intelfbhw.c 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097
  1. /*
  2. * intelfb
  3. *
  4. * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
  5. *
  6. * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
  7. * 2004 Sylvain Meyer
  8. *
  9. * This driver consists of two parts. The first part (intelfbdrv.c) provides
  10. * the basic fbdev interfaces, is derived in part from the radeonfb and
  11. * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
  12. * provides the code to program the hardware. Most of it is derived from
  13. * the i810/i830 XFree86 driver. The HW-specific code is covered here
  14. * under a dual license (GPL and MIT/XFree86 license).
  15. *
  16. * Author: David Dawes
  17. *
  18. */
  19. /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/errno.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/slab.h>
  26. #include <linux/delay.h>
  27. #include <linux/fb.h>
  28. #include <linux/ioport.h>
  29. #include <linux/init.h>
  30. #include <linux/pci.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/interrupt.h>
  34. #include <asm/io.h>
  35. #include "intelfb.h"
  36. #include "intelfbhw.h"
  37. struct pll_min_max {
  38. int min_m, max_m, min_m1, max_m1;
  39. int min_m2, max_m2, min_n, max_n;
  40. int min_p, max_p, min_p1, max_p1;
  41. int min_vco, max_vco, p_transition_clk, ref_clk;
  42. int p_inc_lo, p_inc_hi;
  43. };
  44. #define PLLS_I8xx 0
  45. #define PLLS_I9xx 1
  46. #define PLLS_MAX 2
  47. static struct pll_min_max plls[PLLS_MAX] = {
  48. { 108, 140, 18, 26,
  49. 6, 16, 3, 16,
  50. 4, 128, 0, 31,
  51. 930000, 1400000, 165000, 48000,
  52. 4, 2 }, /* I8xx */
  53. { 75, 120, 10, 20,
  54. 5, 9, 4, 7,
  55. 5, 80, 1, 8,
  56. 1400000, 2800000, 200000, 96000,
  57. 10, 5 } /* I9xx */
  58. };
  59. int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
  60. {
  61. u32 tmp;
  62. if (!pdev || !dinfo)
  63. return 1;
  64. switch (pdev->device) {
  65. case PCI_DEVICE_ID_INTEL_830M:
  66. dinfo->name = "Intel(R) 830M";
  67. dinfo->chipset = INTEL_830M;
  68. dinfo->mobile = 1;
  69. dinfo->pll_index = PLLS_I8xx;
  70. return 0;
  71. case PCI_DEVICE_ID_INTEL_845G:
  72. dinfo->name = "Intel(R) 845G";
  73. dinfo->chipset = INTEL_845G;
  74. dinfo->mobile = 0;
  75. dinfo->pll_index = PLLS_I8xx;
  76. return 0;
  77. case PCI_DEVICE_ID_INTEL_85XGM:
  78. tmp = 0;
  79. dinfo->mobile = 1;
  80. dinfo->pll_index = PLLS_I8xx;
  81. pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
  82. switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
  83. INTEL_85X_VARIANT_MASK) {
  84. case INTEL_VAR_855GME:
  85. dinfo->name = "Intel(R) 855GME";
  86. dinfo->chipset = INTEL_855GME;
  87. return 0;
  88. case INTEL_VAR_855GM:
  89. dinfo->name = "Intel(R) 855GM";
  90. dinfo->chipset = INTEL_855GM;
  91. return 0;
  92. case INTEL_VAR_852GME:
  93. dinfo->name = "Intel(R) 852GME";
  94. dinfo->chipset = INTEL_852GME;
  95. return 0;
  96. case INTEL_VAR_852GM:
  97. dinfo->name = "Intel(R) 852GM";
  98. dinfo->chipset = INTEL_852GM;
  99. return 0;
  100. default:
  101. dinfo->name = "Intel(R) 852GM/855GM";
  102. dinfo->chipset = INTEL_85XGM;
  103. return 0;
  104. }
  105. break;
  106. case PCI_DEVICE_ID_INTEL_865G:
  107. dinfo->name = "Intel(R) 865G";
  108. dinfo->chipset = INTEL_865G;
  109. dinfo->mobile = 0;
  110. dinfo->pll_index = PLLS_I8xx;
  111. return 0;
  112. case PCI_DEVICE_ID_INTEL_915G:
  113. dinfo->name = "Intel(R) 915G";
  114. dinfo->chipset = INTEL_915G;
  115. dinfo->mobile = 0;
  116. dinfo->pll_index = PLLS_I9xx;
  117. return 0;
  118. case PCI_DEVICE_ID_INTEL_915GM:
  119. dinfo->name = "Intel(R) 915GM";
  120. dinfo->chipset = INTEL_915GM;
  121. dinfo->mobile = 1;
  122. dinfo->pll_index = PLLS_I9xx;
  123. return 0;
  124. case PCI_DEVICE_ID_INTEL_945G:
  125. dinfo->name = "Intel(R) 945G";
  126. dinfo->chipset = INTEL_945G;
  127. dinfo->mobile = 0;
  128. dinfo->pll_index = PLLS_I9xx;
  129. return 0;
  130. case PCI_DEVICE_ID_INTEL_945GM:
  131. dinfo->name = "Intel(R) 945GM";
  132. dinfo->chipset = INTEL_945GM;
  133. dinfo->mobile = 1;
  134. dinfo->pll_index = PLLS_I9xx;
  135. return 0;
  136. case PCI_DEVICE_ID_INTEL_965G:
  137. dinfo->name = "Intel(R) 965G";
  138. dinfo->chipset = INTEL_965G;
  139. dinfo->mobile = 0;
  140. dinfo->pll_index = PLLS_I9xx;
  141. return 0;
  142. case PCI_DEVICE_ID_INTEL_965GM:
  143. dinfo->name = "Intel(R) 965GM";
  144. dinfo->chipset = INTEL_965GM;
  145. dinfo->mobile = 1;
  146. dinfo->pll_index = PLLS_I9xx;
  147. return 0;
  148. default:
  149. return 1;
  150. }
  151. }
  152. int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
  153. int *stolen_size)
  154. {
  155. struct pci_dev *bridge_dev;
  156. u16 tmp;
  157. int stolen_overhead;
  158. if (!pdev || !aperture_size || !stolen_size)
  159. return 1;
  160. /* Find the bridge device. It is always 0:0.0 */
  161. if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
  162. ERR_MSG("cannot find bridge device\n");
  163. return 1;
  164. }
  165. /* Get the fb aperture size and "stolen" memory amount. */
  166. tmp = 0;
  167. pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
  168. pci_dev_put(bridge_dev);
  169. switch (pdev->device) {
  170. case PCI_DEVICE_ID_INTEL_915G:
  171. case PCI_DEVICE_ID_INTEL_915GM:
  172. case PCI_DEVICE_ID_INTEL_945G:
  173. case PCI_DEVICE_ID_INTEL_945GM:
  174. case PCI_DEVICE_ID_INTEL_965G:
  175. case PCI_DEVICE_ID_INTEL_965GM:
  176. /* 915, 945 and 965 chipsets support a 256MB aperture.
  177. Aperture size is determined by inspected the
  178. base address of the aperture. */
  179. if (pci_resource_start(pdev, 2) & 0x08000000)
  180. *aperture_size = MB(128);
  181. else
  182. *aperture_size = MB(256);
  183. break;
  184. default:
  185. if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
  186. *aperture_size = MB(64);
  187. else
  188. *aperture_size = MB(128);
  189. break;
  190. }
  191. /* Stolen memory size is reduced by the GTT and the popup.
