allocate memory
  321. * (in various mm/mempolicy.c routines) and notices that some other
  322. * task has been modifying its cpuset.
  323. */
  324. void cpuset_update_task_memory_state(void)
  325. {
  326. int my_cpusets_mem_gen;
  327. struct task_struct *tsk = current;
  328. struct cpuset *cs;
  329. if (task_cs(tsk) == &top_cpuset) {
  330. /* Don't need rcu for top_cpuset. It's never freed. */
  331. my_cpusets_mem_gen = top_cpuset.mems_generation;
  332. } else {
  333. rcu_read_lock();
  334. my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
  335. rcu_read_unlock();
  336. }
  337. if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
  338. mutex_lock(&callback_mutex);
  339. task_lock(tsk);
  340. cs = task_cs(tsk); /* Maybe changed when task not locked */
  341. guarantee_online_mems(cs, &tsk->mems_allowed);
  342. tsk->cpuset_mems_generation = cs->mems_generation;
  343. if (is_spread_page(cs))
  344. tsk->flags |= PF_SPREAD_PAGE;
  345. else
  346. tsk->flags &= ~PF_SPREAD_PAGE;
  347. if (is_spread_slab(cs))
  348. tsk->flags |= PF_SPREAD_SLAB;
  349. else
  350. tsk->flags &= ~PF_SPREAD_SLAB;
  351. task_unlock(tsk);
  352. mutex_unlock(&callback_mutex);
  353. mpol_rebind_task(tsk, &tsk->mems_allowed);
  354. }
  355. }
  356. /*
  357. * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
  358. *
  359. * One cpuset is a subset of another if all its allowed CPUs and
  360. * Memory Nodes are a subset of the other, and its exclusive flags
  361. * are only set if the other's are set. Call holding cgroup_mutex.
  362. */
  363. static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
  364. {
  365. return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
  366. nodes_subset(p->mems_allowed, q->mems_allowed) &&
  367. is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
  368. is_mem_exclusive(p) <= is_mem_exclusive(q);
  369. }
  370. /*
  371. * validate_change() - Used to validate that any proposed cpuset change
  372. * follows the structural rules for cpusets.
  373. *
  374. * If we replaced the flag and mask values of the current cpuset
  375. * (cur) with those values in the trial cpuset (trial), would
  376. * our various subset and exclusive rules still be valid? Presumes
  377. * cgroup_mutex held.
  378. *
  379. * 'cur' is the address of an actual, in-use cpuset. Operations
  380. * such as list traversal that depend on the actual address of the
  381. * cpuset in the list must use cur below, not trial.
  382. *
  383. * 'trial' is the address of bulk structure copy of cur, with
  384. * perhaps one or more of the fields cpus_allowed, mems_allowed,
  385. * or flags changed to new, trial values.
  386. *
  387. * Return 0 if valid, -errno if not.
  388. */
  389. static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
  390. {
  391. struct cgroup *cont;
  392. struct cpuset *c, *par;
  393. /* Each of our child cpusets must be a subset of us */
  394. list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
  395. if (!is_cpuset_subset(cgroup_cs(cont), trial))
  396. return -EBUSY;
  397. }
  398. /* Remaining checks don't apply to root cpuset */
  399. if (cur == &top_cpuset)
  400. return 0;
  401. par = cur->parent;
  402. /* We must be a subset of our parent cpuset */
  403. if (!is_cpuset_subset(trial, par))
  404. return -EACCES;
  405. /*
  406. * If either I or some sibling (!= me) is exclusive, we can't
  407. * overlap
  408. */
  409. list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
  410. c = cgroup_cs(cont);
  411. if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
  412. c != cur &&
  413. cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
  414. return -EINVAL;
  415. if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
  416. c != cur &&
  417. nodes_intersects(trial->mems_allowed, c->mems_allowed))
  418. return -EINVAL;
  419. }
  420. /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
  421. if (cgroup_task_count(cur->css.cgroup)) {
  422. if (cpus_empty(trial->cpus_allowed) ||
  423. nodes_empty(trial->mems_allowed)) {
  424. return -ENOSPC;
  425. }
  426. }
  427. return 0;
  428. }
  429. /*
  430. * Helper routine for generate_sched_domains().
  431. * Do cpusets a, b have overlapping cpus_allowed masks?
  432. */
  433. static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
  434. {
  435. return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
  436. }
  437. static void
  438. update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
  439. {
  440. if (dattr->relax_domain_level < c->relax_domain_level)
  441. dattr->relax_domain_level = c->relax_domain_level;
  442. return;
  443. }
  444. static void
  445. update_domain_attr_tree(struct sched_domain_attr *dattr, struct cpuset *c)
  446. {
  447. LIST_HEAD(q);
  448. list_add(&c->stack_list, &q);
  449. while (!list_empty(&q)) {
  450. struct cpuset *cp;
  451. struct cgroup *cont;
  452. struct cpuset *child;
  453. cp = list_first_entry(&q, struct cpuset, stack_list);
  454. list_del(q.next);
  455. if (cpus_empty(cp->cpus_allowed))
  456. continue;
  457. if (is_sched_load_balance(cp))
  458. update_domain_attr(dattr, cp);
  459. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  460. child = cgroup_cs(cont);
  461. list_add_tail(&child->stack_list, &q);
  462. }
  463. }
  464. }
  465. /*
  466. * generate_sched_domains()
  467. *
  468. * This function builds a partial partition of the systems CPUs
  469. * A 'partial partition' is a set of non-overlapping subsets whose
  470. * union is a subset of that set.
  471. * The output of this function needs to be passed to kernel/sched.c
  472. * partition_sched_domains() routine, which will rebuild the scheduler's
  473. * load balancing domains (sched domains) as specified by that partial
  474. * partition.
  475. *
  476. * See "What is sched_load_balance" in Documentation/cpusets.txt
  477. * for a background explanation of this.
  478. *
  479. * Does not return errors, on the theory that the callers of this
  480. * routine would rather not worry about failures to rebuild sched
  481. * domains when operating in the severe memory shortage situations
  482. * that could cause allocation failures below.
  483. *
  484. * Must be called with cgroup_lock held.
  485. *
  486. * The three key local variables below are:
  487. * q - a linked-list queue of cpuset pointers, used to implement a
  488. * top-down scan of all cpusets. This scan loads a pointer
  489. * to each cpuset marked is_sched_load_balance into the
  490. * array 'csa'. For our purposes, rebuilding the schedulers
  491. * sched domains, we can ignore !is_sched_load_balance cpusets.
  492. * csa - (for CpuSet Array) Array of pointers to all the cpusets
  493. * that need to be load balanced, for convenient iterative
  494. * access by the subsequent code that finds the best partition,
  495. * i.e the set of domains (subsets) of CPUs such that the
  496. * cpus_allowed of every cpuset marked is_sched_load_balance
  497. * is a subset of one of these domains, while there are as
  498. * many such domains as possible, each as small as possible.
  499. * doms - Conversion of 'csa' to an array of cpumasks, for passing to
  500. * the kernel/sched.c routine partition_sched_domains() in a
  501. * convenient format, that can be easily compared to the prior
  502. * value to determine what partition elements (sched domains)
  503. * were changed (added or removed.)
  504. *
  505. * Finding the best partition (set of domains):
  506. * The triple nested loops below over i, j, k scan over the
  507. * load balanced cpusets (using the array of cpuset pointers in
  508. * csa[]) looking for pairs of cpusets that have overlapping
  509. * cpus_allowed, but which don't have the same 'pn' partition
  510. * number and gives them in the same partition number. It keeps
  511. * looping on the 'restart' label until it can no longer find
  512. * any such pairs.
  513. *
  514. * The union of the cpus_allowed masks from the set of
  515. * all cpusets having the same 'pn' value then form the one
  516. * element of the partition (one sched domain) to be passed to
  517. * partition_sched_domains().
  518. */
  519. static int generate_sched_domains(cpumask_t **domains,
  520. struct sched_domain_attr **attributes)
  521. {
  522. LIST_HEAD(q); /* queue of cpusets to be scanned */
  523. struct cpuset *cp; /* scans q */
  524. struct cpuset **csa; /* array of all cpuset ptrs */
  525. int csn; /* how many cpuset ptrs in csa so far */
  526. int i, j, k; /* indices for partition finding loops */
  527. cpumask_t *doms; /* resulting partition; i.e. sched domains */
  528. struct sched_domain_attr *dattr; /* attributes for custom domains */
  529. int ndoms; /* number of sched domains in result */
  530. int nslot; /* next empty doms[] cpumask_t slot */
  531. ndoms = 0;
  532. doms = NULL;
  533. dattr = NULL;
  534. csa = NULL;
  535. /* Special case for the 99% of systems with one, full, sched domain */
  536. if (is_sched_load_balance(&top_cpuset)) {
  537. doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
  538. if (!doms)
  539. goto done;
  540. dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
  541. if (dattr) {
  542. *dattr = SD_ATTR_INIT;
  543. update_domain_attr_tree(dattr, &top_cpuset);
  544. }
  545. *doms = top_cpuset.cpus_allowed;
  546. ndoms = 1;
  547. goto done;
  548. }
  549. csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
  550. if (!csa)
  551. goto done;
  552. csn = 0;
  553. list_add(&top_cpuset.stack_list, &q);
  554. while (!list_empty(&q)) {
  555. struct cgroup *cont;
  556. struct cpuset *child; /* scans child cpusets of cp */
  557. cp = list_first_entry(&q, struct cpuset, stack_list);
  558. list_del(q.next);
  559. if (cpus_empty(cp->cpus_allowed))
  560. continue;
  561. /*
  562. * All child cpusets contain a subset of the parent's cpus, so
  563. * just skip them, and then we call update_domain_attr_tree()
  564. * to calc relax_domain_level of the corresponding sched
  565. * domain.
