rfbi.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588
  1. /*
  2. * OMAP2 Remote Frame Buffer Interface support
  3. *
  4. * Copyright (C) 2005 Nokia Corporation
  5. * Author: Juha Yrjölä <juha.yrjola@nokia.com>
  6. * Imre Deak <imre.deak@nokia.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful, but
  14. * WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along
  19. * with this program; if not, write to the Free Software Foundation, Inc.,
  20. * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/delay.h>
  24. #include <linux/i2c.h>
  25. #include <linux/err.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/clk.h>
  28. #include <linux/io.h>
  29. #include <mach/omapfb.h>
  30. #include "dispc.h"
  31. /* To work around an RFBI transfer rate limitation */
  32. #define OMAP_RFBI_RATE_LIMIT 1
  33. #define RFBI_BASE 0x48050800
  34. #define RFBI_REVISION 0x0000
  35. #define RFBI_SYSCONFIG 0x0010
  36. #define RFBI_SYSSTATUS 0x0014
  37. #define RFBI_CONTROL 0x0040
  38. #define RFBI_PIXEL_CNT 0x0044
  39. #define RFBI_LINE_NUMBER 0x0048
  40. #define RFBI_CMD 0x004c
  41. #define RFBI_PARAM 0x0050
  42. #define RFBI_DATA 0x0054
  43. #define RFBI_READ 0x0058
  44. #define RFBI_STATUS 0x005c
  45. #define RFBI_CONFIG0 0x0060
  46. #define RFBI_ONOFF_TIME0 0x0064
  47. #define RFBI_CYCLE_TIME0 0x0068
  48. #define RFBI_DATA_CYCLE1_0 0x006c
  49. #define RFBI_DATA_CYCLE2_0 0x0070
  50. #define RFBI_DATA_CYCLE3_0 0x0074
  51. #define RFBI_VSYNC_WIDTH 0x0090
  52. #define RFBI_HSYNC_WIDTH 0x0094
  53. #define DISPC_BASE 0x48050400
  54. #define DISPC_CONTROL 0x0040
  55. static struct {
  56. u32 base;
  57. void (*lcdc_callback)(void *data);
  58. void *lcdc_callback_data;
  59. unsigned long l4_khz;
  60. int bits_per_cycle;
  61. struct omapfb_device *fbdev;
  62. struct clk *dss_ick;
  63. struct clk *dss1_fck;
  64. unsigned tearsync_pin_cnt;
  65. unsigned tearsync_mode;
  66. } rfbi;
  67. static inline void rfbi_write_reg(int idx, u32 val)
  68. {
  69. __raw_writel(val, rfbi.base + idx);
  70. }
  71. static inline u32 rfbi_read_reg(int idx)
  72. {
  73. return __raw_readl(rfbi.base + idx);
  74. }
  75. static int rfbi_get_clocks(void)
  76. {
  77. if (IS_ERR((rfbi.dss_ick = clk_get(rfbi.fbdev->dev, "dss_ick")))) {
  78. dev_err(rfbi.fbdev->dev, "can't get dss_ick\n");
  79. return PTR_ERR(rfbi.dss_ick);
  80. }
  81. if (IS_ERR((rfbi.dss1_fck = clk_get(rfbi.fbdev->dev, "dss1_fck")))) {
  82. dev_err(rfbi.fbdev->dev, "can't get dss1_fck\n");
  83. clk_put(rfbi.dss_ick);
  84. return PTR_ERR(rfbi.dss1_fck);
  85. }
  86. return 0;
  87. }
  88. static void rfbi_put_clocks(void)
  89. {
  90. clk_put(rfbi.dss1_fck);
  91. clk_put(rfbi.dss_ick);
  92. }
  93. static void rfbi_enable_clocks(int enable)
  94. {
  95. if (enable) {
  96. clk_enable(rfbi.dss_ick);
  97. clk_enable(rfbi.dss1_fck);
  98. } else {
  99. clk_disable(rfbi.dss1_fck);
  100. clk_disable(rfbi.dss_ick);
  101. }
  102. }
  103. #ifdef VERBOSE
  104. static void rfbi_print_timings(void)
  105. {
  106. u32 l;
  107. u32 time;