  192. GTT is 1K per MB of aperture size, and popup is 4K. */
  193. stolen_overhead = (*aperture_size / MB(1)) + 4;
  194. switch(pdev->device) {
  195. case PCI_DEVICE_ID_INTEL_830M:
  196. case PCI_DEVICE_ID_INTEL_845G:
  197. switch (tmp & INTEL_830_GMCH_GMS_MASK) {
  198. case INTEL_830_GMCH_GMS_STOLEN_512:
  199. *stolen_size = KB(512) - KB(stolen_overhead);
  200. return 0;
  201. case INTEL_830_GMCH_GMS_STOLEN_1024:
  202. *stolen_size = MB(1) - KB(stolen_overhead);
  203. return 0;
  204. case INTEL_830_GMCH_GMS_STOLEN_8192:
  205. *stolen_size = MB(8) - KB(stolen_overhead);
  206. return 0;
  207. case INTEL_830_GMCH_GMS_LOCAL:
  208. ERR_MSG("only local memory found\n");
  209. return 1;
  210. case INTEL_830_GMCH_GMS_DISABLED:
  211. ERR_MSG("video memory is disabled\n");
  212. return 1;
  213. default:
  214. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  215. tmp & INTEL_830_GMCH_GMS_MASK);
  216. return 1;
  217. }
  218. break;
  219. default:
  220. switch (tmp & INTEL_855_GMCH_GMS_MASK) {
  221. case INTEL_855_GMCH_GMS_STOLEN_1M:
  222. *stolen_size = MB(1) - KB(stolen_overhead);
  223. return 0;
  224. case INTEL_855_GMCH_GMS_STOLEN_4M:
  225. *stolen_size = MB(4) - KB(stolen_overhead);
  226. return 0;
  227. case INTEL_855_GMCH_GMS_STOLEN_8M:
  228. *stolen_size = MB(8) - KB(stolen_overhead);
  229. return 0;
  230. case INTEL_855_GMCH_GMS_STOLEN_16M:
  231. *stolen_size = MB(16) - KB(stolen_overhead);
  232. return 0;
  233. case INTEL_855_GMCH_GMS_STOLEN_32M:
  234. *stolen_size = MB(32) - KB(stolen_overhead);
  235. return 0;
  236. case INTEL_915G_GMCH_GMS_STOLEN_48M:
  237. *stolen_size = MB(48) - KB(stolen_overhead);
  238. return 0;
  239. case INTEL_915G_GMCH_GMS_STOLEN_64M:
  240. *stolen_size = MB(64) - KB(stolen_overhead);
  241. return 0;
  242. case INTEL_855_GMCH_GMS_DISABLED:
  243. ERR_MSG("video memory is disabled\n");
  244. return 0;
  245. default:
  246. ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
  247. tmp & INTEL_855_GMCH_GMS_MASK);
  248. return 1;
  249. }
  250. }
  251. }
  252. int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
  253. {
  254. int dvo = 0;
  255. if (INREG(LVDS) & PORT_ENABLE)
  256. dvo |= LVDS_PORT;
  257. if (INREG(DVOA) & PORT_ENABLE)
  258. dvo |= DVOA_PORT;
  259. if (INREG(DVOB) & PORT_ENABLE)
  260. dvo |= DVOB_PORT;
  261. if (INREG(DVOC) & PORT_ENABLE)
  262. dvo |= DVOC_PORT;
  263. return dvo;
  264. }
  265. const char * intelfbhw_dvo_to_string(int dvo)
  266. {
  267. if (dvo & DVOA_PORT)
  268. return "DVO port A";
  269. else if (dvo & DVOB_PORT)
  270. return "DVO port B";
  271. else if (dvo & DVOC_PORT)
  272. return "DVO port C";
  273. else if (dvo & LVDS_PORT)
  274. return "LVDS port";
  275. else
  276. return NULL;
  277. }
  278. int intelfbhw_validate_mode(struct intelfb_info *dinfo,
  279. struct fb_var_screeninfo *var)
  280. {
  281. int bytes_per_pixel;
  282. int tmp;
  283. #if VERBOSE > 0
  284. DBG_MSG("intelfbhw_validate_mode\n");
  285. #endif
  286. bytes_per_pixel = var->bits_per_pixel / 8;
  287. if (bytes_per_pixel == 3)
  288. bytes_per_pixel = 4;
  289. /* Check if enough video memory. */
  290. tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
  291. if (tmp > dinfo->fb.size) {
  292. WRN_MSG("Not enough video ram for mode "
  293. "(%d KByte vs %d KByte).\n",
  294. BtoKB(tmp), BtoKB(dinfo->fb.size));
  295. return 1;
  296. }
  297. /* Check if x/y limits are OK. */
  298. if (var->xres - 1 > HACTIVE_MASK) {
  299. WRN_MSG("X resolution too large (%d vs %d).\n",
  300. var->xres, HACTIVE_MASK + 1);
  301. return 1;
  302. }
  303. if (var->yres - 1 > VACTIVE_MASK) {
  304. WRN_MSG("Y resolution too large (%d vs %d).\n",
  305. var->yres, VACTIVE_MASK + 1);
  306. return 1;
  307. }
  308. if (var->xres < 4) {
  309. WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
  310. return 1;
  311. }
  312. if (var->yres < 4) {
  313. WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
  314. return 1;
  315. }
  316. /* Check for doublescan modes. */
  317. if (var->vmode & FB_VMODE_DOUBLE) {
  318. WRN_MSG("Mode is double-scan.\n");
  319. return 1;
  320. }
  321. if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
  322. WRN_MSG("Odd number of lines in interlaced mode\n");
  323. return 1;
  324. }
  325. /* Check if clock is OK. */
  326. tmp = 1000000000 / var->pixclock;
  327. if (tmp < MIN_CLOCK) {
  328. WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
  329. (tmp + 500) / 1000, MIN_CLOCK / 1000);
  330. return 1;
  331. }
  332. if (tmp > MAX_CLOCK) {
  333. WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
  334. (tmp + 500) / 1000, MAX_CLOCK / 1000);
  335. return 1;
  336. }
  337. return 0;
  338. }
  339. int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
  340. {
  341. struct intelfb_info *dinfo = GET_DINFO(info);
  342. u32 offset, xoffset, yoffset;
  343. #if VERBOSE > 0
  344. DBG_MSG("intelfbhw_pan_display\n");
  345. #endif
  346. xoffset = ROUND_DOWN_TO(var->xoffset, 8);
  347. yoffset = var->yoffset;
  348. if ((xoffset + var->xres > var->xres_virtual) ||
  349. (yoffset + var->yres > var->yres_virtual))
  350. return -EINVAL;
  351. offset = (yoffset * dinfo->pitch) +
  352. (xoffset * var->bits_per_pixel) / 8;
  353. offset += dinfo->fb.offset << 12;
  354. dinfo->vsync.pan_offset = offset;
  355. if ((var->activate & FB_ACTIVATE_VBL) &&
  356. !intelfbhw_enable_irq(dinfo))
  357. dinfo->vsync.pan_display = 1;
  358. else {
  359. dinfo->vsync.pan_display = 0;
  360. OUTREG(DSPABASE, offset);
  361. }
  362. return 0;
  363. }
  364. /* Blank the screen. */
  365. void intelfbhw_do_blank(int blank, struct fb_info *info)
  366. {
  367. struct intelfb_info *dinfo = GET_DINFO(info);
  368. u32 tmp;
  369. #if VERBOSE > 0
  370. DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
  371. #endif
  372. /* Turn plane A on or off */
  373. tmp = INREG(DSPACNTR);
  374. if (blank)
  375. tmp &= ~DISPPLANE_PLANE_ENABLE;
  376. else
  377. tmp |= DISPPLANE_PLANE_ENABLE;
  378. OUTREG(DSPACNTR, tmp);
  379. /* Flush */
  380. tmp = INREG(DSPABASE);
  381. OUTREG(DSPABASE, tmp);
  382. /* Turn off/on the HW cursor */
  383. #if VERBOSE > 0
  384. DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
  385. #endif
  386. if (dinfo->cursor_on) {
  387. if (blank)
  388. intelfbhw_cursor_hide(dinfo);
  389. else
  390. intelfbhw_cursor_show(dinfo);
  391. dinfo->cursor_on = 1;
  392. }
  393. dinfo->cursor_blanked = blank;
  394. /* Set DPMS level */
  395. tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
  396. switch (blank) {
  397. case FB_BLANK_UNBLANK:
  398. case FB_BLANK_NORMAL:
  399. tmp |= ADPA_DPMS_D0;
  400. break;
  401. case FB_BLANK_VSYNC_SUSPEND:
  402. tmp |= ADPA_DPMS_D1;
  403. break;
  404. case FB_BLANK_HSYNC_SUSPEND:
  405. tmp |= ADPA_DPMS_D2;
  406. break;
  407. case FB_BLANK_POWERDOWN:
  408. tmp |= ADPA_DPMS_D3;
  409. break;
  410. }
  411. OUTREG(ADPA, tmp);
  412. return;
  413. }
  414. void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
  415. unsigned red, unsigned green, unsigned blue,
  416. unsigned transp)
  417. {
  418. u32 palette_reg = (dinfo->pipe == PIPE_A) ?