  566. */
  567. if (is_sched_load_balance(cp)) {
  568. csa[csn++] = cp;
  569. continue;
  570. }
  571. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  572. child = cgroup_cs(cont);
  573. list_add_tail(&child->stack_list, &q);
  574. }
  575. }
  576. for (i = 0; i < csn; i++)
  577. csa[i]->pn = i;
  578. ndoms = csn;
  579. restart:
  580. /* Find the best partition (set of sched domains) */
  581. for (i = 0; i < csn; i++) {
  582. struct cpuset *a = csa[i];
  583. int apn = a->pn;
  584. for (j = 0; j < csn; j++) {
  585. struct cpuset *b = csa[j];
  586. int bpn = b->pn;
  587. if (apn != bpn && cpusets_overlap(a, b)) {
  588. for (k = 0; k < csn; k++) {
  589. struct cpuset *c = csa[k];
  590. if (c->pn == bpn)
  591. c->pn = apn;
  592. }
  593. ndoms--; /* one less element */
  594. goto restart;
  595. }
  596. }
  597. }
  598. /*
  599. * Now we know how many domains to create.
  600. * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
  601. */
  602. doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
  603. if (!doms) {
  604. ndoms = 0;
  605. goto done;
  606. }
  607. /*
  608. * The rest of the code, including the scheduler, can deal with
  609. * dattr==NULL case. No need to abort if alloc fails.
  610. */
  611. dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
  612. for (nslot = 0, i = 0; i < csn; i++) {
  613. struct cpuset *a = csa[i];
  614. cpumask_t *dp;
  615. int apn = a->pn;
  616. if (apn < 0) {
  617. /* Skip completed partitions */
  618. continue;
  619. }
  620. dp = doms + nslot;
  621. if (nslot == ndoms) {
  622. static int warnings = 10;
  623. if (warnings) {
  624. printk(KERN_WARNING
  625. "rebuild_sched_domains confused:"
  626. " nslot %d, ndoms %d, csn %d, i %d,"
  627. " apn %d\n",
  628. nslot, ndoms, csn, i, apn);
  629. warnings--;
  630. }
  631. continue;
  632. }
  633. cpus_clear(*dp);
  634. if (dattr)
  635. *(dattr + nslot) = SD_ATTR_INIT;
  636. for (j = i; j < csn; j++) {
  637. struct cpuset *b = csa[j];
  638. if (apn == b->pn) {
  639. cpus_or(*dp, *dp, b->cpus_allowed);
  640. if (dattr)
  641. update_domain_attr_tree(dattr + nslot, b);
  642. /* Done with this partition */
  643. b->pn = -1;
  644. }
  645. }
  646. nslot++;
  647. }
  648. BUG_ON(nslot != ndoms);
  649. done:
  650. kfree(csa);
  651. *domains = doms;
  652. *attributes = dattr;
  653. return ndoms;
  654. }
  655. /*
  656. * Rebuild scheduler domains.
  657. *
  658. * Call with neither cgroup_mutex held nor within get_online_cpus().
  659. * Takes both cgroup_mutex and get_online_cpus().
  660. *
  661. * Cannot be directly called from cpuset code handling changes
  662. * to the cpuset pseudo-filesystem, because it cannot be called
  663. * from code that already holds cgroup_mutex.
  664. */
  665. static void do_rebuild_sched_domains(struct work_struct *unused)
  666. {
  667. struct sched_domain_attr *attr;
  668. cpumask_t *doms;
  669. int ndoms;
  670. get_online_cpus();
  671. /* Generate domain masks and attrs */
  672. cgroup_lock();
  673. ndoms = generate_sched_domains(&doms, &attr);
  674. cgroup_unlock();
  675. /* Have scheduler rebuild the domains */
  676. partition_sched_domains(ndoms, doms, attr);
  677. put_online_cpus();
  678. }
  679. static DECLARE_WORK(rebuild_sched_domains_work, do_rebuild_sched_domains);
  680. /*
  681. * Rebuild scheduler domains, asynchronously via workqueue.
  682. *
  683. * If the flag 'sched_load_balance' of any cpuset with non-empty
  684. * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
  685. * which has that flag enabled, or if any cpuset with a non-empty
  686. * 'cpus' is removed, then call this routine to rebuild the
  687. * scheduler's dynamic sched domains.
  688. *
  689. * The rebuild_sched_domains() and partition_sched_domains()
  690. * routines must nest cgroup_lock() inside get_online_cpus(),
  691. * but such cpuset changes as these must nest that locking the
  692. * other way, holding cgroup_lock() for much of the code.
  693. *
  694. * So in order to avoid an ABBA deadlock, the cpuset code handling
  695. * these user changes delegates the actual sched domain rebuilding
  696. * to a separate workqueue thread, which ends up processing the
  697. * above do_rebuild_sched_domains() function.
  698. */
  699. static void async_rebuild_sched_domains(void)
  700. {
  701. schedule_work(&rebuild_sched_domains_work);
  702. }
  703. /*
  704. * Accomplishes the same scheduler domain rebuild as the above
  705. * async_rebuild_sched_domains(), however it directly calls the
  706. * rebuild routine synchronously rather than calling it via an
  707. * asynchronous work thread.
  708. *
  709. * This can only be called from code that is not holding
  710. * cgroup_mutex (not nested in a cgroup_lock() call.)
  711. */
  712. void rebuild_sched_domains(void)
  713. {
  714. do_rebuild_sched_domains(NULL);
  715. }
  716. /**
  717. * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
  718. * @tsk: task to test
  719. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  720. *
  721. * Call with cgroup_mutex held. May take callback_mutex during call.
  722. * Called for each task in a cgroup by cgroup_scan_tasks().
  723. * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
  724. * words, if its mask is not equal to its cpuset's mask).
  725. */
  726. static int cpuset_test_cpumask(struct task_struct *tsk,
  727. struct cgroup_scanner *scan)
  728. {
  729. return !cpus_equal(tsk->cpus_allowed,
  730. (cgroup_cs(scan->cg))->cpus_allowed);
  731. }
  732. /**
  733. * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
  734. * @tsk: task to test
  735. * @scan: struct cgroup_scanner containing the cgroup of the task
  736. *
  737. * Called by cgroup_scan_tasks() for each task in a cgroup whose
  738. * cpus_allowed mask needs to be changed.
  739. *
  740. * We don't need to re-check for the cgroup/cpuset membership, since we're
  741. * holding cgroup_lock() at this point.
  742. */
  743. static void cpuset_change_cpumask(struct task_struct *tsk,
  744. struct cgroup_scanner *scan)
  745. {
  746. set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
  747. }
  748. /**
  749. * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
  750. * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
  751. * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
  752. *
  753. * Called with cgroup_mutex held
  754. *
  755. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  756. * calling callback functions for each.
  757. *
  758. * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
  759. * if @heap != NULL.
  760. */
  761. static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
  762. {
  763. struct cgroup_scanner scan;
  764. scan.cg = cs->css.cgroup;
  765. scan.test_task = cpuset_test_cpumask;
  766. scan.process_task = cpuset_change_cpumask;
  767. scan.heap = heap;
  768. cgroup_scan_tasks(&scan);
  769. }
  770. /**
  771. * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
  772. * @cs: the cpuset to consider
  773. * @buf: buffer of cpu numbers written to this cpuset
  774. */
  775. static int update_cpumask(struct cpuset *cs, const char *buf)
  776. {
  777. struct ptr_heap heap;
  778. struct cpuset trialcs;
  779. int retval;
  780. int is_load_balanced;
  781. /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
  782. if (cs == &top_cpuset)
  783. return -EACCES;
  784. trialcs = *cs;
  785. /*
  786. * An empty cpus_allowed is ok only if the cpuset has no tasks.
  787. * Since cpulist_parse() fails on an empty mask, we special case
  788. * that parsing. The validate_change() call ensures that cpusets
  789. * with tasks have cpus.
