uv_hub.h 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * SGI UV architectural definitions
  7. *
  8. * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
  9. */
  10. #ifndef ASM_X86__UV__UV_HUB_H
  11. #define ASM_X86__UV__UV_HUB_H
  12. #include <linux/numa.h>
  13. #include <linux/percpu.h>
  14. #include <asm/types.h>
  15. #include <asm/percpu.h>
  16. /*
  17. * Addressing Terminology
  18. *
  19. * M - The low M bits of a physical address represent the offset
  20. * into the blade local memory. RAM memory on a blade is physically
  21. * contiguous (although various IO spaces may punch holes in
  22. * it)..
  23. *
  24. * N - Number of bits in the node portion of a socket physical
  25. * address.
  26. *
  27. * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
  28. * routers always have low bit of 1, C/MBricks have low bit
  29. * equal to 0. Most addressing macros that target UV hub chips
  30. * right shift the NASID by 1 to exclude the always-zero bit.
  31. * NASIDs contain up to 15 bits.
  32. *
  33. * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
  34. * of nasids.
  35. *
  36. * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
  37. * of the nasid for socket usage.
  38. *
  39. *
  40. * NumaLink Global Physical Address Format:
  41. * +--------------------------------+---------------------+
  42. * |00..000| GNODE | NodeOffset |
  43. * +--------------------------------+---------------------+
  44. * |<-------53 - M bits --->|<--------M bits ----->
  45. *
  46. * M - number of node offset bits (35 .. 40)
  47. *
  48. *
  49. * Memory/UV-HUB Processor Socket Address Format:
  50. * +----------------+---------------+---------------------+
  51. * |00..000000000000| PNODE | NodeOffset |
  52. * +----------------+---------------+---------------------+
  53. * <--- N bits --->|<--------M bits ----->
  54. *
  55. * M - number of node offset bits (35 .. 40)
  56. * N - number of PNODE bits (0 .. 10)
  57. *
  58. * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
  59. * The actual values are configuration dependent and are set at
  60. * boot time. M & N values are set by the hardware/BIOS at boot.
  61. *
  62. *
  63. * APICID format
  64. * NOTE!!!!!! This is the current format of the APICID. However, code
  65. * should assume that this will change in the future. Use functions
  66. * in this file for all APICID bit manipulations and conversion.
  67. *
  68. * 1111110000000000
  69. * 5432109876543210
  70. * pppppppppplc0cch
  71. * sssssssssss
  72. *
  73. * p = pnode bits
  74. * l = socket number on board
  75. * c = core
  76. * h = hyperthread
  77. * s = bits that are in the SOCKET_ID CSR
  78. *
  79. * Note: Processor only supports 12 bits in the APICID register. The ACPI
  80. * tables hold all 16 bits. Software needs to be aware of this.
  81. *
  82. * Unless otherwise specified, all references to APICID refer to
  83. * the FULL value contained in ACPI tables, not the subset in the
  84. * processor APICID register.
  85. */
  86. /*
  87. * Maximum number of bricks in all partitions and in all coherency domains.
  88. * This is the total number of bricks accessible in the numalink fabric. It
  89. * includes all C & M bricks. Routers are NOT included.
  90. *
  91. * This value is also the value of the maximum number of non-router NASIDs
  92. * in the numalink fabric.
  93. *
  94. * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
  95. */
  96. #define UV_MAX_NUMALINK_BLADES 16384
  97. /*
  98. * Maximum number of C/Mbricks within a software SSI (hardware may support
  99. * more).
  100. */
  101. #define UV_MAX_SSI_BLADES 256
  102. /*
  103. * The largest possible NASID of a C or M brick (+ 2)
  104. */
  105. #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_NODES * 2)
  106. /*
  107. * The following defines attributes of the HUB chip. These attributes are
  108. * frequently referenced and are kept in the per-cpu data areas of each cpu.
  109. * They are kept together in a struct to minimize cache misses.
  110. */
  111. struct uv_hub_info_s {
  112. unsigned long global_mmr_base;
  113. unsigned long gpa_mask;
  114. unsigned long gnode_upper;
  115. unsigned long lowmem_remap_top;
  116. unsigned long lowmem_remap_base;
  117. unsigned short pnode;
  118. unsigned short pnode_mask;
  119. unsigned short coherency_domain_number;
  120. unsigned short numa_blade_id;
  121. unsigned char blade_processor_id;
  122. unsigned char m_val;
  123. unsigned char n_val;
  124. };
  125. DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
  126. #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
  127. #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
  128. /*
  129. * Local & Global MMR space macros.
  130. * Note: macros are intended to be used ONLY by inline functions
  131. * in this file - not by other kernel code.
  132. * n - NASID (full 15-bit global nasid)
  133. * g - GNODE (full 15-bit global nasid, right shifted 1)
  134. * p - PNODE (local part of nsids, right shifted 1)
  135. */
  136. #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
  137. #define UV_PNODE_TO_NASID(p) (((p) << 1) | uv_hub_info->gnode_upper)
  138. #define UV_LOCAL_MMR_BASE 0xf4000000UL
  139. #define UV_GLOBAL_MMR32_BASE 0xf8000000UL
  140. #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
  141. #define UV_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
  142. #define UV_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
  143. #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
  144. #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
  145. #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
  146. #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
  147. ((unsigned long)(p) << UV_GLOBAL_MMR64_PNODE_SHIFT)
  148. #define UV_APIC_PNODE_SHIFT 6
  149. /*
  150. * Macros for converting between kernel virtual addresses, socket local physical
  151. * addresses, and UV global physical addresses.
  152. * Note: use the standard __pa() & __va() macros for converting
  153. * between socket virtual and socket physical addresses.