  419. PALETTE_A : PALETTE_B;
  420. #if VERBOSE > 0
  421. DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
  422. regno, red, green, blue);
  423. #endif
  424. OUTREG(palette_reg + (regno << 2),
  425. (red << PALETTE_8_RED_SHIFT) |
  426. (green << PALETTE_8_GREEN_SHIFT) |
  427. (blue << PALETTE_8_BLUE_SHIFT));
  428. }
  429. int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
  430. struct intelfb_hwstate *hw, int flag)
  431. {
  432. int i;
  433. #if VERBOSE > 0
  434. DBG_MSG("intelfbhw_read_hw_state\n");
  435. #endif
  436. if (!hw || !dinfo)
  437. return -1;
  438. /* Read in as much of the HW state as possible. */
  439. hw->vga0_divisor = INREG(VGA0_DIVISOR);
  440. hw->vga1_divisor = INREG(VGA1_DIVISOR);
  441. hw->vga_pd = INREG(VGAPD);
  442. hw->dpll_a = INREG(DPLL_A);
  443. hw->dpll_b = INREG(DPLL_B);
  444. hw->fpa0 = INREG(FPA0);
  445. hw->fpa1 = INREG(FPA1);
  446. hw->fpb0 = INREG(FPB0);
  447. hw->fpb1 = INREG(FPB1);
  448. if (flag == 1)
  449. return flag;
  450. #if 0
  451. /* This seems to be a problem with the 852GM/855GM */
  452. for (i = 0; i < PALETTE_8_ENTRIES; i++) {
  453. hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
  454. hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
  455. }
  456. #endif
  457. if (flag == 2)
  458. return flag;
  459. hw->htotal_a = INREG(HTOTAL_A);
  460. hw->hblank_a = INREG(HBLANK_A);
  461. hw->hsync_a = INREG(HSYNC_A);
  462. hw->vtotal_a = INREG(VTOTAL_A);
  463. hw->vblank_a = INREG(VBLANK_A);
  464. hw->vsync_a = INREG(VSYNC_A);
  465. hw->src_size_a = INREG(SRC_SIZE_A);
  466. hw->bclrpat_a = INREG(BCLRPAT_A);
  467. hw->htotal_b = INREG(HTOTAL_B);
  468. hw->hblank_b = INREG(HBLANK_B);
  469. hw->hsync_b = INREG(HSYNC_B);
  470. hw->vtotal_b = INREG(VTOTAL_B);
  471. hw->vblank_b = INREG(VBLANK_B);
  472. hw->vsync_b = INREG(VSYNC_B);
  473. hw->src_size_b = INREG(SRC_SIZE_B);
  474. hw->bclrpat_b = INREG(BCLRPAT_B);
  475. if (flag == 3)
  476. return flag;
  477. hw->adpa = INREG(ADPA);
  478. hw->dvoa = INREG(DVOA);
  479. hw->dvob = INREG(DVOB);
  480. hw->dvoc = INREG(DVOC);
  481. hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
  482. hw->dvob_srcdim = INREG(DVOB_SRCDIM);
  483. hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
  484. hw->lvds = INREG(LVDS);
  485. if (flag == 4)
  486. return flag;
  487. hw->pipe_a_conf = INREG(PIPEACONF);
  488. hw->pipe_b_conf = INREG(PIPEBCONF);
  489. hw->disp_arb = INREG(DISPARB);
  490. if (flag == 5)
  491. return flag;
  492. hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
  493. hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
  494. hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
  495. hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
  496. if (flag == 6)
  497. return flag;
  498. for (i = 0; i < 4; i++) {
  499. hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
  500. hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
  501. }
  502. if (flag == 7)
  503. return flag;
  504. hw->cursor_size = INREG(CURSOR_SIZE);
  505. if (flag == 8)
  506. return flag;
  507. hw->disp_a_ctrl = INREG(DSPACNTR);
  508. hw->disp_b_ctrl = INREG(DSPBCNTR);
  509. hw->disp_a_base = INREG(DSPABASE);
  510. hw->disp_b_base = INREG(DSPBBASE);
  511. hw->disp_a_stride = INREG(DSPASTRIDE);
  512. hw->disp_b_stride = INREG(DSPBSTRIDE);
  513. if (flag == 9)
  514. return flag;
  515. hw->vgacntrl = INREG(VGACNTRL);
  516. if (flag == 10)
  517. return flag;
  518. hw->add_id = INREG(ADD_ID);
  519. if (flag == 11)
  520. return flag;
  521. for (i = 0; i < 7; i++) {
  522. hw->swf0x[i] = INREG(SWF00 + (i << 2));
  523. hw->swf1x[i] = INREG(SWF10 + (i << 2));
  524. if (i < 3)
  525. hw->swf3x[i] = INREG(SWF30 + (i << 2));
  526. }
  527. for (i = 0; i < 8; i++)
  528. hw->fence[i] = INREG(FENCE + (i << 2));
  529. hw->instpm = INREG(INSTPM);
  530. hw->mem_mode = INREG(MEM_MODE);
  531. hw->fw_blc_0 = INREG(FW_BLC_0);
  532. hw->fw_blc_1 = INREG(FW_BLC_1);
  533. hw->hwstam = INREG16(HWSTAM);
  534. hw->ier = INREG16(IER);
  535. hw->iir = INREG16(IIR);
  536. hw->imr = INREG16(IMR);
  537. return 0;
  538. }
  539. static int calc_vclock3(int index, int m, int n, int p)
  540. {
  541. if (p == 0 || n == 0)
  542. return 0;
  543. return plls[index].ref_clk * m / n / p;
  544. }
  545. static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
  546. int lvds)
  547. {
  548. struct pll_min_max *pll = &plls[index];
  549. u32 m, vco, p;
  550. m = (5 * (m1 + 2)) + (m2 + 2);
  551. n += 2;
  552. vco = pll->ref_clk * m / n;
  553. if (index == PLLS_I8xx)
  554. p = ((p1 + 2) * (1 << (p2 + 1)));
  555. else
  556. p = ((p1) * (p2 ? 5 : 10));
  557. return vco / p;
  558. }
  559. #if REGDUMP
  560. static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
  561. int *o_p1, int *o_p2)
  562. {
  563. int p1, p2;
  564. if (IS_I9XX(dinfo)) {
  565. if (dpll & DPLL_P1_FORCE_DIV2)
  566. p1 = 1;
  567. else
  568. p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
  569. p1 = ffs(p1);
  570. p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
  571. } else {
  572. if (dpll & DPLL_P1_FORCE_DIV2)
  573. p1 = 0;
  574. else
  575. p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
  576. p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
  577. }
  578. *o_p1 = p1;
  579. *o_p2 = p2;
  580. }
  581. #endif
  582. void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
  583. struct intelfb_hwstate *hw)
  584. {
  585. #if REGDUMP
  586. int i, m1, m2, n, p1, p2;
  587. int index = dinfo->pll_index;
  588. DBG_MSG("intelfbhw_print_hw_state\n");
  589. if (!hw)
  590. return;
  591. /* Read in as much of the HW state as possible. */
  592. printk("hw state dump start\n");
  593. printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
  594. printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
  595. printk(" VGAPD: 0x%08x\n", hw->vga_pd);
  596. n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  597. m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  598. m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  599. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  600. printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  601. m1, m2, n, p1, p2);
  602. printk(" VGA0: clock is %d\n",
  603. calc_vclock(index, m1, m2, n, p1, p2, 0));
  604. n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  605. m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  606. m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  607. intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
  608. printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  609. m1, m2, n, p1, p2);
  610. printk(" VGA1: clock is %d\n",
  611. calc_vclock(index, m1, m2, n, p1, p2, 0));
  612. printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
  613. printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
  614. printk(" FPA0: 0x%08x\n", hw->fpa0);
  615. printk(" FPA1: 0x%08x\n", hw->fpa1);
  616. printk(" FPB0: 0x%08x\n", hw->fpb0);
  617. printk(" FPB1: 0x%08x\n", hw->fpb1);
  618. n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  619. m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  620. m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  621. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  622. printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  623. m1, m2, n, p1, p2);
  624. printk(" PLLA0: clock is %d\n",
  625. calc_vclock(index, m1, m2, n, p1, p2, 0));
  626. n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  627. m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  628. m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
  629. intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
  630. printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
  631. m1, m2, n, p1, p2);
  632. printk(" PLLA1: clock is %d\n",
  633. calc_vclock(index, m1, m2, n, p1, p2, 0));
  634. #if 0
  635. printk(" PALETTE_A:\n");
  636. for (i = 0; i < PALETTE_8_ENTRIES)
  637. printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
  638. printk(" PALETTE_B:\n");
  639. for (i = 0; i < PALETTE_8_ENTRIES)
  640. printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
  641. #endif
  642. printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
  643. printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