  790. */
  791. if (!*buf) {
  792. cpus_clear(trialcs.cpus_allowed);
  793. } else {
  794. retval = cpulist_parse(buf, trialcs.cpus_allowed);
  795. if (retval < 0)
  796. return retval;
  797. if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
  798. return -EINVAL;
  799. }
  800. retval = validate_change(cs, &trialcs);
  801. if (retval < 0)
  802. return retval;
  803. /* Nothing to do if the cpus didn't change */
  804. if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
  805. return 0;
  806. retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
  807. if (retval)
  808. return retval;
  809. is_load_balanced = is_sched_load_balance(&trialcs);
  810. mutex_lock(&callback_mutex);
  811. cs->cpus_allowed = trialcs.cpus_allowed;
  812. mutex_unlock(&callback_mutex);
  813. /*
  814. * Scan tasks in the cpuset, and update the cpumasks of any
  815. * that need an update.
  816. */
  817. update_tasks_cpumask(cs, &heap);
  818. heap_free(&heap);
  819. if (is_load_balanced)
  820. async_rebuild_sched_domains();
  821. return 0;
  822. }
  823. /*
  824. * cpuset_migrate_mm
  825. *
  826. * Migrate memory region from one set of nodes to another.
  827. *
  828. * Temporarilly set tasks mems_allowed to target nodes of migration,
  829. * so that the migration code can allocate pages on these nodes.
  830. *
  831. * Call holding cgroup_mutex, so current's cpuset won't change
  832. * during this call, as manage_mutex holds off any cpuset_attach()
  833. * calls. Therefore we don't need to take task_lock around the
  834. * call to guarantee_online_mems(), as we know no one is changing
  835. * our task's cpuset.
  836. *
  837. * Hold callback_mutex around the two modifications of our tasks
  838. * mems_allowed to synchronize with cpuset_mems_allowed().
  839. *
  840. * While the mm_struct we are migrating is typically from some
  841. * other task, the task_struct mems_allowed that we are hacking
  842. * is for our current task, which must allocate new pages for that
  843. * migrating memory region.
  844. *
  845. * We call cpuset_update_task_memory_state() before hacking
  846. * our tasks mems_allowed, so that we are assured of being in
  847. * sync with our tasks cpuset, and in particular, callbacks to
  848. * cpuset_update_task_memory_state() from nested page allocations
  849. * won't see any mismatch of our cpuset and task mems_generation
  850. * values, so won't overwrite our hacked tasks mems_allowed
  851. * nodemask.
  852. */
  853. static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
  854. const nodemask_t *to)
  855. {
  856. struct task_struct *tsk = current;
  857. cpuset_update_task_memory_state();
  858. mutex_lock(&callback_mutex);
  859. tsk->mems_allowed = *to;
  860. mutex_unlock(&callback_mutex);
  861. do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
  862. mutex_lock(&callback_mutex);
  863. guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
  864. mutex_unlock(&callback_mutex);
  865. }
  866. static void *cpuset_being_rebound;
  867. /**
  868. * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
  869. * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
  870. * @oldmem: old mems_allowed of cpuset cs
  871. *
  872. * Called with cgroup_mutex held
  873. * Return 0 if successful, -errno if not.
  874. */
  875. static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
  876. {
  877. struct task_struct *p;
  878. struct mm_struct **mmarray;
  879. int i, n, ntasks;
  880. int migrate;
  881. int fudge;
  882. struct cgroup_iter it;
  883. int retval;
  884. cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
  885. fudge = 10; /* spare mmarray[] slots */
  886. fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
  887. retval = -ENOMEM;
  888. /*
  889. * Allocate mmarray[] to hold mm reference for each task
  890. * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
  891. * tasklist_lock. We could use GFP_ATOMIC, but with a
  892. * few more lines of code, we can retry until we get a big
  893. * enough mmarray[] w/o using GFP_ATOMIC.
  894. */
  895. while (1) {
  896. ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
  897. ntasks += fudge;
  898. mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
  899. if (!mmarray)
  900. goto done;
  901. read_lock(&tasklist_lock); /* block fork */
  902. if (cgroup_task_count(cs->css.cgroup) <= ntasks)
  903. break; /* got enough */
  904. read_unlock(&tasklist_lock); /* try again */
  905. kfree(mmarray);
  906. }
  907. n = 0;
  908. /* Load up mmarray[] with mm reference for each task in cpuset. */
  909. cgroup_iter_start(cs->css.cgroup, &it);
  910. while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
  911. struct mm_struct *mm;
  912. if (n >= ntasks) {
  913. printk(KERN_WARNING
  914. "Cpuset mempolicy rebind incomplete.\n");
  915. break;
  916. }
  917. mm = get_task_mm(p);
  918. if (!mm)
  919. continue;
  920. mmarray[n++] = mm;
  921. }
  922. cgroup_iter_end(cs->css.cgroup, &it);
  923. read_unlock(&tasklist_lock);
  924. /*
  925. * Now that we've dropped the tasklist spinlock, we can
  926. * rebind the vma mempolicies of each mm in mmarray[] to their
  927. * new cpuset, and release that mm. The mpol_rebind_mm()
  928. * call takes mmap_sem, which we couldn't take while holding
  929. * tasklist_lock. Forks can happen again now - the mpol_dup()
  930. * cpuset_being_rebound check will catch such forks, and rebind
  931. * their vma mempolicies too. Because we still hold the global
  932. * cgroup_mutex, we know that no other rebind effort will
  933. * be contending for the global variable cpuset_being_rebound.
  934. * It's ok if we rebind the same mm twice; mpol_rebind_mm()
  935. * is idempotent. Also migrate pages in each mm to new nodes.
  936. */
  937. migrate = is_memory_migrate(cs);
  938. for (i = 0; i < n; i++) {
  939. struct mm_struct *mm = mmarray[i];
  940. mpol_rebind_mm(mm, &cs->mems_allowed);
  941. if (migrate)
  942. cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
  943. mmput(mm);
  944. }
  945. /* We're done rebinding vmas to this cpuset's new mems_allowed. */
  946. kfree(mmarray);
  947. cpuset_being_rebound = NULL;
  948. retval = 0;
  949. done:
  950. return retval;
  951. }
  952. /*
  953. * Handle user request to change the 'mems' memory placement
  954. * of a cpuset. Needs to validate the request, update the
  955. * cpusets mems_allowed and mems_generation, and for each
  956. * task in the cpuset, rebind any vma mempolicies and if
  957. * the cpuset is marked 'memory_migrate', migrate the tasks
  958. * pages to the new memory.
  959. *
  960. * Call with cgroup_mutex held. May take callback_mutex during call.
  961. * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
  962. * lock each such tasks mm->mmap_sem, scan its vma's and rebind
  963. * their mempolicies to the cpusets new mems_allowed.
  964. */
  965. static int update_nodemask(struct cpuset *cs, const char *buf)
  966. {
  967. struct cpuset trialcs;
  968. nodemask_t oldmem;
  969. int retval;
  970. /*
  971. * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
  972. * it's read-only
  973. */
  974. if (cs == &top_cpuset)
  975. return -EACCES;
  976. trialcs = *cs;
  977. /*
  978. * An empty mems_allowed is ok iff there are no tasks in the cpuset.
  979. * Since nodelist_parse() fails on an empty mask, we special case
  980. * that parsing. The validate_change() call ensures that cpusets
  981. * with tasks have memory.
  982. */
  983. if (!*buf) {
  984. nodes_clear(trialcs.mems_allowed);
  985. } else {
  986. retval = nodelist_parse(buf, trialcs.mems_allowed);
  987. if (retval < 0)
  988. goto done;
  989. if (!nodes_subset(trialcs.mems_allowed,
  990. node_states[N_HIGH_MEMORY]))
  991. return -EINVAL;
  992. }
  993. oldmem = cs->mems_allowed;
  994. if (nodes_equal(oldmem, trialcs.mems_allowed)) {
  995. retval = 0; /* Too easy - nothing to do */
  996. goto done;
  997. }
  998. retval = validate_change(cs, &trialcs);
  999. if (retval < 0)
  1000. goto done;
  1001. mutex_lock(&callback_mutex);
  1002. cs->mems_allowed = trialcs.mems_allowed;
  1003. cs->mems_generation = cpuset_mems_generation++;
  1004. mutex_unlock(&callback_mutex);
  1005. retval = update_tasks_nodemask(cs, &oldmem);
  1006. done:
  1007. return retval;
  1008. }
  1009. int current_cpuset_is_being_rebound(void)
  1010. {
  1011. return task_cs(current) == cpuset_being_rebound;
  1012. }
  1013. static int update_relax_domain_level(struct cpuset *cs, s64 val)
  1014. {
  1015. if (val < -1 || val >= SD_LV_MAX)
  1016. return -EINVAL;
  1017. if (val != cs->relax_domain_level) {
  1018. cs->relax_domain_level = val;
  1019. if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
  1020. async_rebuild_sched_domains();
  1021. }
  1022. return 0;
  1023. }
  1024. /*
  1025. * update_flag - read a 0 or a 1 in a file and update associated flag
  1026. * bit: the bit to update (see cpuset_flagbits_t)
  1027. * cs: the cpuset to update
  1028. * turning_on: whether the flag is being set or cleared
  1029. *
  1030. * Call with cgroup_mutex held.