  108. l = rfbi_read_reg(RFBI_CONFIG0);
  109. time = 1000000000 / rfbi.l4_khz;
  110. if (l & (1 << 4))
  111. time *= 2;
  112. dev_dbg(rfbi.fbdev->dev, "Tick time %u ps\n", time);
  113. l = rfbi_read_reg(RFBI_ONOFF_TIME0);
  114. dev_dbg(rfbi.fbdev->dev,
  115. "CSONTIME %d, CSOFFTIME %d, WEONTIME %d, WEOFFTIME %d, "
  116. "REONTIME %d, REOFFTIME %d\n",
  117. l & 0x0f, (l >> 4) & 0x3f, (l >> 10) & 0x0f, (l >> 14) & 0x3f,
  118. (l >> 20) & 0x0f, (l >> 24) & 0x3f);
  119. l = rfbi_read_reg(RFBI_CYCLE_TIME0);
  120. dev_dbg(rfbi.fbdev->dev,
  121. "WECYCLETIME %d, RECYCLETIME %d, CSPULSEWIDTH %d, "
  122. "ACCESSTIME %d\n",
  123. (l & 0x3f), (l >> 6) & 0x3f, (l >> 12) & 0x3f,
  124. (l >> 22) & 0x3f);
  125. }
  126. #else
  127. static void rfbi_print_timings(void) {}
  128. #endif
  129. static void rfbi_set_timings(const struct extif_timings *t)
  130. {
  131. u32 l;
  132. BUG_ON(!t->converted);
  133. rfbi_enable_clocks(1);
  134. rfbi_write_reg(RFBI_ONOFF_TIME0, t->tim[0]);
  135. rfbi_write_reg(RFBI_CYCLE_TIME0, t->tim[1]);
  136. l = rfbi_read_reg(RFBI_CONFIG0);
  137. l &= ~(1 << 4);
  138. l |= (t->tim[2] ? 1 : 0) << 4;
  139. rfbi_write_reg(RFBI_CONFIG0, l);
  140. rfbi_print_timings();
  141. rfbi_enable_clocks(0);
  142. }
  143. static void rfbi_get_clk_info(u32 *clk_period, u32 *max_clk_div)
  144. {
  145. *clk_period = 1000000000 / rfbi.l4_khz;
  146. *max_clk_div = 2;
  147. }
  148. static int ps_to_rfbi_ticks(int time, int div)
  149. {
  150. unsigned long tick_ps;
  151. int ret;
  152. /* Calculate in picosecs to yield more exact results */
  153. tick_ps = 1000000000 / (rfbi.l4_khz) * div;
  154. ret = (time + tick_ps - 1) / tick_ps;
  155. return ret;
  156. }
  157. #ifdef OMAP_RFBI_RATE_LIMIT
  158. static unsigned long rfbi_get_max_tx_rate(void)
  159. {
  160. unsigned long l4_rate, dss1_rate;
  161. int min_l4_ticks = 0;
  162. int i;
  163. /* According to TI this can't be calculated so make the
  164. * adjustments for a couple of known frequencies and warn for
  165. * others.
  166. */
  167. static const struct {
  168. unsigned long l4_clk; /* HZ */
  169. unsigned long dss1_clk; /* HZ */
  170. unsigned long min_l4_ticks;
  171. } ftab[] = {
  172. { 55, 132, 7, }, /* 7.86 MPix/s */
  173. { 110, 110, 12, }, /* 9.16 MPix/s */
  174. { 110, 132, 10, }, /* 11 Mpix/s */
  175. { 120, 120, 10, }, /* 12 Mpix/s */
  176. { 133, 133, 10, }, /* 13.3 Mpix/s */
  177. };
  178. l4_rate = rfbi.l4_khz / 1000;
  179. dss1_rate = clk_get_rate(rfbi.dss1_fck) / 1000000;
  180. for (i = 0; i < ARRAY_SIZE(ftab); i++) {
  181. /* Use a window instead of an exact match, to account
  182. * for different DPLL multiplier / divider pairs.
  183. */
  184. if (abs(ftab[i].l4_clk - l4_rate) < 3 &&
  185. abs(ftab[i].dss1_clk - dss1_rate) < 3) {
  186. min_l4_ticks = ftab[i].min_l4_ticks;
  187. break;
  188. }
  189. }
  190. if (i == ARRAY_SIZE(ftab)) {
  191. /* Can't be sure, return anyway the maximum not
  192. * rate-limited. This might cause a problem only for the
  193. * tearing synchronisation.