  644. printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
  645. printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
  646. printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
  647. printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
  648. printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
  649. printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
  650. printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
  651. printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
  652. printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
  653. printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
  654. printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
  655. printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
  656. printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
  657. printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
  658. printk(" ADPA: 0x%08x\n", hw->adpa);
  659. printk(" DVOA: 0x%08x\n", hw->dvoa);
  660. printk(" DVOB: 0x%08x\n", hw->dvob);
  661. printk(" DVOC: 0x%08x\n", hw->dvoc);
  662. printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
  663. printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
  664. printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
  665. printk(" LVDS: 0x%08x\n", hw->lvds);
  666. printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
  667. printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
  668. printk(" DISPARB: 0x%08x\n", hw->disp_arb);
  669. printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
  670. printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
  671. printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
  672. printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
  673. printk(" CURSOR_A_PALETTE: ");
  674. for (i = 0; i < 4; i++) {
  675. printk("0x%08x", hw->cursor_a_palette[i]);
  676. if (i < 3)
  677. printk(", ");
  678. }
  679. printk("\n");
  680. printk(" CURSOR_B_PALETTE: ");
  681. for (i = 0; i < 4; i++) {
  682. printk("0x%08x", hw->cursor_b_palette[i]);
  683. if (i < 3)
  684. printk(", ");
  685. }
  686. printk("\n");
  687. printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
  688. printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
  689. printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
  690. printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
  691. printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
  692. printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
  693. printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
  694. printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
  695. printk(" ADD_ID: 0x%08x\n", hw->add_id);
  696. for (i = 0; i < 7; i++) {
  697. printk(" SWF0%d 0x%08x\n", i,
  698. hw->swf0x[i]);
  699. }
  700. for (i = 0; i < 7; i++) {
  701. printk(" SWF1%d 0x%08x\n", i,
  702. hw->swf1x[i]);
  703. }
  704. for (i = 0; i < 3; i++) {
  705. printk(" SWF3%d 0x%08x\n", i,
  706. hw->swf3x[i]);
  707. }
  708. for (i = 0; i < 8; i++)
  709. printk(" FENCE%d 0x%08x\n", i,
  710. hw->fence[i]);
  711. printk(" INSTPM 0x%08x\n", hw->instpm);
  712. printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
  713. printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
  714. printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
  715. printk(" HWSTAM 0x%04x\n", hw->hwstam);
  716. printk(" IER 0x%04x\n", hw->ier);
  717. printk(" IIR 0x%04x\n", hw->iir);
  718. printk(" IMR 0x%04x\n", hw->imr);
  719. printk("hw state dump end\n");
  720. #endif
  721. }
  722. /* Split the M parameter into M1 and M2. */
  723. static int splitm(int index, unsigned int m, unsigned int *retm1,
  724. unsigned int *retm2)
  725. {
  726. int m1, m2;
  727. int testm;
  728. struct pll_min_max *pll = &plls[index];
  729. /* no point optimising too much - brute force m */
  730. for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
  731. for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
  732. testm = (5 * (m1 + 2)) + (m2 + 2);
  733. if (testm == m) {
  734. *retm1 = (unsigned int)m1;
  735. *retm2 = (unsigned int)m2;
  736. return 0;
  737. }
  738. }
  739. }
  740. return 1;
  741. }
  742. /* Split the P parameter into P1 and P2. */
  743. static int splitp(int index, unsigned int p, unsigned int *retp1,
  744. unsigned int *retp2)
  745. {
  746. int p1, p2;
  747. struct pll_min_max *pll = &plls[index];
  748. if (index == PLLS_I9xx) {
  749. p2 = (p % 10) ? 1 : 0;
  750. p1 = p / (p2 ? 5 : 10);
  751. *retp1 = (unsigned int)p1;
  752. *retp2 = (unsigned int)p2;
  753. return 0;
  754. }
  755. if (p % 4 == 0)
  756. p2 = 1;
  757. else
  758. p2 = 0;
  759. p1 = (p / (1 << (p2 + 1))) - 2;
  760. if (p % 4 == 0 && p1 < pll->min_p1) {
  761. p2 = 0;
  762. p1 = (p / (1 << (p2 + 1))) - 2;
  763. }
  764. if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
  765. (p1 + 2) * (1 << (p2 + 1)) != p) {
  766. return 1;
  767. } else {
  768. *retp1 = (unsigned int)p1;
  769. *retp2 = (unsigned int)p2;
  770. return 0;
  771. }
  772. }
  773. static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
  774. u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
  775. {
  776. u32 m1, m2, n, p1, p2, n1, testm;
  777. u32 f_vco, p, p_best = 0, m, f_out = 0;
  778. u32 err_max, err_target, err_best = 10000000;
  779. u32 n_best = 0, m_best = 0, f_best, f_err;
  780. u32 p_min, p_max, p_inc, div_max;
  781. struct pll_min_max *pll = &plls[index];
  782. /* Accept 0.5% difference, but aim for 0.1% */
  783. err_max = 5 * clock / 1000;
  784. err_target = clock / 1000;
  785. DBG_MSG("Clock is %d\n", clock);
  786. div_max = pll->max_vco / clock;
  787. p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
  788. p_min = p_inc;
  789. p_max = ROUND_DOWN_TO(div_max, p_inc);
  790. if (p_min < pll->min_p)
  791. p_min = pll->min_p;
  792. if (p_max > pll->max_p)
  793. p_max = pll->max_p;
  794. DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
  795. p = p_min;
  796. do {
  797. if (splitp(index, p, &p1, &p2)) {
  798. WRN_MSG("cannot split p = %d\n", p);
  799. p += p_inc;
  800. continue;
  801. }
  802. n = pll->min_n;
  803. f_vco = clock * p;
  804. do {
  805. m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
  806. if (m < pll->min_m)
  807. m = pll->min_m + 1;
  808. if (m > pll->max_m)
  809. m = pll->max_m - 1;
  810. for (testm = m - 1; testm <= m; testm++) {
  811. f_out = calc_vclock3(index, testm, n, p);
  812. if (splitm(index, testm, &m1, &m2)) {
  813. WRN_MSG("cannot split m = %d\n",
  814. testm);
  815. continue;
  816. }
  817. if (clock > f_out)
  818. f_err = clock - f_out;
  819. else/* slightly bias the error for bigger clocks */
  820. f_err = f_out - clock + 1;
  821. if (f_err < err_best) {
  822. m_best = testm;
  823. n_best = n;
  824. p_best = p;
  825. f_best = f_out;
  826. err_best = f_err;
  827. }
  828. }
  829. n++;
  830. } while ((n <= pll->max_n) && (f_out >= clock));
  831. p += p_inc;
  832. } while ((p <= p_max));
  833. if (!m_best) {
  834. WRN_MSG("cannot find parameters for clock %d\n", clock);
  835. return 1;
  836. }
  837. m = m_best;
  838. n = n_best;
  839. p = p_best;
  840. splitm(index, m, &m1, &m2);
  841. splitp(index, p, &p1, &p2);
  842. n1 = n - 2;
  843. DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
  844. "f: %d (%d), VCO: %d\n",
  845. m, m1, m2, n, n1, p, p1, p2,
  846. calc_vclock3(index, m, n, p),
  847. calc_vclock(index, m1, m2, n1, p1, p2, 0),
  848. calc_vclock3(index, m, n, p) * p);
  849. *retm1 = m1;
  850. *retm2 = m2;
  851. *retn = n1;
  852. *retp1 = p1;
  853. *retp2 = p2;
  854. *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
  855. return 0;
  856. }
  857. static __inline__ int check_overflow(u32 value, u32 limit,
  858. const char *description)
  859. {
  860. if (value > limit) {
  861. WRN_MSG("%s value %d exceeds limit %d\n",
  862. description, value, limit);
  863. return 1;
  864. }
  865. return 0;
  866. }
  867. /* It is assumed that hw is filled in with the initial state information. */
  868. int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
  869. struct intelfb_hwstate *hw,
  870. struct fb_var_screeninfo *var)
  871. {
  872. int pipe = PIPE_A;
  873. u32 *dpll, *fp0, *fp1;
  874. u32 m1, m2, n, p1, p2, clock_target, clock;