  1031. */
  1032. static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
  1033. int turning_on)
  1034. {
  1035. struct cpuset trialcs;
  1036. int err;
  1037. int cpus_nonempty, balance_flag_changed;
  1038. trialcs = *cs;
  1039. if (turning_on)
  1040. set_bit(bit, &trialcs.flags);
  1041. else
  1042. clear_bit(bit, &trialcs.flags);
  1043. err = validate_change(cs, &trialcs);
  1044. if (err < 0)
  1045. return err;
  1046. cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
  1047. balance_flag_changed = (is_sched_load_balance(cs) !=
  1048. is_sched_load_balance(&trialcs));
  1049. mutex_lock(&callback_mutex);
  1050. cs->flags = trialcs.flags;
  1051. mutex_unlock(&callback_mutex);
  1052. if (cpus_nonempty && balance_flag_changed)
  1053. async_rebuild_sched_domains();
  1054. return 0;
  1055. }
  1056. /*
  1057. * Frequency meter - How fast is some event occurring?
  1058. *
  1059. * These routines manage a digitally filtered, constant time based,
  1060. * event frequency meter. There are four routines:
  1061. * fmeter_init() - initialize a frequency meter.
  1062. * fmeter_markevent() - called each time the event happens.
  1063. * fmeter_getrate() - returns the recent rate of such events.
  1064. * fmeter_update() - internal routine used to update fmeter.
  1065. *
  1066. * A common data structure is passed to each of these routines,
  1067. * which is used to keep track of the state required to manage the
  1068. * frequency meter and its digital filter.
  1069. *
  1070. * The filter works on the number of events marked per unit time.
  1071. * The filter is single-pole low-pass recursive (IIR). The time unit
  1072. * is 1 second. Arithmetic is done using 32-bit integers scaled to
  1073. * simulate 3 decimal digits of precision (multiplied by 1000).
  1074. *
  1075. * With an FM_COEF of 933, and a time base of 1 second, the filter
  1076. * has a half-life of 10 seconds, meaning that if the events quit
  1077. * happening, then the rate returned from the fmeter_getrate()
  1078. * will be cut in half each 10 seconds, until it converges to zero.
  1079. *
  1080. * It is not worth doing a real infinitely recursive filter. If more
  1081. * than FM_MAXTICKS ticks have elapsed since the last filter event,
  1082. * just compute FM_MAXTICKS ticks worth, by which point the level
  1083. * will be stable.
  1084. *
  1085. * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
  1086. * arithmetic overflow in the fmeter_update() routine.
  1087. *
  1088. * Given the simple 32 bit integer arithmetic used, this meter works
  1089. * best for reporting rates between one per millisecond (msec) and
  1090. * one per 32 (approx) seconds. At constant rates faster than one
  1091. * per msec it maxes out at values just under 1,000,000. At constant
  1092. * rates between one per msec, and one per second it will stabilize
  1093. * to a value N*1000, where N is the rate of events per second.
  1094. * At constant rates between one per second and one per 32 seconds,
  1095. * it will be choppy, moving up on the seconds that have an event,
  1096. * and then decaying until the next event. At rates slower than
  1097. * about one in 32 seconds, it decays all the way back to zero between
  1098. * each event.
  1099. */
  1100. #define FM_COEF 933 /* coefficient for half-life of 10 secs */
  1101. #define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
  1102. #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
  1103. #define FM_SCALE 1000 /* faux fixed point scale */
  1104. /* Initialize a frequency meter */
  1105. static void fmeter_init(struct fmeter *fmp)
  1106. {
  1107. fmp->cnt = 0;
  1108. fmp->val = 0;
  1109. fmp->time = 0;
  1110. spin_lock_init(&fmp->lock);
  1111. }
  1112. /* Internal meter update - process cnt events and update value */
  1113. static void fmeter_update(struct fmeter *fmp)
  1114. {
  1115. time_t now = get_seconds();
  1116. time_t ticks = now - fmp->time;
  1117. if (ticks == 0)
  1118. return;
  1119. ticks = min(FM_MAXTICKS, ticks);
  1120. while (ticks-- > 0)
  1121. fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
  1122. fmp->time = now;
  1123. fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
  1124. fmp->cnt = 0;
  1125. }
  1126. /* Process any previous ticks, then bump cnt by one (times scale). */
  1127. static void fmeter_markevent(struct fmeter *fmp)
  1128. {
  1129. spin_lock(&fmp->lock);
  1130. fmeter_update(fmp);
  1131. fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
  1132. spin_unlock(&fmp->lock);
  1133. }
  1134. /* Process any previous ticks, then return current value. */
  1135. static int fmeter_getrate(struct fmeter *fmp)
  1136. {
  1137. int val;
  1138. spin_lock(&fmp->lock);
  1139. fmeter_update(fmp);
  1140. val = fmp->val;
  1141. spin_unlock(&fmp->lock);
  1142. return val;
  1143. }
  1144. /* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
  1145. static int cpuset_can_attach(struct cgroup_subsys *ss,
  1146. struct cgroup *cont, struct task_struct *tsk)
  1147. {
  1148. struct cpuset *cs = cgroup_cs(cont);
  1149. if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
  1150. return -ENOSPC;
  1151. if (tsk->flags & PF_THREAD_BOUND) {
  1152. cpumask_t mask;
  1153. mutex_lock(&callback_mutex);
  1154. mask = cs->cpus_allowed;
  1155. mutex_unlock(&callback_mutex);
  1156. if (!cpus_equal(tsk->cpus_allowed, mask))
  1157. return -EINVAL;
  1158. }
  1159. return security_task_setscheduler(tsk, 0, NULL);
  1160. }
  1161. static void cpuset_attach(struct cgroup_subsys *ss,
  1162. struct cgroup *cont, struct cgroup *oldcont,
  1163. struct task_struct *tsk)
  1164. {
  1165. cpumask_t cpus;
  1166. nodemask_t from, to;
  1167. struct mm_struct *mm;
  1168. struct cpuset *cs = cgroup_cs(cont);
  1169. struct cpuset *oldcs = cgroup_cs(oldcont);
  1170. int err;
  1171. mutex_lock(&callback_mutex);
  1172. guarantee_online_cpus(cs, &cpus);
  1173. err = set_cpus_allowed_ptr(tsk, &cpus);
  1174. mutex_unlock(&callback_mutex);
  1175. if (err)
  1176. return;
  1177. from = oldcs->mems_allowed;
  1178. to = cs->mems_allowed;
  1179. mm = get_task_mm(tsk);
  1180. if (mm) {
  1181. mpol_rebind_mm(mm, &to);
  1182. if (is_memory_migrate(cs))
  1183. cpuset_migrate_mm(mm, &from, &to);
  1184. mmput(mm);
  1185. }
  1186. }
  1187. /* The various types of files and directories in a cpuset file system */
  1188. typedef enum {
  1189. FILE_MEMORY_MIGRATE,
  1190. FILE_CPULIST,
  1191. FILE_MEMLIST,
  1192. FILE_CPU_EXCLUSIVE,
  1193. FILE_MEM_EXCLUSIVE,
  1194. FILE_MEM_HARDWALL,
  1195. FILE_SCHED_LOAD_BALANCE,
  1196. FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1197. FILE_MEMORY_PRESSURE_ENABLED,
  1198. FILE_MEMORY_PRESSURE,
  1199. FILE_SPREAD_PAGE,
  1200. FILE_SPREAD_SLAB,
  1201. } cpuset_filetype_t;
  1202. static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
  1203. {
  1204. int retval = 0;
  1205. struct cpuset *cs = cgroup_cs(cgrp);
  1206. cpuset_filetype_t type = cft->private;
  1207. if (!cgroup_lock_live_group(cgrp))
  1208. return -ENODEV;
  1209. switch (type) {
  1210. case FILE_CPU_EXCLUSIVE:
  1211. retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
  1212. break;
  1213. case FILE_MEM_EXCLUSIVE:
  1214. retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
  1215. break;
  1216. case FILE_MEM_HARDWALL:
  1217. retval = update_flag(CS_MEM_HARDWALL, cs, val);
  1218. break;
  1219. case FILE_SCHED_LOAD_BALANCE:
  1220. retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
  1221. break;
  1222. case FILE_MEMORY_MIGRATE:
  1223. retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
  1224. break;
  1225. case FILE_MEMORY_PRESSURE_ENABLED:
  1226. cpuset_memory_pressure_enabled = !!val;
  1227. break;
  1228. case FILE_MEMORY_PRESSURE:
  1229. retval = -EACCES;
  1230. break;
  1231. case FILE_SPREAD_PAGE:
  1232. retval = update_flag(CS_SPREAD_PAGE, cs, val);
  1233. cs->mems_generation = cpuset_mems_generation++;
  1234. break;
  1235. case FILE_SPREAD_SLAB:
  1236. retval = update_flag(CS_SPREAD_SLAB, cs, val);
  1237. cs->mems_generation = cpuset_mems_generation++;
  1238. break;
  1239. default:
  1240. retval = -EINVAL;
  1241. break;
  1242. }
  1243. cgroup_unlock();
  1244. return retval;
  1245. }
  1246. static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
  1247. {
  1248. int retval = 0;
  1249. struct cpuset *cs = cgroup_cs(cgrp);
  1250. cpuset_filetype_t type = cft->private;
  1251. if (!cgroup_lock_live_group(cgrp))
  1252. return -ENODEV;
  1253. switch (type) {
  1254. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1255. retval = update_relax_domain_level(cs, val);
  1256. break;
  1257. default:
  1258. retval = -EINVAL;
  1259. break;
  1260. }
  1261. cgroup_unlock();
  1262. return retval;
  1263. }
  1264. /*
  1265. * Common handling for a write to a "cpus" or "mems" file.