  194. */
  195. dev_err(rfbi.fbdev->dev,
  196. "can't determine maximum RFBI transfer rate\n");
  197. return rfbi.l4_khz * 1000;
  198. }
  199. return rfbi.l4_khz * 1000 / min_l4_ticks;
  200. }
  201. #else
  202. static int rfbi_get_max_tx_rate(void)
  203. {
  204. return rfbi.l4_khz * 1000;
  205. }
  206. #endif
  207. static int rfbi_convert_timings(struct extif_timings *t)
  208. {
  209. u32 l;
  210. int reon, reoff, weon, weoff, cson, csoff, cs_pulse;
  211. int actim, recyc, wecyc;
  212. int div = t->clk_div;
  213. if (div <= 0 || div > 2)
  214. return -1;
  215. /* Make sure that after conversion it still holds that:
  216. * weoff > weon, reoff > reon, recyc >= reoff, wecyc >= weoff,
  217. * csoff > cson, csoff >= max(weoff, reoff), actim > reon
  218. */
  219. weon = ps_to_rfbi_ticks(t->we_on_time, div);
  220. weoff = ps_to_rfbi_ticks(t->we_off_time, div);
  221. if (weoff <= weon)
  222. weoff = weon + 1;
  223. if (weon > 0x0f)
  224. return -1;
  225. if (weoff > 0x3f)
  226. return -1;
  227. reon = ps_to_rfbi_ticks(t->re_on_time, div);
  228. reoff = ps_to_rfbi_ticks(t->re_off_time, div);
  229. if (reoff <= reon)
  230. reoff = reon + 1;
  231. if (reon > 0x0f)
  232. return -1;
  233. if (reoff > 0x3f)
  234. return -1;
  235. cson = ps_to_rfbi_ticks(t->cs_on_time, div);
  236. csoff = ps_to_rfbi_ticks(t->cs_off_time, div);
  237. if (csoff <= cson)
  238. csoff = cson + 1;
  239. if (csoff < max(weoff, reoff))
  240. csoff = max(weoff, reoff);
  241. if (cson > 0x0f)
  242. return -1;
  243. if (csoff > 0x3f)
  244. return -1;
  245. l = cson;
  246. l |= csoff << 4;
  247. l |= weon << 10;
  248. l |= weoff << 14;
  249. l |= reon << 20;
  250. l |= reoff << 24;
  251. t->tim[0] = l;
  252. actim = ps_to_rfbi_ticks(t->access_time, div);
  253. if (actim <= reon)
  254. actim = reon + 1;
  255. if (actim > 0x3f)
  256. return -1;
  257. wecyc = ps_to_rfbi_ticks(t->we_cycle_time, div);
  258. if (wecyc < weoff)
  259. wecyc = weoff;
  260. if (wecyc > 0x3f)
  261. return -1;
  262. recyc = ps_to_rfbi_ticks(t->re_cycle_time, div);
  263. if (recyc < reoff)
  264. recyc = reoff;
  265. if (recyc > 0x3f)
  266. return -1;
  267. cs_pulse = ps_to_rfbi_ticks(t->cs_pulse_width, div);
  268. if (cs_pulse > 0x3f)
  269. return -1;
  270. l = wecyc;
  271. l |= recyc << 6;
  272. l |= cs_pulse << 12;
  273. l |= actim << 22;
  274. t->tim[1] = l;
  275. t->tim[2] = div - 1;
  276. t->converted = 1;
  277. return 0;
  278. }
  279. static int rfbi_setup_tearsync(unsigned pin_cnt,
  280. unsigned hs_pulse_time, unsigned vs_pulse_time,
  281. int hs_pol_inv, int vs_pol_inv, int extif_div)
  282. {
  283. int hs, vs;
  284. int min;
  285. u32 l;
  286. if (pin_cnt != 1 && pin_cnt != 2)
  287. return -EINVAL;
  288. hs = ps_to_rfbi_ticks(hs_pulse_time, 1);
  289. vs = ps_to_rfbi_ticks(vs_pulse_time, 1);
  290. if (hs < 2)
  291. return -EDOM;
  292. if (pin_cnt == 2)
  293. min = 2;
  294. else
  295. min = 4;
  296. if (vs < min)
  297. return -EDOM;
  298. if (vs == hs)
  299. return -EINVAL;
  300. rfbi.tearsync_pin_cnt = pin_cnt;