  875. u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
  876. u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
  877. u32 vsync_pol, hsync_pol;
  878. u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
  879. u32 stride_alignment;
  880. DBG_MSG("intelfbhw_mode_to_hw\n");
  881. /* Disable VGA */
  882. hw->vgacntrl |= VGA_DISABLE;
  883. /* Check whether pipe A or pipe B is enabled. */
  884. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  885. pipe = PIPE_A;
  886. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  887. pipe = PIPE_B;
  888. /* Set which pipe's registers will be set. */
  889. if (pipe == PIPE_B) {
  890. dpll = &hw->dpll_b;
  891. fp0 = &hw->fpb0;
  892. fp1 = &hw->fpb1;
  893. hs = &hw->hsync_b;
  894. hb = &hw->hblank_b;
  895. ht = &hw->htotal_b;
  896. vs = &hw->vsync_b;
  897. vb = &hw->vblank_b;
  898. vt = &hw->vtotal_b;
  899. ss = &hw->src_size_b;
  900. pipe_conf = &hw->pipe_b_conf;
  901. } else {
  902. dpll = &hw->dpll_a;
  903. fp0 = &hw->fpa0;
  904. fp1 = &hw->fpa1;
  905. hs = &hw->hsync_a;
  906. hb = &hw->hblank_a;
  907. ht = &hw->htotal_a;
  908. vs = &hw->vsync_a;
  909. vb = &hw->vblank_a;
  910. vt = &hw->vtotal_a;
  911. ss = &hw->src_size_a;
  912. pipe_conf = &hw->pipe_a_conf;
  913. }
  914. /* Use ADPA register for sync control. */
  915. hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
  916. /* sync polarity */
  917. hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
  918. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  919. vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
  920. ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
  921. hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
  922. (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
  923. hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
  924. (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
  925. /* Connect correct pipe to the analog port DAC */
  926. hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
  927. hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
  928. /* Set DPMS state to D0 (on) */
  929. hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
  930. hw->adpa |= ADPA_DPMS_D0;
  931. hw->adpa |= ADPA_DAC_ENABLE;
  932. *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
  933. *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
  934. *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
  935. /* Desired clock in kHz */
  936. clock_target = 1000000000 / var->pixclock;
  937. if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
  938. &n, &p1, &p2, &clock)) {
  939. WRN_MSG("calc_pll_params failed\n");
  940. return 1;
  941. }
  942. /* Check for overflow. */
  943. if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
  944. return 1;
  945. if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
  946. return 1;
  947. if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
  948. return 1;
  949. if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
  950. return 1;
  951. if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
  952. return 1;
  953. *dpll &= ~DPLL_P1_FORCE_DIV2;
  954. *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
  955. (DPLL_P1_MASK << DPLL_P1_SHIFT));
  956. if (IS_I9XX(dinfo)) {
  957. *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
  958. *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
  959. } else
  960. *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
  961. *fp0 = (n << FP_N_DIVISOR_SHIFT) |
  962. (m1 << FP_M1_DIVISOR_SHIFT) |
  963. (m2 << FP_M2_DIVISOR_SHIFT);
  964. *fp1 = *fp0;
  965. hw->dvob &= ~PORT_ENABLE;
  966. hw->dvoc &= ~PORT_ENABLE;
  967. /* Use display plane A. */
  968. hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
  969. hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
  970. hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
  971. switch (intelfb_var_to_depth(var)) {
  972. case 8:
  973. hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
  974. break;
  975. case 15:
  976. hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
  977. break;
  978. case 16:
  979. hw->disp_a_ctrl |= DISPPLANE_16BPP;
  980. break;
  981. case 24:
  982. hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
  983. break;
  984. }
  985. hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
  986. hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
  987. /* Set CRTC registers. */
  988. hactive = var->xres;
  989. hsync_start = hactive + var->right_margin;
  990. hsync_end = hsync_start + var->hsync_len;
  991. htotal = hsync_end + var->left_margin;
  992. hblank_start = hactive;
  993. hblank_end = htotal;
  994. DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  995. hactive, hsync_start, hsync_end, htotal, hblank_start,
  996. hblank_end);
  997. vactive = var->yres;
  998. if (var->vmode & FB_VMODE_INTERLACED)
  999. vactive--; /* the chip adds 2 halflines automatically */
  1000. vsync_start = vactive + var->lower_margin;
  1001. vsync_end = vsync_start + var->vsync_len;
  1002. vtotal = vsync_end + var->upper_margin;
  1003. vblank_start = vactive;
  1004. vblank_end = vtotal;
  1005. vblank_end = vsync_end + 1;
  1006. DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
  1007. vactive, vsync_start, vsync_end, vtotal, vblank_start,
  1008. vblank_end);
  1009. /* Adjust for register values, and check for overflow. */
  1010. hactive--;
  1011. if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
  1012. return 1;
  1013. hsync_start--;
  1014. if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
  1015. return 1;
  1016. hsync_end--;
  1017. if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
  1018. return 1;
  1019. htotal--;
  1020. if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
  1021. return 1;
  1022. hblank_start--;
  1023. if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
  1024. return 1;
  1025. hblank_end--;
  1026. if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
  1027. return 1;
  1028. vactive--;
  1029. if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
  1030. return 1;
  1031. vsync_start--;
  1032. if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
  1033. return 1;
  1034. vsync_end--;
  1035. if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
  1036. return 1;
  1037. vtotal--;
  1038. if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
  1039. return 1;
  1040. vblank_start--;
  1041. if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
  1042. return 1;
  1043. vblank_end--;
  1044. if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
  1045. return 1;
  1046. *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
  1047. *hb = (hblank_start << HBLANKSTART_SHIFT) |
  1048. (hblank_end << HSYNCEND_SHIFT);
  1049. *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
  1050. *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
  1051. *vb = (vblank_start << VBLANKSTART_SHIFT) |
  1052. (vblank_end << VSYNCEND_SHIFT);
  1053. *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
  1054. *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
  1055. (vactive << SRC_SIZE_VERT_SHIFT);
  1056. hw->disp_a_stride = dinfo->pitch;
  1057. DBG_MSG("pitch is %d\n", hw->disp_a_stride);
  1058. hw->disp_a_base = hw->disp_a_stride * var->yoffset +
  1059. var->xoffset * var->bits_per_pixel / 8;
  1060. hw->disp_a_base += dinfo->fb.offset << 12;
  1061. /* Check stride alignment. */
  1062. stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
  1063. STRIDE_ALIGNMENT;
  1064. if (hw->disp_a_stride % stride_alignment != 0) {
  1065. WRN_MSG("display stride %d has bad alignment %d\n",
  1066. hw->disp_a_stride, stride_alignment);
  1067. return 1;
  1068. }
  1069. /* Set the palette to 8-bit mode. */
  1070. *pipe_conf &= ~PIPECONF_GAMMA;
  1071. if (var->vmode & FB_VMODE_INTERLACED)
  1072. *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  1073. else
  1074. *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
  1075. return 0;
  1076. }
  1077. /* Program a (non-VGA) video mode. */
  1078. int intelfbhw_program_mode(struct intelfb_info *dinfo,
  1079. const struct intelfb_hwstate *hw, int blank)
  1080. {
  1081. int pipe = PIPE_A;
  1082. u32 tmp;
  1083. const u32 *dpll, *fp0, *fp1, *pipe_conf;
  1084. const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