  1266. */
  1267. static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
  1268. const char *buf)
  1269. {
  1270. int retval = 0;
  1271. if (!cgroup_lock_live_group(cgrp))
  1272. return -ENODEV;
  1273. switch (cft->private) {
  1274. case FILE_CPULIST:
  1275. retval = update_cpumask(cgroup_cs(cgrp), buf);
  1276. break;
  1277. case FILE_MEMLIST:
  1278. retval = update_nodemask(cgroup_cs(cgrp), buf);
  1279. break;
  1280. default:
  1281. retval = -EINVAL;
  1282. break;
  1283. }
  1284. cgroup_unlock();
  1285. return retval;
  1286. }
  1287. /*
  1288. * These ascii lists should be read in a single call, by using a user
  1289. * buffer large enough to hold the entire map. If read in smaller
  1290. * chunks, there is no guarantee of atomicity. Since the display format
  1291. * used, list of ranges of sequential numbers, is variable length,
  1292. * and since these maps can change value dynamically, one could read
  1293. * gibberish by doing partial reads while a list was changing.
  1294. * A single large read to a buffer that crosses a page boundary is
  1295. * ok, because the result being copied to user land is not recomputed
  1296. * across a page fault.
  1297. */
  1298. static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
  1299. {
  1300. cpumask_t mask;
  1301. mutex_lock(&callback_mutex);
  1302. mask = cs->cpus_allowed;
  1303. mutex_unlock(&callback_mutex);
  1304. return cpulist_scnprintf(page, PAGE_SIZE, mask);
  1305. }
  1306. static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
  1307. {
  1308. nodemask_t mask;
  1309. mutex_lock(&callback_mutex);
  1310. mask = cs->mems_allowed;
  1311. mutex_unlock(&callback_mutex);
  1312. return nodelist_scnprintf(page, PAGE_SIZE, mask);
  1313. }
  1314. static ssize_t cpuset_common_file_read(struct cgroup *cont,
  1315. struct cftype *cft,
  1316. struct file *file,
  1317. char __user *buf,
  1318. size_t nbytes, loff_t *ppos)
  1319. {
  1320. struct cpuset *cs = cgroup_cs(cont);
  1321. cpuset_filetype_t type = cft->private;
  1322. char *page;
  1323. ssize_t retval = 0;
  1324. char *s;
  1325. if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
  1326. return -ENOMEM;
  1327. s = page;
  1328. switch (type) {
  1329. case FILE_CPULIST:
  1330. s += cpuset_sprintf_cpulist(s, cs);
  1331. break;
  1332. case FILE_MEMLIST:
  1333. s += cpuset_sprintf_memlist(s, cs);
  1334. break;
  1335. default:
  1336. retval = -EINVAL;
  1337. goto out;
  1338. }
  1339. *s++ = '\n';
  1340. retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
  1341. out:
  1342. free_page((unsigned long)page);
  1343. return retval;
  1344. }
  1345. static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
  1346. {
  1347. struct cpuset *cs = cgroup_cs(cont);
  1348. cpuset_filetype_t type = cft->private;
  1349. switch (type) {
  1350. case FILE_CPU_EXCLUSIVE:
  1351. return is_cpu_exclusive(cs);
  1352. case FILE_MEM_EXCLUSIVE:
  1353. return is_mem_exclusive(cs);
  1354. case FILE_MEM_HARDWALL:
  1355. return is_mem_hardwall(cs);
  1356. case FILE_SCHED_LOAD_BALANCE:
  1357. return is_sched_load_balance(cs);
  1358. case FILE_MEMORY_MIGRATE:
  1359. return is_memory_migrate(cs);
  1360. case FILE_MEMORY_PRESSURE_ENABLED:
  1361. return cpuset_memory_pressure_enabled;
  1362. case FILE_MEMORY_PRESSURE:
  1363. return fmeter_getrate(&cs->fmeter);
  1364. case FILE_SPREAD_PAGE:
  1365. return is_spread_page(cs);
  1366. case FILE_SPREAD_SLAB:
  1367. return is_spread_slab(cs);
  1368. default:
  1369. BUG();
  1370. }
  1371. /* Unreachable but makes gcc happy */
  1372. return 0;
  1373. }
  1374. static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
  1375. {
  1376. struct cpuset *cs = cgroup_cs(cont);
  1377. cpuset_filetype_t type = cft->private;
  1378. switch (type) {
  1379. case FILE_SCHED_RELAX_DOMAIN_LEVEL:
  1380. return cs->relax_domain_level;
  1381. default:
  1382. BUG();
  1383. }
  1384. /* Unrechable but makes gcc happy */
  1385. return 0;
  1386. }
  1387. /*
  1388. * for the common functions, 'private' gives the type of file
  1389. */
  1390. static struct cftype files[] = {
  1391. {
  1392. .name = "cpus",
  1393. .read = cpuset_common_file_read,
  1394. .write_string = cpuset_write_resmask,
  1395. .max_write_len = (100U + 6 * NR_CPUS),
  1396. .private = FILE_CPULIST,
  1397. },
  1398. {
  1399. .name = "mems",
  1400. .read = cpuset_common_file_read,
  1401. .write_string = cpuset_write_resmask,
  1402. .max_write_len = (100U + 6 * MAX_NUMNODES),
  1403. .private = FILE_MEMLIST,
  1404. },
  1405. {
  1406. .name = "cpu_exclusive",
  1407. .read_u64 = cpuset_read_u64,
  1408. .write_u64 = cpuset_write_u64,
  1409. .private = FILE_CPU_EXCLUSIVE,
  1410. },
  1411. {
  1412. .name = "mem_exclusive",
  1413. .read_u64 = cpuset_read_u64,
  1414. .write_u64 = cpuset_write_u64,
  1415. .private = FILE_MEM_EXCLUSIVE,
  1416. },
  1417. {
  1418. .name = "mem_hardwall",
  1419. .read_u64 = cpuset_read_u64,
  1420. .write_u64 = cpuset_write_u64,
  1421. .private = FILE_MEM_HARDWALL,
  1422. },
  1423. {
  1424. .name = "sched_load_balance",
  1425. .read_u64 = cpuset_read_u64,
  1426. .write_u64 = cpuset_write_u64,
  1427. .private = FILE_SCHED_LOAD_BALANCE,
  1428. },
  1429. {
  1430. .name = "sched_relax_domain_level",
  1431. .read_s64 = cpuset_read_s64,
  1432. .write_s64 = cpuset_write_s64,
  1433. .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
  1434. },
  1435. {
  1436. .name = "memory_migrate",
  1437. .read_u64 = cpuset_read_u64,
  1438. .write_u64 = cpuset_write_u64,
  1439. .private = FILE_MEMORY_MIGRATE,
  1440. },
  1441. {
  1442. .name = "memory_pressure",
  1443. .read_u64 = cpuset_read_u64,
  1444. .write_u64 = cpuset_write_u64,
  1445. .private = FILE_MEMORY_PRESSURE,
  1446. },
  1447. {
  1448. .name = "memory_spread_page",
  1449. .read_u64 = cpuset_read_u64,
  1450. .write_u64 = cpuset_write_u64,
  1451. .private = FILE_SPREAD_PAGE,
  1452. },
  1453. {
  1454. .name = "memory_spread_slab",
  1455. .read_u64 = cpuset_read_u64,
  1456. .write_u64 = cpuset_write_u64,
  1457. .private = FILE_SPREAD_SLAB,
  1458. },
  1459. };
  1460. static struct cftype cft_memory_pressure_enabled = {
  1461. .name = "memory_pressure_enabled",
  1462. .read_u64 = cpuset_read_u64,
  1463. .write_u64 = cpuset_write_u64,
  1464. .private = FILE_MEMORY_PRESSURE_ENABLED,
  1465. };
  1466. static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
  1467. {
  1468. int err;
  1469. err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
  1470. if (err)
  1471. return err;
  1472. /* memory_pressure_enabled is in root cpuset only */
  1473. if (!cont->parent)
  1474. err = cgroup_add_file(cont, ss,
  1475. &cft_memory_pressure_enabled);
  1476. return err;
  1477. }
  1478. /*
  1479. * post_clone() is called at the end of cgroup_clone().
  1480. * 'cgroup' was just created automatically as a result of
  1481. * a cgroup_clone(), and the current task is about to
  1482. * be moved into 'cgroup'.
  1483. *
  1484. * Currently we refuse to set up the cgroup - thereby
  1485. * refusing the task to be entered, and as a result refusing
  1486. * the sys_unshare() or clone() which initiated it - if any
  1487. * sibling cpusets have exclusive cpus or mem.