  301. dev_dbg(rfbi.fbdev->dev,
  302. "setup_tearsync: pins %d hs %d vs %d hs_inv %d vs_inv %d\n",
  303. pin_cnt, hs, vs, hs_pol_inv, vs_pol_inv);
  304. rfbi_enable_clocks(1);
  305. rfbi_write_reg(RFBI_HSYNC_WIDTH, hs);
  306. rfbi_write_reg(RFBI_VSYNC_WIDTH, vs);
  307. l = rfbi_read_reg(RFBI_CONFIG0);
  308. if (hs_pol_inv)
  309. l &= ~(1 << 21);
  310. else
  311. l |= 1 << 21;
  312. if (vs_pol_inv)
  313. l &= ~(1 << 20);
  314. else
  315. l |= 1 << 20;
  316. rfbi_enable_clocks(0);
  317. return 0;
  318. }
  319. static int rfbi_enable_tearsync(int enable, unsigned line)
  320. {
  321. u32 l;
  322. dev_dbg(rfbi.fbdev->dev, "tearsync %d line %d mode %d\n",
  323. enable, line, rfbi.tearsync_mode);
  324. if (line > (1 << 11) - 1)
  325. return -EINVAL;
  326. rfbi_enable_clocks(1);
  327. l = rfbi_read_reg(RFBI_CONFIG0);
  328. l &= ~(0x3 << 2);
  329. if (enable) {
  330. rfbi.tearsync_mode = rfbi.tearsync_pin_cnt;
  331. l |= rfbi.tearsync_mode << 2;
  332. } else
  333. rfbi.tearsync_mode = 0;
  334. rfbi_write_reg(RFBI_CONFIG0, l);
  335. rfbi_write_reg(RFBI_LINE_NUMBER, line);
  336. rfbi_enable_clocks(0);
  337. return 0;
  338. }
  339. static void rfbi_write_command(const void *buf, unsigned int len)
  340. {
  341. rfbi_enable_clocks(1);
  342. if (rfbi.bits_per_cycle == 16) {
  343. const u16 *w = buf;
  344. BUG_ON(len & 1);
  345. for (; len; len -= 2)
  346. rfbi_write_reg(RFBI_CMD, *w++);
  347. } else {
  348. const u8 *b = buf;
  349. BUG_ON(rfbi.bits_per_cycle != 8);
  350. for (; len; len--)
  351. rfbi_write_reg(RFBI_CMD, *b++);
  352. }
  353. rfbi_enable_clocks(0);
  354. }
  355. static void rfbi_read_data(void *buf, unsigned int len)
  356. {
  357. rfbi_enable_clocks(1);
  358. if (rfbi.bits_per_cycle == 16) {
  359. u16 *w = buf;
  360. BUG_ON(len & ~1);
  361. for (; len; len -= 2) {
  362. rfbi_write_reg(RFBI_READ, 0);
  363. *w++ = rfbi_read_reg(RFBI_READ);
  364. }
  365. } else {
  366. u8 *b = buf;
  367. BUG_ON(rfbi.bits_per_cycle != 8);
  368. for (; len; len--) {
  369. rfbi_write_reg(RFBI_READ, 0);
  370. *b++ = rfbi_read_reg(RFBI_READ);
  371. }
  372. }
  373. rfbi_enable_clocks(0);
  374. }
  375. static void rfbi_write_data(const void *buf, unsigned int len)
  376. {
  377. rfbi_enable_clocks(1);
  378. if (rfbi.bits_per_cycle == 16) {
  379. const u16 *w = buf;
  380. BUG_ON(len & 1);
  381. for (; len; len -= 2)
  382. rfbi_write_reg(RFBI_PARAM, *w++);
  383. } else {
  384. const u8 *b = buf;
  385. BUG_ON(rfbi.bits_per_cycle != 8);
  386. for (; len; len--)
  387. rfbi_write_reg(RFBI_PARAM, *b++);
  388. }
  389. rfbi_enable_clocks(0);
  390. }
  391. static void rfbi_transfer_area(int width, int height,
  392. void (callback)(void * data), void *data)
  393. {
  394. u32 w;
  395. BUG_ON(callback == NULL);
  396. rfbi_enable_clocks(1);
  397. omap_dispc_set_lcd_size(width, height);
  398. rfbi.lcdc_callback = callback;
  399. rfbi.lcdc_callback_data = data;
  400. rfbi_write_reg(RFBI_PIXEL_CNT, width * height);
  401. w = rfbi_read_reg(RFBI_CONTROL);