  154. */
  155. /* socket phys RAM --> UV global physical address */
  156. static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
  157. {
  158. if (paddr < uv_hub_info->lowmem_remap_top)
  159. paddr += uv_hub_info->lowmem_remap_base;
  160. return paddr | uv_hub_info->gnode_upper;
  161. }
  162. /* socket virtual --> UV global physical address */
  163. static inline unsigned long uv_gpa(void *v)
  164. {
  165. return __pa(v) | uv_hub_info->gnode_upper;
  166. }
  167. /* socket virtual --> UV global physical address */
  168. static inline void *uv_vgpa(void *v)
  169. {
  170. return (void *)uv_gpa(v);
  171. }
  172. /* UV global physical address --> socket virtual */
  173. static inline void *uv_va(unsigned long gpa)
  174. {
  175. return __va(gpa & uv_hub_info->gpa_mask);
  176. }
  177. /* pnode, offset --> socket virtual */
  178. static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
  179. {
  180. return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
  181. }
  182. /*
  183. * Extract a PNODE from an APICID (full apicid, not processor subset)
  184. */
  185. static inline int uv_apicid_to_pnode(int apicid)
  186. {
  187. return (apicid >> UV_APIC_PNODE_SHIFT);
  188. }
  189. /*
  190. * Access global MMRs using the low memory MMR32 space. This region supports
  191. * faster MMR access but not all MMRs are accessible in this space.
  192. */
  193. static inline unsigned long *uv_global_mmr32_address(int pnode,
  194. unsigned long offset)
  195. {
  196. return __va(UV_GLOBAL_MMR32_BASE |
  197. UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
  198. }
  199. static inline void uv_write_global_mmr32(int pnode, unsigned long offset,
  200. unsigned long val)
  201. {
  202. *uv_global_mmr32_address(pnode, offset) = val;
  203. }
  204. static inline unsigned long uv_read_global_mmr32(int pnode,
  205. unsigned long offset)
  206. {
  207. return *uv_global_mmr32_address(pnode, offset);
  208. }
  209. /*
  210. * Access Global MMR space using the MMR space located at the top of physical
  211. * memory.
  212. */
  213. static inline unsigned long *uv_global_mmr64_address(int pnode,
  214. unsigned long offset)
  215. {
  216. return __va(UV_GLOBAL_MMR64_BASE |
  217. UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
  218. }
  219. static inline void uv_write_global_mmr64(int pnode, unsigned long offset,
  220. unsigned long val)
  221. {
  222. *uv_global_mmr64_address(pnode, offset) = val;
  223. }
  224. static inline unsigned long uv_read_global_mmr64(int pnode,
  225. unsigned long offset)
  226. {
  227. return *uv_global_mmr64_address(pnode, offset);
  228. }
  229. /*
  230. * Access hub local MMRs. Faster than using global space but only local MMRs
  231. * are accessible.
  232. */
  233. static inline unsigned long *uv_local_mmr_address(unsigned long offset)
  234. {
  235. return __va(UV_LOCAL_MMR_BASE | offset);
  236. }
  237. static inline unsigned long uv_read_local_mmr(unsigned long offset)
  238. {
  239. return *uv_local_mmr_address(offset);
  240. }
  241. static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
  242. {
  243. *uv_local_mmr_address(offset) = val;
  244. }
  245. /*
  246. * Structures and definitions for converting between cpu, node, pnode, and blade
  247. * numbers.
  248. */
  249. struct uv_blade_info {
  250. unsigned short nr_possible_cpus;
  251. unsigned short nr_online_cpus;
  252. unsigned short pnode;
  253. };
  254. extern struct uv_blade_info *uv_blade_info;
  255. extern short *uv_node_to_blade;
  256. extern short *uv_cpu_to_blade;
  257. extern short uv_possible_blades;
  258. /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
  259. static inline int uv_blade_processor_id(void)
  260. {
  261. return uv_hub_info->blade_processor_id;
  262. }
  263. /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
  264. static inline int uv_numa_blade_id(void)
  265. {
  266. return uv_hub_info->numa_blade_id;
  267. }
  268. /* Convert a cpu number to the the UV blade number */
  269. static inline int uv_cpu_to_blade_id(int cpu)
  270. {
  271. return uv_cpu_to_blade[cpu];
  272. }
  273. /* Convert linux node number to the UV blade number */
  274. static inline int uv_node_to_blade_id(int nid)
  275. {
  276. return uv_node_to_blade[nid];
  277. }
  278. /* Convert a blade id to the PNODE of the blade */
  279. static inline int uv_blade_to_pnode(int bid)
  280. {
  281. return uv_blade_info[bid].pnode;
  282. }
  283. /* Determine the number of possible cpus on a blade */
  284. static inline int uv_blade_nr_possible_cpus(int bid)
  285. {
  286. return uv_blade_info[bid].nr_possible_cpus;
  287. }
  288. /* Determine the number of online cpus on a blade */
  289. static inline int uv_blade_nr_online_cpus(int bid)
  290. {
  291. return uv_blade_info[bid].nr_online_cpus;
  292. }
  293. /* Convert a cpu id to the PNODE of the blade containing the cpu */
  294. static inline int uv_cpu_to_pnode(int cpu)
  295. {
  296. return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
  297. }
  298. /* Convert a linux node number to the PNODE of the blade */
  299. static inline int uv_node_to_pnode(int nid)
  300. {
  301. return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
  302. }
  303. /* Maximum possible number of blades */
  304. static inline int uv_num_possible_blades(void)
  305. {
  306. return uv_possible_blades;
  307. }
  308. #endif /* ASM_X86__UV__UV_HUB_H */