  1488. *
  1489. * If this becomes a problem for some users who wish to
  1490. * allow that scenario, then cpuset_post_clone() could be
  1491. * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
  1492. * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
  1493. * held.
  1494. */
  1495. static void cpuset_post_clone(struct cgroup_subsys *ss,
  1496. struct cgroup *cgroup)
  1497. {
  1498. struct cgroup *parent, *child;
  1499. struct cpuset *cs, *parent_cs;
  1500. parent = cgroup->parent;
  1501. list_for_each_entry(child, &parent->children, sibling) {
  1502. cs = cgroup_cs(child);
  1503. if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
  1504. return;
  1505. }
  1506. cs = cgroup_cs(cgroup);
  1507. parent_cs = cgroup_cs(parent);
  1508. cs->mems_allowed = parent_cs->mems_allowed;
  1509. cs->cpus_allowed = parent_cs->cpus_allowed;
  1510. return;
  1511. }
  1512. /*
  1513. * cpuset_create - create a cpuset
  1514. * ss: cpuset cgroup subsystem
  1515. * cont: control group that the new cpuset will be part of
  1516. */
  1517. static struct cgroup_subsys_state *cpuset_create(
  1518. struct cgroup_subsys *ss,
  1519. struct cgroup *cont)
  1520. {
  1521. struct cpuset *cs;
  1522. struct cpuset *parent;
  1523. if (!cont->parent) {
  1524. /* This is early initialization for the top cgroup */
  1525. top_cpuset.mems_generation = cpuset_mems_generation++;
  1526. return &top_cpuset.css;
  1527. }
  1528. parent = cgroup_cs(cont->parent);
  1529. cs = kmalloc(sizeof(*cs), GFP_KERNEL);
  1530. if (!cs)
  1531. return ERR_PTR(-ENOMEM);
  1532. cpuset_update_task_memory_state();
  1533. cs->flags = 0;
  1534. if (is_spread_page(parent))
  1535. set_bit(CS_SPREAD_PAGE, &cs->flags);
  1536. if (is_spread_slab(parent))
  1537. set_bit(CS_SPREAD_SLAB, &cs->flags);
  1538. set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
  1539. cpus_clear(cs->cpus_allowed);
  1540. nodes_clear(cs->mems_allowed);
  1541. cs->mems_generation = cpuset_mems_generation++;
  1542. fmeter_init(&cs->fmeter);
  1543. cs->relax_domain_level = -1;
  1544. cs->parent = parent;
  1545. number_of_cpusets++;
  1546. return &cs->css ;
  1547. }
  1548. /*
  1549. * If the cpuset being removed has its flag 'sched_load_balance'
  1550. * enabled, then simulate turning sched_load_balance off, which
  1551. * will call async_rebuild_sched_domains().
  1552. */
  1553. static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
  1554. {
  1555. struct cpuset *cs = cgroup_cs(cont);
  1556. cpuset_update_task_memory_state();
  1557. if (is_sched_load_balance(cs))
  1558. update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
  1559. number_of_cpusets--;
  1560. kfree(cs);
  1561. }
  1562. struct cgroup_subsys cpuset_subsys = {
  1563. .name = "cpuset",
  1564. .create = cpuset_create,
  1565. .destroy = cpuset_destroy,
  1566. .can_attach = cpuset_can_attach,
  1567. .attach = cpuset_attach,
  1568. .populate = cpuset_populate,
  1569. .post_clone = cpuset_post_clone,
  1570. .subsys_id = cpuset_subsys_id,
  1571. .early_init = 1,
  1572. };
  1573. /*
  1574. * cpuset_init_early - just enough so that the calls to
  1575. * cpuset_update_task_memory_state() in early init code
  1576. * are harmless.
  1577. */
  1578. int __init cpuset_init_early(void)
  1579. {
  1580. top_cpuset.mems_generation = cpuset_mems_generation++;
  1581. return 0;
  1582. }
  1583. /**
  1584. * cpuset_init - initialize cpusets at system boot
  1585. *
  1586. * Description: Initialize top_cpuset and the cpuset internal file system,
  1587. **/
  1588. int __init cpuset_init(void)
  1589. {
  1590. int err = 0;
  1591. cpus_setall(top_cpuset.cpus_allowed);
  1592. nodes_setall(top_cpuset.mems_allowed);
  1593. fmeter_init(&top_cpuset.fmeter);
  1594. top_cpuset.mems_generation = cpuset_mems_generation++;
  1595. set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
  1596. top_cpuset.relax_domain_level = -1;
  1597. err = register_filesystem(&cpuset_fs_type);
  1598. if (err < 0)
  1599. return err;
  1600. number_of_cpusets = 1;
  1601. return 0;
  1602. }
  1603. /**
  1604. * cpuset_do_move_task - move a given task to another cpuset
  1605. * @tsk: pointer to task_struct the task to move
  1606. * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
  1607. *
  1608. * Called by cgroup_scan_tasks() for each task in a cgroup.
  1609. * Return nonzero to stop the walk through the tasks.
  1610. */
  1611. static void cpuset_do_move_task(struct task_struct *tsk,
  1612. struct cgroup_scanner *scan)
  1613. {
  1614. struct cpuset_hotplug_scanner *chsp;
  1615. chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
  1616. cgroup_attach_task(chsp->to, tsk);
  1617. }
  1618. /**
  1619. * move_member_tasks_to_cpuset - move tasks from one cpuset to another
  1620. * @from: cpuset in which the tasks currently reside
  1621. * @to: cpuset to which the tasks will be moved
  1622. *
  1623. * Called with cgroup_mutex held
  1624. * callback_mutex must not be held, as cpuset_attach() will take it.
  1625. *
  1626. * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
  1627. * calling callback functions for each.
  1628. */
  1629. static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
  1630. {
  1631. struct cpuset_hotplug_scanner scan;
  1632. scan.scan.cg = from->css.cgroup;
  1633. scan.scan.test_task = NULL; /* select all tasks in cgroup */
  1634. scan.scan.process_task = cpuset_do_move_task;
  1635. scan.scan.heap = NULL;
  1636. scan.to = to->css.cgroup;
  1637. if (cgroup_scan_tasks(&scan.scan))
  1638. printk(KERN_ERR "move_member_tasks_to_cpuset: "
  1639. "cgroup_scan_tasks failed\n");
  1640. }
  1641. /*
  1642. * If CPU and/or memory hotplug handlers, below, unplug any CPUs
  1643. * or memory nodes, we need to walk over the cpuset hierarchy,
  1644. * removing that CPU or node from all cpusets. If this removes the
  1645. * last CPU or node from a cpuset, then move the tasks in the empty
  1646. * cpuset to its next-highest non-empty parent.
  1647. *
  1648. * Called with cgroup_mutex held
  1649. * callback_mutex must not be held, as cpuset_attach() will take it.
  1650. */
  1651. static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
  1652. {
  1653. struct cpuset *parent;
  1654. /*
  1655. * The cgroup's css_sets list is in use if there are tasks
  1656. * in the cpuset; the list is empty if there are none;
  1657. * the cs->css.refcnt seems always 0.
  1658. */
  1659. if (list_empty(&cs->css.cgroup->css_sets))
  1660. return;
  1661. /*
  1662. * Find its next-highest non-empty parent, (top cpuset
  1663. * has online cpus, so can't be empty).
  1664. */
  1665. parent = cs->parent;
  1666. while (cpus_empty(parent->cpus_allowed) ||
  1667. nodes_empty(parent->mems_allowed))
  1668. parent = parent->parent;
  1669. move_member_tasks_to_cpuset(cs, parent);
  1670. }
  1671. /*
  1672. * Walk the specified cpuset subtree and look for empty cpusets.
  1673. * The tasks of such cpuset must be moved to a parent cpuset.
  1674. *
  1675. * Called with cgroup_mutex held. We take callback_mutex to modify
  1676. * cpus_allowed and mems_allowed.
  1677. *
  1678. * This walk processes the tree from top to bottom, completing one layer
  1679. * before dropping down to the next. It always processes a node before
  1680. * any of its children.