  1085. u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
  1086. u32 hsync_reg, htotal_reg, hblank_reg;
  1087. u32 vsync_reg, vtotal_reg, vblank_reg;
  1088. u32 src_size_reg;
  1089. u32 count, tmp_val[3];
  1090. /* Assume single pipe, display plane A, analog CRT. */
  1091. #if VERBOSE > 0
  1092. DBG_MSG("intelfbhw_program_mode\n");
  1093. #endif
  1094. /* Disable VGA */
  1095. tmp = INREG(VGACNTRL);
  1096. tmp |= VGA_DISABLE;
  1097. OUTREG(VGACNTRL, tmp);
  1098. /* Check whether pipe A or pipe B is enabled. */
  1099. if (hw->pipe_a_conf & PIPECONF_ENABLE)
  1100. pipe = PIPE_A;
  1101. else if (hw->pipe_b_conf & PIPECONF_ENABLE)
  1102. pipe = PIPE_B;
  1103. dinfo->pipe = pipe;
  1104. if (pipe == PIPE_B) {
  1105. dpll = &hw->dpll_b;
  1106. fp0 = &hw->fpb0;
  1107. fp1 = &hw->fpb1;
  1108. pipe_conf = &hw->pipe_b_conf;
  1109. hs = &hw->hsync_b;
  1110. hb = &hw->hblank_b;
  1111. ht = &hw->htotal_b;
  1112. vs = &hw->vsync_b;
  1113. vb = &hw->vblank_b;
  1114. vt = &hw->vtotal_b;
  1115. ss = &hw->src_size_b;
  1116. dpll_reg = DPLL_B;
  1117. fp0_reg = FPB0;
  1118. fp1_reg = FPB1;
  1119. pipe_conf_reg = PIPEBCONF;
  1120. pipe_stat_reg = PIPEBSTAT;
  1121. hsync_reg = HSYNC_B;
  1122. htotal_reg = HTOTAL_B;
  1123. hblank_reg = HBLANK_B;
  1124. vsync_reg = VSYNC_B;
  1125. vtotal_reg = VTOTAL_B;
  1126. vblank_reg = VBLANK_B;
  1127. src_size_reg = SRC_SIZE_B;
  1128. } else {
  1129. dpll = &hw->dpll_a;
  1130. fp0 = &hw->fpa0;
  1131. fp1 = &hw->fpa1;
  1132. pipe_conf = &hw->pipe_a_conf;
  1133. hs = &hw->hsync_a;
  1134. hb = &hw->hblank_a;
  1135. ht = &hw->htotal_a;
  1136. vs = &hw->vsync_a;
  1137. vb = &hw->vblank_a;
  1138. vt = &hw->vtotal_a;
  1139. ss = &hw->src_size_a;
  1140. dpll_reg = DPLL_A;
  1141. fp0_reg = FPA0;
  1142. fp1_reg = FPA1;
  1143. pipe_conf_reg = PIPEACONF;
  1144. pipe_stat_reg = PIPEASTAT;
  1145. hsync_reg = HSYNC_A;
  1146. htotal_reg = HTOTAL_A;
  1147. hblank_reg = HBLANK_A;
  1148. vsync_reg = VSYNC_A;
  1149. vtotal_reg = VTOTAL_A;
  1150. vblank_reg = VBLANK_A;
  1151. src_size_reg = SRC_SIZE_A;
  1152. }
  1153. /* turn off pipe */
  1154. tmp = INREG(pipe_conf_reg);
  1155. tmp &= ~PIPECONF_ENABLE;
  1156. OUTREG(pipe_conf_reg, tmp);
  1157. count = 0;
  1158. do {
  1159. tmp_val[count % 3] = INREG(PIPEA_DSL);
  1160. if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
  1161. break;
  1162. count++;
  1163. udelay(1);
  1164. if (count % 200 == 0) {
  1165. tmp = INREG(pipe_conf_reg);
  1166. tmp &= ~PIPECONF_ENABLE;
  1167. OUTREG(pipe_conf_reg, tmp);
  1168. }
  1169. } while (count < 2000);
  1170. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1171. /* Disable planes A and B. */
  1172. tmp = INREG(DSPACNTR);
  1173. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1174. OUTREG(DSPACNTR, tmp);
  1175. tmp = INREG(DSPBCNTR);
  1176. tmp &= ~DISPPLANE_PLANE_ENABLE;
  1177. OUTREG(DSPBCNTR, tmp);
  1178. /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
  1179. mdelay(20);
  1180. OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
  1181. OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
  1182. OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
  1183. /* Disable Sync */
  1184. tmp = INREG(ADPA);
  1185. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1186. tmp |= ADPA_DPMS_D3;
  1187. OUTREG(ADPA, tmp);
  1188. /* do some funky magic - xyzzy */
  1189. OUTREG(0x61204, 0xabcd0000);
  1190. /* turn off PLL */
  1191. tmp = INREG(dpll_reg);
  1192. tmp &= ~DPLL_VCO_ENABLE;
  1193. OUTREG(dpll_reg, tmp);
  1194. /* Set PLL parameters */
  1195. OUTREG(fp0_reg, *fp0);
  1196. OUTREG(fp1_reg, *fp1);
  1197. /* Enable PLL */
  1198. OUTREG(dpll_reg, *dpll);
  1199. /* Set DVOs B/C */
  1200. OUTREG(DVOB, hw->dvob);
  1201. OUTREG(DVOC, hw->dvoc);
  1202. /* undo funky magic */
  1203. OUTREG(0x61204, 0x00000000);
  1204. /* Set ADPA */
  1205. OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
  1206. OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
  1207. /* Set pipe parameters */
  1208. OUTREG(hsync_reg, *hs);
  1209. OUTREG(hblank_reg, *hb);
  1210. OUTREG(htotal_reg, *ht);
  1211. OUTREG(vsync_reg, *vs);
  1212. OUTREG(vblank_reg, *vb);
  1213. OUTREG(vtotal_reg, *vt);
  1214. OUTREG(src_size_reg, *ss);
  1215. switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
  1216. FB_VMODE_ODD_FLD_FIRST)) {
  1217. case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
  1218. OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
  1219. break;
  1220. case FB_VMODE_INTERLACED: /* even lines first */
  1221. OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
  1222. break;
  1223. default: /* non-interlaced */
  1224. OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
  1225. }
  1226. /* Enable pipe */
  1227. OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
  1228. /* Enable sync */
  1229. tmp = INREG(ADPA);
  1230. tmp &= ~ADPA_DPMS_CONTROL_MASK;
  1231. tmp |= ADPA_DPMS_D0;
  1232. OUTREG(ADPA, tmp);
  1233. /* setup display plane */
  1234. if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
  1235. /*
  1236. * i830M errata: the display plane must be enabled
  1237. * to allow writes to the other bits in the plane
  1238. * control register.
  1239. */
  1240. tmp = INREG(DSPACNTR);
  1241. if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
  1242. tmp |= DISPPLANE_PLANE_ENABLE;
  1243. OUTREG(DSPACNTR, tmp);
  1244. OUTREG(DSPACNTR,
  1245. hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
  1246. mdelay(1);
  1247. }
  1248. }
  1249. OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
  1250. OUTREG(DSPASTRIDE, hw->disp_a_stride);
  1251. OUTREG(DSPABASE, hw->disp_a_base);
  1252. /* Enable plane */
  1253. if (!blank) {
  1254. tmp = INREG(DSPACNTR);
  1255. tmp |= DISPPLANE_PLANE_ENABLE;
  1256. OUTREG(DSPACNTR, tmp);
  1257. OUTREG(DSPABASE, hw->disp_a_base);
  1258. }
  1259. return 0;
  1260. }
  1261. /* forward declarations */
  1262. static void refresh_ring(struct intelfb_info *dinfo);
  1263. static void reset_state(struct intelfb_info *dinfo);
  1264. static void do_flush(struct intelfb_info *dinfo);
  1265. static u32 get_ring_space(struct intelfb_info *dinfo)
  1266. {
  1267. u32 ring_space;
  1268. if (dinfo->ring_tail >= dinfo->ring_head)
  1269. ring_space = dinfo->ring.size -
  1270. (dinfo->ring_tail - dinfo->ring_head);
  1271. else
  1272. ring_space = dinfo->ring_head - dinfo->ring_tail;
  1273. if (ring_space > RING_MIN_FREE)
  1274. ring_space -= RING_MIN_FREE;
  1275. else
  1276. ring_space = 0;
  1277. return ring_space;
  1278. }
  1279. static int wait_ring(struct intelfb_info *dinfo, int n)
  1280. {
  1281. int i = 0;
  1282. unsigned long end;
  1283. u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1284. #if VERBOSE > 0
  1285. DBG_MSG("wait_ring: %d\n", n);
  1286. #endif
  1287. end = jiffies + (HZ * 3);
  1288. while (dinfo->ring_space < n) {
  1289. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1290. dinfo->ring_space = get_ring_space(dinfo);
  1291. if (dinfo->ring_head != last_head) {
  1292. end = jiffies + (HZ * 3);
  1293. last_head = dinfo->ring_head;
  1294. }
  1295. i++;
  1296. if (time_before(end, jiffies)) {
  1297. if (!i) {
  1298. /* Try again */
  1299. reset_state(dinfo);
  1300. refresh_ring(dinfo);
  1301. do_flush(dinfo);
  1302. end = jiffies + (HZ * 3);
  1303. i = 1;
  1304. } else {
  1305. WRN_MSG("ring buffer : space: %d wanted %d\n",
  1306. dinfo->ring_space, n);
  1307. WRN_MSG("lockup - turning off hardware "
  1308. "acceleration\n");
  1309. dinfo->ring_lockup = 1;
  1310. break;
  1311. }
  1312. }
  1313. udelay(1);
  1314. }
  1315. return i;
  1316. }
  1317. static void do_flush(struct intelfb_info *dinfo)
  1318. {
  1319. START_RING(2);
  1320. OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
  1321. OUT_RING(MI_NOOP);
  1322. ADVANCE_RING();
  1323. }
  1324. void intelfbhw_do_sync(struct intelfb_info *dinfo)
  1325. {
  1326. #if VERBOSE > 0
  1327. DBG_MSG("intelfbhw_do_sync\n");
  1328. #endif
  1329. if (!dinfo->accel)
  1330. return;
  1331. /*
  1332. * Send a flush, then wait until the ring is empty. This is what
  1333. * the XFree86 driver does, and actually it doesn't seem a lot worse
  1334. * than the recommended method (both have problems).