  402. w |= 1; /* enable */
  403. if (!rfbi.tearsync_mode)
  404. w |= 1 << 4; /* internal trigger, reset by HW */
  405. rfbi_write_reg(RFBI_CONTROL, w);
  406. omap_dispc_enable_lcd_out(1);
  407. }
  408. static inline void _stop_transfer(void)
  409. {
  410. u32 w;
  411. w = rfbi_read_reg(RFBI_CONTROL);
  412. rfbi_write_reg(RFBI_CONTROL, w & ~(1 << 0));
  413. rfbi_enable_clocks(0);
  414. }
  415. static void rfbi_dma_callback(void *data)
  416. {
  417. _stop_transfer();
  418. rfbi.lcdc_callback(rfbi.lcdc_callback_data);
  419. }
  420. static void rfbi_set_bits_per_cycle(int bpc)
  421. {
  422. u32 l;
  423. rfbi_enable_clocks(1);
  424. l = rfbi_read_reg(RFBI_CONFIG0);
  425. l &= ~(0x03 << 0);
  426. switch (bpc) {
  427. case 8:
  428. break;
  429. case 16:
  430. l |= 3;
  431. break;
  432. default:
  433. BUG();
  434. }
  435. rfbi_write_reg(RFBI_CONFIG0, l);
  436. rfbi.bits_per_cycle = bpc;
  437. rfbi_enable_clocks(0);
  438. }
  439. static int rfbi_init(struct omapfb_device *fbdev)
  440. {
  441. u32 l;
  442. int r;
  443. rfbi.fbdev = fbdev;
  444. rfbi.base = io_p2v(RFBI_BASE);
  445. if ((r = rfbi_get_clocks()) < 0)
  446. return r;
  447. rfbi_enable_clocks(1);
  448. rfbi.l4_khz = clk_get_rate(rfbi.dss_ick) / 1000;
  449. /* Reset */
  450. rfbi_write_reg(RFBI_SYSCONFIG, 1 << 1);
  451. while (!(rfbi_read_reg(RFBI_SYSSTATUS) & (1 << 0)));
  452. l = rfbi_read_reg(RFBI_SYSCONFIG);
  453. /* Enable autoidle and smart-idle */
  454. l |= (1 << 0) | (2 << 3);
  455. rfbi_write_reg(RFBI_SYSCONFIG, l);
  456. /* 16-bit interface, ITE trigger mode, 16-bit data */
  457. l = (0x03 << 0) | (0x00 << 2) | (0x01 << 5) | (0x02 << 7);
  458. l |= (0 << 9) | (1 << 20) | (1 << 21);
  459. rfbi_write_reg(RFBI_CONFIG0, l);
  460. rfbi_write_reg(RFBI_DATA_CYCLE1_0, 0x00000010);
  461. l = rfbi_read_reg(RFBI_CONTROL);
  462. /* Select CS0, clear bypass mode */
  463. l = (0x01 << 2);
  464. rfbi_write_reg(RFBI_CONTROL, l);
  465. if ((r = omap_dispc_request_irq(rfbi_dma_callback, NULL)) < 0) {
  466. dev_err(fbdev->dev, "can't get DISPC irq\n");
  467. rfbi_enable_clocks(0);
  468. return r;
  469. }
  470. l = rfbi_read_reg(RFBI_REVISION);
  471. pr_info("omapfb: RFBI version %d.%d initialized\n",
  472. (l >> 4) & 0x0f, l & 0x0f);
  473. rfbi_enable_clocks(0);
  474. return 0;
  475. }
  476. static void rfbi_cleanup(void)
  477. {
  478. omap_dispc_free_irq();
  479. rfbi_put_clocks();
  480. }
  481. const struct lcd_ctrl_extif omap2_ext_if = {
  482. .init = rfbi_init,
  483. .cleanup = rfbi_cleanup,
  484. .get_clk_info = rfbi_get_clk_info,
  485. .get_max_tx_rate = rfbi_get_max_tx_rate,
  486. .set_bits_per_cycle = rfbi_set_bits_per_cycle,
  487. .convert_timings = rfbi_convert_timings,
  488. .set_timings = rfbi_set_timings,
  489. .write_command = rfbi_write_command,
  490. .read_data = rfbi_read_data,
  491. .write_data = rfbi_write_data,
  492. .transfer_area = rfbi_transfer_area,
  493. .setup_tearsync = rfbi_setup_tearsync,
  494. .enable_tearsync = rfbi_enable_tearsync,
  495. .max_transmit_size = (u32) ~0,
  496. };