  1681. *
  1682. * For now, since we lack memory hot unplug, we'll never see a cpuset
  1683. * that has tasks along with an empty 'mems'. But if we did see such
  1684. * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
  1685. */
  1686. static void scan_for_empty_cpusets(struct cpuset *root)
  1687. {
  1688. LIST_HEAD(queue);
  1689. struct cpuset *cp; /* scans cpusets being updated */
  1690. struct cpuset *child; /* scans child cpusets of cp */
  1691. struct cgroup *cont;
  1692. nodemask_t oldmems;
  1693. list_add_tail((struct list_head *)&root->stack_list, &queue);
  1694. while (!list_empty(&queue)) {
  1695. cp = list_first_entry(&queue, struct cpuset, stack_list);
  1696. list_del(queue.next);
  1697. list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
  1698. child = cgroup_cs(cont);
  1699. list_add_tail(&child->stack_list, &queue);
  1700. }
  1701. /* Continue past cpusets with all cpus, mems online */
  1702. if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
  1703. nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
  1704. continue;
  1705. oldmems = cp->mems_allowed;
  1706. /* Remove offline cpus and mems from this cpuset. */
  1707. mutex_lock(&callback_mutex);
  1708. cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
  1709. nodes_and(cp->mems_allowed, cp->mems_allowed,
  1710. node_states[N_HIGH_MEMORY]);
  1711. mutex_unlock(&callback_mutex);
  1712. /* Move tasks from the empty cpuset to a parent */
  1713. if (cpus_empty(cp->cpus_allowed) ||
  1714. nodes_empty(cp->mems_allowed))
  1715. remove_tasks_in_empty_cpuset(cp);
  1716. else {
  1717. update_tasks_cpumask(cp, NULL);
  1718. update_tasks_nodemask(cp, &oldmems);
  1719. }
  1720. }
  1721. }
  1722. /*
  1723. * The top_cpuset tracks what CPUs and Memory Nodes are online,
  1724. * period. This is necessary in order to make cpusets transparent
  1725. * (of no affect) on systems that are actively using CPU hotplug
  1726. * but making no active use of cpusets.
  1727. *
  1728. * This routine ensures that top_cpuset.cpus_allowed tracks
  1729. * cpu_online_map on each CPU hotplug (cpuhp) event.
  1730. *
  1731. * Called within get_online_cpus(). Needs to call cgroup_lock()
  1732. * before calling generate_sched_domains().
  1733. */
  1734. static int cpuset_track_online_cpus(struct notifier_block *unused_nb,
  1735. unsigned long phase, void *unused_cpu)
  1736. {
  1737. struct sched_domain_attr *attr;
  1738. cpumask_t *doms;
  1739. int ndoms;
  1740. switch (phase) {
  1741. case CPU_ONLINE:
  1742. case CPU_ONLINE_FROZEN:
  1743. case CPU_DEAD:
  1744. case CPU_DEAD_FROZEN:
  1745. break;
  1746. default:
  1747. return NOTIFY_DONE;
  1748. }
  1749. cgroup_lock();
  1750. top_cpuset.cpus_allowed = cpu_online_map;
  1751. scan_for_empty_cpusets(&top_cpuset);
  1752. ndoms = generate_sched_domains(&doms, &attr);
  1753. cgroup_unlock();
  1754. /* Have scheduler rebuild the domains */
  1755. partition_sched_domains(ndoms, doms, attr);
  1756. return NOTIFY_OK;
  1757. }
  1758. #ifdef CONFIG_MEMORY_HOTPLUG
  1759. /*
  1760. * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
  1761. * Call this routine anytime after node_states[N_HIGH_MEMORY] changes.
  1762. * See also the previous routine cpuset_track_online_cpus().
  1763. */
  1764. void cpuset_track_online_nodes(void)
  1765. {
  1766. cgroup_lock();
  1767. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1768. scan_for_empty_cpusets(&top_cpuset);
  1769. cgroup_unlock();
  1770. }
  1771. #endif
  1772. /**
  1773. * cpuset_init_smp - initialize cpus_allowed
  1774. *
  1775. * Description: Finish top cpuset after cpu, node maps are initialized
  1776. **/
  1777. void __init cpuset_init_smp(void)
  1778. {
  1779. top_cpuset.cpus_allowed = cpu_online_map;
  1780. top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
  1781. hotcpu_notifier(cpuset_track_online_cpus, 0);
  1782. }
  1783. /**
  1784. * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
  1785. * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
  1786. * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
  1787. *
  1788. * Description: Returns the cpumask_t cpus_allowed of the cpuset
  1789. * attached to the specified @tsk. Guaranteed to return some non-empty
  1790. * subset of cpu_online_map, even if this means going outside the
  1791. * tasks cpuset.
  1792. **/
  1793. void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
  1794. {
  1795. mutex_lock(&callback_mutex);
  1796. cpuset_cpus_allowed_locked(tsk, pmask);
  1797. mutex_unlock(&callback_mutex);
  1798. }
  1799. /**
  1800. * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
  1801. * Must be called with callback_mutex held.
  1802. **/
  1803. void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
  1804. {
  1805. task_lock(tsk);
  1806. guarantee_online_cpus(task_cs(tsk), pmask);
  1807. task_unlock(tsk);
  1808. }
  1809. void cpuset_init_current_mems_allowed(void)
  1810. {
  1811. nodes_setall(current->mems_allowed);
  1812. }
  1813. /**
  1814. * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
  1815. * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
  1816. *
  1817. * Description: Returns the nodemask_t mems_allowed of the cpuset
  1818. * attached to the specified @tsk. Guaranteed to return some non-empty
  1819. * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
  1820. * tasks cpuset.
  1821. **/
  1822. nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
  1823. {
  1824. nodemask_t mask;
  1825. mutex_lock(&callback_mutex);
  1826. task_lock(tsk);
  1827. guarantee_online_mems(task_cs(tsk), &mask);
  1828. task_unlock(tsk);
  1829. mutex_unlock(&callback_mutex);
  1830. return mask;
  1831. }
  1832. /**
  1833. * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
  1834. * @nodemask: the nodemask to be checked
  1835. *
  1836. * Are any of the nodes in the nodemask allowed in current->mems_allowed?
  1837. */
  1838. int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
  1839. {
  1840. return nodes_intersects(*nodemask, current->mems_allowed);
  1841. }
  1842. /*
  1843. * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
  1844. * mem_hardwall ancestor to the specified cpuset. Call holding
  1845. * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
  1846. * (an unusual configuration), then returns the root cpuset.
  1847. */
  1848. static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
  1849. {
  1850. while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
  1851. cs = cs->parent;
  1852. return cs;
  1853. }
  1854. /**
  1855. * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
  1856. * @z: is this zone on an allowed node?
  1857. * @gfp_mask: memory allocation flags
  1858. *
  1859. * If we're in interrupt, yes, we can always allocate. If
  1860. * __GFP_THISNODE is set, yes, we can always allocate. If zone
  1861. * z's node is in our tasks mems_allowed, yes. If it's not a
  1862. * __GFP_HARDWALL request and this zone's nodes is in the nearest
  1863. * hardwalled cpuset ancestor to this tasks cpuset, yes.
  1864. * If the task has been OOM killed and has access to memory reserves
  1865. * as specified by the TIF_MEMDIE flag, yes.
  1866. * Otherwise, no.
  1867. *
  1868. * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
  1869. * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
  1870. * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
  1871. * from an enclosing cpuset.
  1872. *
  1873. * cpuset_zone_allowed_hardwall() only handles the simpler case of
  1874. * hardwall cpusets, and never sleeps.
  1875. *
  1876. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1877. * by forcibly using a zonelist starting at a specified node, and by
  1878. * (in get_page_from_freelist()) refusing to consider the zones for
  1879. * any node on the zonelist except the first. By the time any such
  1880. * calls get to this routine, we should just shut up and say 'yes'.
  1881. *
  1882. * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
  1883. * and do not allow allocations outside the current tasks cpuset
  1884. * unless the task has been OOM killed as is marked TIF_MEMDIE.
  1885. * GFP_KERNEL allocations are not so marked, so can escape to the
  1886. * nearest enclosing hardwalled ancestor cpuset.
  1887. *
  1888. * Scanning up parent cpusets requires callback_mutex. The
  1889. * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
  1890. * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
  1891. * current tasks mems_allowed came up empty on the first pass over
  1892. * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
  1893. * cpuset are short of memory, might require taking the callback_mutex
  1894. * mutex.
  1895. *
  1896. * The first call here from mm/page_alloc:get_page_from_freelist()
  1897. * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
  1898. * so no allocation on a node outside the cpuset is allowed (unless
  1899. * in interrupt, of course).
  1900. *
  1901. * The second pass through get_page_from_freelist() doesn't even call
  1902. * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
  1903. * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
  1904. * in alloc_flags. That logic and the checks below have the combined
  1905. * affect that:
  1906. * in_interrupt - any node ok (current task context irrelevant)
  1907. * GFP_ATOMIC - any node ok
  1908. * TIF_MEMDIE - any node ok
  1909. * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
  1910. * GFP_USER - only nodes in current tasks mems allowed ok.
  1911. *
  1912. * Rule:
  1913. * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
  1914. * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
  1915. * the code that might scan up ancestor cpusets and sleep.
  1916. */
  1917. int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
  1918. {
  1919. int node; /* node that zone z is on */
  1920. const struct cpuset *cs; /* current cpuset ancestors */
  1921. int allowed; /* is allocation in zone z allowed? */
  1922. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1923. return 1;
  1924. node = zone_to_nid(z);
  1925. might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
  1926. if (node_isset(node, current->mems_allowed))
  1927. return 1;
  1928. /*
  1929. * Allow tasks that have access to memory reserves because they have
  1930. * been OOM killed to get memory anywhere.