  1335. */
  1336. do_flush(dinfo);
  1337. wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
  1338. dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
  1339. }
  1340. static void refresh_ring(struct intelfb_info *dinfo)
  1341. {
  1342. #if VERBOSE > 0
  1343. DBG_MSG("refresh_ring\n");
  1344. #endif
  1345. dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
  1346. dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
  1347. dinfo->ring_space = get_ring_space(dinfo);
  1348. }
  1349. static void reset_state(struct intelfb_info *dinfo)
  1350. {
  1351. int i;
  1352. u32 tmp;
  1353. #if VERBOSE > 0
  1354. DBG_MSG("reset_state\n");
  1355. #endif
  1356. for (i = 0; i < FENCE_NUM; i++)
  1357. OUTREG(FENCE + (i << 2), 0);
  1358. /* Flush the ring buffer if it's enabled. */
  1359. tmp = INREG(PRI_RING_LENGTH);
  1360. if (tmp & RING_ENABLE) {
  1361. #if VERBOSE > 0
  1362. DBG_MSG("reset_state: ring was enabled\n");
  1363. #endif
  1364. refresh_ring(dinfo);
  1365. intelfbhw_do_sync(dinfo);
  1366. DO_RING_IDLE();
  1367. }
  1368. OUTREG(PRI_RING_LENGTH, 0);
  1369. OUTREG(PRI_RING_HEAD, 0);
  1370. OUTREG(PRI_RING_TAIL, 0);
  1371. OUTREG(PRI_RING_START, 0);
  1372. }
  1373. /* Stop the 2D engine, and turn off the ring buffer. */
  1374. void intelfbhw_2d_stop(struct intelfb_info *dinfo)
  1375. {
  1376. #if VERBOSE > 0
  1377. DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
  1378. dinfo->accel, dinfo->ring_active);
  1379. #endif
  1380. if (!dinfo->accel)
  1381. return;
  1382. dinfo->ring_active = 0;
  1383. reset_state(dinfo);
  1384. }
  1385. /*
  1386. * Enable the ring buffer, and initialise the 2D engine.
  1387. * It is assumed that the graphics engine has been stopped by previously
  1388. * calling intelfb_2d_stop().
  1389. */
  1390. void intelfbhw_2d_start(struct intelfb_info *dinfo)
  1391. {
  1392. #if VERBOSE > 0
  1393. DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
  1394. dinfo->accel, dinfo->ring_active);
  1395. #endif
  1396. if (!dinfo->accel)
  1397. return;
  1398. /* Initialise the primary ring buffer. */
  1399. OUTREG(PRI_RING_LENGTH, 0);
  1400. OUTREG(PRI_RING_TAIL, 0);
  1401. OUTREG(PRI_RING_HEAD, 0);
  1402. OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
  1403. OUTREG(PRI_RING_LENGTH,
  1404. ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
  1405. RING_NO_REPORT | RING_ENABLE);
  1406. refresh_ring(dinfo);
  1407. dinfo->ring_active = 1;
  1408. }
  1409. /* 2D fillrect (solid fill or invert) */
  1410. void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
  1411. u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
  1412. {
  1413. u32 br00, br09, br13, br14, br16;
  1414. #if VERBOSE > 0
  1415. DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
  1416. "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
  1417. #endif
  1418. br00 = COLOR_BLT_CMD;
  1419. br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
  1420. br13 = (rop << ROP_SHIFT) | pitch;
  1421. br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
  1422. br16 = color;
  1423. switch (bpp) {
  1424. case 8:
  1425. br13 |= COLOR_DEPTH_8;
  1426. break;
  1427. case 16:
  1428. br13 |= COLOR_DEPTH_16;
  1429. break;
  1430. case 32:
  1431. br13 |= COLOR_DEPTH_32;
  1432. br00 |= WRITE_ALPHA | WRITE_RGB;
  1433. break;
  1434. }
  1435. START_RING(6);
  1436. OUT_RING(br00);
  1437. OUT_RING(br13);
  1438. OUT_RING(br14);
  1439. OUT_RING(br09);
  1440. OUT_RING(br16);
  1441. OUT_RING(MI_NOOP);
  1442. ADVANCE_RING();
  1443. #if VERBOSE > 0
  1444. DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
  1445. dinfo->ring_tail, dinfo->ring_space);
  1446. #endif
  1447. }
  1448. void
  1449. intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
  1450. u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
  1451. {
  1452. u32 br00, br09, br11, br12, br13, br22, br23, br26;
  1453. #if VERBOSE > 0
  1454. DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
  1455. curx, cury, dstx, dsty, w, h, pitch, bpp);
  1456. #endif
  1457. br00 = XY_SRC_COPY_BLT_CMD;
  1458. br09 = dinfo->fb_start;
  1459. br11 = (pitch << PITCH_SHIFT);
  1460. br12 = dinfo->fb_start;
  1461. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1462. br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
  1463. br23 = ((dstx + w) << WIDTH_SHIFT) |
  1464. ((dsty + h) << HEIGHT_SHIFT);
  1465. br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
  1466. switch (bpp) {
  1467. case 8:
  1468. br13 |= COLOR_DEPTH_8;
  1469. break;
  1470. case 16:
  1471. br13 |= COLOR_DEPTH_16;
  1472. break;
  1473. case 32:
  1474. br13 |= COLOR_DEPTH_32;
  1475. br00 |= WRITE_ALPHA | WRITE_RGB;
  1476. break;
  1477. }
  1478. START_RING(8);
  1479. OUT_RING(br00);
  1480. OUT_RING(br13);
  1481. OUT_RING(br22);
  1482. OUT_RING(br23);
  1483. OUT_RING(br09);
  1484. OUT_RING(br26);
  1485. OUT_RING(br11);
  1486. OUT_RING(br12);
  1487. ADVANCE_RING();
  1488. }
  1489. int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
  1490. u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
  1491. u32 bpp)
  1492. {
  1493. int nbytes, ndwords, pad, tmp;
  1494. u32 br00, br09, br13, br18, br19, br22, br23;
  1495. int dat, ix, iy, iw;
  1496. int i, j;
  1497. #if VERBOSE > 0
  1498. DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
  1499. #endif
  1500. /* size in bytes of a padded scanline */
  1501. nbytes = ROUND_UP_TO(w, 16) / 8;
  1502. /* Total bytes of padded scanline data to write out. */
  1503. nbytes = nbytes * h;
  1504. /*
  1505. * Check if the glyph data exceeds the immediate mode limit.
  1506. * It would take a large font (1K pixels) to hit this limit.