  1931. */
  1932. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1933. return 1;
  1934. if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
  1935. return 0;
  1936. if (current->flags & PF_EXITING) /* Let dying task have memory */
  1937. return 1;
  1938. /* Not hardwall and node outside mems_allowed: scan up cpusets */
  1939. mutex_lock(&callback_mutex);
  1940. task_lock(current);
  1941. cs = nearest_hardwall_ancestor(task_cs(current));
  1942. task_unlock(current);
  1943. allowed = node_isset(node, cs->mems_allowed);
  1944. mutex_unlock(&callback_mutex);
  1945. return allowed;
  1946. }
  1947. /*
  1948. * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
  1949. * @z: is this zone on an allowed node?
  1950. * @gfp_mask: memory allocation flags
  1951. *
  1952. * If we're in interrupt, yes, we can always allocate.
  1953. * If __GFP_THISNODE is set, yes, we can always allocate. If zone
  1954. * z's node is in our tasks mems_allowed, yes. If the task has been
  1955. * OOM killed and has access to memory reserves as specified by the
  1956. * TIF_MEMDIE flag, yes. Otherwise, no.
  1957. *
  1958. * The __GFP_THISNODE placement logic is really handled elsewhere,
  1959. * by forcibly using a zonelist starting at a specified node, and by
  1960. * (in get_page_from_freelist()) refusing to consider the zones for
  1961. * any node on the zonelist except the first. By the time any such
  1962. * calls get to this routine, we should just shut up and say 'yes'.
  1963. *
  1964. * Unlike the cpuset_zone_allowed_softwall() variant, above,
  1965. * this variant requires that the zone be in the current tasks
  1966. * mems_allowed or that we're in interrupt. It does not scan up the
  1967. * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
  1968. * It never sleeps.
  1969. */
  1970. int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
  1971. {
  1972. int node; /* node that zone z is on */
  1973. if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
  1974. return 1;
  1975. node = zone_to_nid(z);
  1976. if (node_isset(node, current->mems_allowed))
  1977. return 1;
  1978. /*
  1979. * Allow tasks that have access to memory reserves because they have
  1980. * been OOM killed to get memory anywhere.
  1981. */
  1982. if (unlikely(test_thread_flag(TIF_MEMDIE)))
  1983. return 1;
  1984. return 0;
  1985. }
  1986. /**
  1987. * cpuset_lock - lock out any changes to cpuset structures
  1988. *
  1989. * The out of memory (oom) code needs to mutex_lock cpusets
  1990. * from being changed while it scans the tasklist looking for a
  1991. * task in an overlapping cpuset. Expose callback_mutex via this
  1992. * cpuset_lock() routine, so the oom code can lock it, before
  1993. * locking the task list. The tasklist_lock is a spinlock, so
  1994. * must be taken inside callback_mutex.
  1995. */
  1996. void cpuset_lock(void)
  1997. {
  1998. mutex_lock(&callback_mutex);
  1999. }
  2000. /**
  2001. * cpuset_unlock - release lock on cpuset changes
  2002. *
  2003. * Undo the lock taken in a previous cpuset_lock() call.
  2004. */
  2005. void cpuset_unlock(void)
  2006. {
  2007. mutex_unlock(&callback_mutex);
  2008. }
  2009. /**
  2010. * cpuset_mem_spread_node() - On which node to begin search for a page
  2011. *
  2012. * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
  2013. * tasks in a cpuset with is_spread_page or is_spread_slab set),
  2014. * and if the memory allocation used cpuset_mem_spread_node()
  2015. * to determine on which node to start looking, as it will for
  2016. * certain page cache or slab cache pages such as used for file
  2017. * system buffers and inode caches, then instead of starting on the
  2018. * local node to look for a free page, rather spread the starting
  2019. * node around the tasks mems_allowed nodes.
  2020. *
  2021. * We don't have to worry about the returned node being offline
  2022. * because "it can't happen", and even if it did, it would be ok.
  2023. *
  2024. * The routines calling guarantee_online_mems() are careful to
  2025. * only set nodes in task->mems_allowed that are online. So it
  2026. * should not be possible for the following code to return an
  2027. * offline node. But if it did, that would be ok, as this routine
  2028. * is not returning the node where the allocation must be, only
  2029. * the node where the search should start. The zonelist passed to
  2030. * __alloc_pages() will include all nodes. If the slab allocator
  2031. * is passed an offline node, it will fall back to the local node.
  2032. * See kmem_cache_alloc_node().
  2033. */
  2034. int cpuset_mem_spread_node(void)
  2035. {
  2036. int node;
  2037. node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
  2038. if (node == MAX_NUMNODES)
  2039. node = first_node(current->mems_allowed);
  2040. current->cpuset_mem_spread_rotor = node;
  2041. return node;
  2042. }
  2043. EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
  2044. /**
  2045. * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
  2046. * @tsk1: pointer to task_struct of some task.
  2047. * @tsk2: pointer to task_struct of some other task.
  2048. *
  2049. * Description: Return true if @tsk1's mems_allowed intersects the
  2050. * mems_allowed of @tsk2. Used by the OOM killer to determine if
  2051. * one of the task's memory usage might impact the memory available
  2052. * to the other.
  2053. **/
  2054. int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
  2055. const struct task_struct *tsk2)
  2056. {
  2057. return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
  2058. }
  2059. /*
  2060. * Collection of memory_pressure is suppressed unless
  2061. * this flag is enabled by writing "1" to the special
  2062. * cpuset file 'memory_pressure_enabled' in the root cpuset.
  2063. */
  2064. int cpuset_memory_pressure_enabled __read_mostly;
  2065. /**
  2066. * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
  2067. *
  2068. * Keep a running average of the rate of synchronous (direct)
  2069. * page reclaim efforts initiated by tasks in each cpuset.
  2070. *
  2071. * This represents the rate at which some task in the cpuset
  2072. * ran low on memory on all nodes it was allowed to use, and
  2073. * had to enter the kernels page reclaim code in an effort to
  2074. * create more free memory by tossing clean pages or swapping
  2075. * or writing dirty pages.
  2076. *
  2077. * Display to user space in the per-cpuset read-only file
  2078. * "memory_pressure". Value displayed is an integer
  2079. * representing the recent rate of entry into the synchronous
  2080. * (direct) page reclaim by any task attached to the cpuset.
  2081. **/
  2082. void __cpuset_memory_pressure_bump(void)
  2083. {
  2084. task_lock(current);
  2085. fmeter_markevent(&task_cs(current)->fmeter);
  2086. task_unlock(current);
  2087. }
  2088. #ifdef CONFIG_PROC_PID_CPUSET
  2089. /*
  2090. * proc_cpuset_show()
  2091. * - Print tasks cpuset path into seq_file.
  2092. * - Used for /proc/<pid>/cpuset.
  2093. * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
  2094. * doesn't really matter if tsk->cpuset changes after we read it,
  2095. * and we take cgroup_mutex, keeping cpuset_attach() from changing it
  2096. * anyway.
  2097. */
  2098. static int proc_cpuset_show(struct seq_file *m, void *unused_v)
  2099. {
  2100. struct pid *pid;
  2101. struct task_struct *tsk;
  2102. char *buf;
  2103. struct cgroup_subsys_state *css;
  2104. int retval;
  2105. retval = -ENOMEM;
  2106. buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2107. if (!buf)
  2108. goto out;
  2109. retval = -ESRCH;
  2110. pid = m->private;
  2111. tsk = get_pid_task(pid, PIDTYPE_PID);
  2112. if (!tsk)
  2113. goto out_free;
  2114. retval = -EINVAL;
  2115. cgroup_lock();
  2116. css = task_subsys_state(tsk, cpuset_subsys_id);
  2117. retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
  2118. if (retval < 0)
  2119. goto out_unlock;
  2120. seq_puts(m, buf);
  2121. seq_putc(m, '\n');
  2122. out_unlock:
  2123. cgroup_unlock();
  2124. put_task_struct(tsk);
  2125. out_free:
  2126. kfree(buf);
  2127. out:
  2128. return retval;
  2129. }
  2130. static int cpuset_open(struct inode *inode, struct file *file)
  2131. {
  2132. struct pid *pid = PROC_I(inode)->pid;
  2133. return single_open(file, proc_cpuset_show, pid);
  2134. }
  2135. const struct file_operations proc_cpuset_operations = {
  2136. .open = cpuset_open,
  2137. .read = seq_read,
  2138. .llseek = seq_lseek,
  2139. .release = single_release,
  2140. };
  2141. #endif /* CONFIG_PROC_PID_CPUSET */
  2142. /* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
  2143. void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
  2144. {
  2145. seq_printf(m, "Cpus_allowed:\t");
  2146. m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
  2147. task->cpus_allowed);
  2148. seq_printf(m, "\n");
  2149. seq_printf(m, "Cpus_allowed_list:\t");
  2150. m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
  2151. task->cpus_allowed);
  2152. seq_printf(m, "\n");
  2153. seq_printf(m, "Mems_allowed:\t");
  2154. m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
  2155. task->mems_allowed);
  2156. seq_printf(m, "\n");
  2157. seq_printf(m, "Mems_allowed_list:\t");
  2158. m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
  2159. task->mems_allowed);
  2160. seq_printf(m, "\n");
  2161. }