  1507. */
  1508. if (nbytes > MAX_MONO_IMM_SIZE)
  1509. return 0;
  1510. /* Src data is packaged a dword (32-bit) at a time. */
  1511. ndwords = ROUND_UP_TO(nbytes, 4) / 4;
  1512. /*
  1513. * Ring has to be padded to a quad word. But because the command starts
  1514. with 7 bytes, pad only if there is an even number of ndwords
  1515. */
  1516. pad = !(ndwords % 2);
  1517. tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
  1518. br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
  1519. br09 = dinfo->fb_start;
  1520. br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
  1521. br18 = bg;
  1522. br19 = fg;
  1523. br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
  1524. br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
  1525. switch (bpp) {
  1526. case 8:
  1527. br13 |= COLOR_DEPTH_8;
  1528. break;
  1529. case 16:
  1530. br13 |= COLOR_DEPTH_16;
  1531. break;
  1532. case 32:
  1533. br13 |= COLOR_DEPTH_32;
  1534. br00 |= WRITE_ALPHA | WRITE_RGB;
  1535. break;
  1536. }
  1537. START_RING(8 + ndwords);
  1538. OUT_RING(br00);
  1539. OUT_RING(br13);
  1540. OUT_RING(br22);
  1541. OUT_RING(br23);
  1542. OUT_RING(br09);
  1543. OUT_RING(br18);
  1544. OUT_RING(br19);
  1545. ix = iy = 0;
  1546. iw = ROUND_UP_TO(w, 8) / 8;
  1547. while (ndwords--) {
  1548. dat = 0;
  1549. for (j = 0; j < 2; ++j) {
  1550. for (i = 0; i < 2; ++i) {
  1551. if (ix != iw || i == 0)
  1552. dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
  1553. }
  1554. if (ix == iw && iy != (h-1)) {
  1555. ix = 0;
  1556. ++iy;
  1557. }
  1558. }
  1559. OUT_RING(dat);
  1560. }
  1561. if (pad)
  1562. OUT_RING(MI_NOOP);
  1563. ADVANCE_RING();
  1564. return 1;
  1565. }
  1566. /* HW cursor functions. */
  1567. void intelfbhw_cursor_init(struct intelfb_info *dinfo)
  1568. {
  1569. u32 tmp;
  1570. #if VERBOSE > 0
  1571. DBG_MSG("intelfbhw_cursor_init\n");
  1572. #endif
  1573. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1574. if (!dinfo->cursor.physical)
  1575. return;
  1576. tmp = INREG(CURSOR_A_CONTROL);
  1577. tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
  1578. CURSOR_MEM_TYPE_LOCAL |
  1579. (1 << CURSOR_PIPE_SELECT_SHIFT));
  1580. tmp |= CURSOR_MODE_DISABLE;
  1581. OUTREG(CURSOR_A_CONTROL, tmp);
  1582. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1583. } else {
  1584. tmp = INREG(CURSOR_CONTROL);
  1585. tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
  1586. CURSOR_ENABLE | CURSOR_STRIDE_MASK);
  1587. tmp = CURSOR_FORMAT_3C;
  1588. OUTREG(CURSOR_CONTROL, tmp);
  1589. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
  1590. tmp = (64 << CURSOR_SIZE_H_SHIFT) |
  1591. (64 << CURSOR_SIZE_V_SHIFT);
  1592. OUTREG(CURSOR_SIZE, tmp);
  1593. }
  1594. }
  1595. void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
  1596. {
  1597. u32 tmp;
  1598. #if VERBOSE > 0
  1599. DBG_MSG("intelfbhw_cursor_hide\n");
  1600. #endif
  1601. dinfo->cursor_on = 0;
  1602. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1603. if (!dinfo->cursor.physical)
  1604. return;
  1605. tmp = INREG(CURSOR_A_CONTROL);
  1606. tmp &= ~CURSOR_MODE_MASK;
  1607. tmp |= CURSOR_MODE_DISABLE;
  1608. OUTREG(CURSOR_A_CONTROL, tmp);
  1609. /* Flush changes */
  1610. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1611. } else {
  1612. tmp = INREG(CURSOR_CONTROL);
  1613. tmp &= ~CURSOR_ENABLE;
  1614. OUTREG(CURSOR_CONTROL, tmp);
  1615. }
  1616. }
  1617. void intelfbhw_cursor_show(struct intelfb_info *dinfo)
  1618. {
  1619. u32 tmp;
  1620. #if VERBOSE > 0
  1621. DBG_MSG("intelfbhw_cursor_show\n");
  1622. #endif
  1623. dinfo->cursor_on = 1;
  1624. if (dinfo->cursor_blanked)
  1625. return;
  1626. if (dinfo->mobile || IS_I9XX(dinfo)) {
  1627. if (!dinfo->cursor.physical)
  1628. return;
  1629. tmp = INREG(CURSOR_A_CONTROL);
  1630. tmp &= ~CURSOR_MODE_MASK;
  1631. tmp |= CURSOR_MODE_64_4C_AX;
  1632. OUTREG(CURSOR_A_CONTROL, tmp);
  1633. /* Flush changes */
  1634. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1635. } else {
  1636. tmp = INREG(CURSOR_CONTROL);
  1637. tmp |= CURSOR_ENABLE;
  1638. OUTREG(CURSOR_CONTROL, tmp);
  1639. }
  1640. }
  1641. void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
  1642. {
  1643. u32 tmp;
  1644. #if VERBOSE > 0
  1645. DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
  1646. #endif
  1647. /*
  1648. * Sets the position. The coordinates are assumed to already
  1649. * have any offset adjusted. Assume that the cursor is never
  1650. * completely off-screen, and that x, y are always >= 0.
  1651. */
  1652. tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
  1653. ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
  1654. OUTREG(CURSOR_A_POSITION, tmp);
  1655. if (IS_I9XX(dinfo))
  1656. OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
  1657. }
  1658. void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
  1659. {
  1660. #if VERBOSE > 0
  1661. DBG_MSG("intelfbhw_cursor_setcolor\n");
  1662. #endif
  1663. OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
  1664. OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
  1665. OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
  1666. OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
  1667. }
  1668. void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
  1669. u8 *data)
  1670. {
  1671. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1672. int i, j, w = width / 8;
  1673. int mod = width % 8, t_mask, d_mask;
  1674. #if VERBOSE > 0
  1675. DBG_MSG("intelfbhw_cursor_load\n");
  1676. #endif
  1677. if (!dinfo->cursor.virtual)
  1678. return;
  1679. t_mask = 0xff >> mod;
  1680. d_mask = ~(0xff >> mod);
  1681. for (i = height; i--; ) {
  1682. for (j = 0; j < w; j++) {
  1683. writeb(0x00, addr + j);
  1684. writeb(*(data++), addr + j+8);
  1685. }
  1686. if (mod) {
  1687. writeb(t_mask, addr + j);
  1688. writeb(*(data++) & d_mask, addr + j+8);
  1689. }
  1690. addr += 16;
  1691. }
  1692. }
  1693. void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
  1694. {
  1695. u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
  1696. int i, j;
  1697. #if VERBOSE > 0
  1698. DBG_MSG("intelfbhw_cursor_reset\n");
  1699. #endif
  1700. if (!dinfo->cursor.virtual)
  1701. return;
  1702. for (i = 64; i--; ) {
  1703. for (j = 0; j < 8; j++) {
  1704. writeb(0xff, addr + j+0);
  1705. writeb(0x00, addr + j+8);
  1706. }
  1707. addr += 16;
  1708. }
  1709. }
  1710. static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
  1711. {
  1712. u16 tmp;
  1713. struct intelfb_info *dinfo = dev_id;
  1714. spin_lock(&dinfo->int_lock);
  1715. tmp = INREG16(IIR);
  1716. if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
  1717. tmp &= PIPE_A_EVENT_INTERRUPT;
  1718. else
  1719. tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
  1720. if (tmp == 0) {
  1721. spin_unlock(&dinfo->int_lock);
  1722. return IRQ_RETVAL(0); /* not us */
  1723. }
  1724. /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
  1725. OUTREG(PIPEASTAT, INREG(PIPEASTAT));
  1726. OUTREG16(IIR, tmp);
  1727. if (dinfo->vsync.pan_display) {
  1728. dinfo->vsync.pan_display = 0;
  1729. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1730. }
  1731. dinfo->vsync.count++;
  1732. wake_up_interruptible(&dinfo->vsync.wait);
  1733. spin_unlock(&dinfo->int_lock);
  1734. return IRQ_RETVAL(1);
  1735. }
  1736. int intelfbhw_enable_irq(struct intelfb_info *dinfo)
  1737. {
  1738. u16 tmp;
  1739. if (!test_and_set_bit(0, &dinfo->irq_flags)) {
  1740. if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
  1741. "intelfb", dinfo)) {
  1742. clear_bit(0, &dinfo->irq_flags);
  1743. return -EINVAL;
  1744. }
  1745. spin_lock_irq(&dinfo->int_lock);
  1746. OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
  1747. OUTREG16(IMR, 0);
  1748. } else
  1749. spin_lock_irq(&dinfo->int_lock);
  1750. if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
  1751. tmp = PIPE_A_EVENT_INTERRUPT;
  1752. else
  1753. tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
  1754. if (tmp != INREG16(IER)) {
  1755. DBG_MSG("changing IER to 0x%X\n", tmp);
  1756. OUTREG16(IER, tmp);
  1757. }
  1758. spin_unlock_irq(&dinfo->int_lock);
  1759. return 0;
  1760. }
  1761. void intelfbhw_disable_irq(struct intelfb_info *dinfo)
  1762. {
  1763. if (test_and_clear_bit(0, &dinfo->irq_flags)) {
  1764. if (dinfo->vsync.pan_display) {
  1765. dinfo->vsync.pan_display = 0;
  1766. OUTREG(DSPABASE, dinfo->vsync.pan_offset);
  1767. }
  1768. spin_lock_irq(&dinfo->int_lock);
  1769. OUTREG16(HWSTAM, 0xffff);
  1770. OUTREG16(IMR, 0xffff);
  1771. OUTREG16(IER, 0x0);
  1772. OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
  1773. spin_unlock_irq(&dinfo->int_lock);
  1774. free_irq(dinfo->pdev->irq, dinfo);
  1775. }
  1776. }
  1777. int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
  1778. {
  1779. struct intelfb_vsync *vsync;
  1780. unsigned int count;
  1781. int ret;
  1782. switch (pipe) {
  1783. case 0:
  1784. vsync = &dinfo->vsync;
  1785. break;
  1786. default:
  1787. return -ENODEV;
  1788. }
  1789. ret = intelfbhw_enable_irq(dinfo);
  1790. if (ret)
  1791. return ret;
  1792. count = vsync->count;
  1793. ret = wait_event_interruptible_timeout(vsync->wait,
  1794. count != vsync->count, HZ / 10);
  1795. if (ret < 0)
  1796. return ret;
  1797. if (ret == 0) {
  1798. DBG_MSG("wait_for_vsync timed out!\n");
  1799. return -ETIMEDOUT;
  1800. }
  1801. return 0;
  1802. }