amd5536udc.c 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. /*
  22. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  23. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  24. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  25. *
  26. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  27. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  28. * by BIOS init).
  29. *
  30. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  31. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  32. * can be used with gadget ether.
  33. */
  34. /* debug control */
  35. /* #define UDC_VERBOSE */
  36. /* Driver strings */
  37. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  38. #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
  39. /* system */
  40. #include <linux/module.h>
  41. #include <linux/pci.h>
  42. #include <linux/kernel.h>
  43. #include <linux/delay.h>
  44. #include <linux/ioport.h>
  45. #include <linux/sched.h>
  46. #include <linux/slab.h>
  47. #include <linux/smp_lock.h>
  48. #include <linux/errno.h>
  49. #include <linux/init.h>
  50. #include <linux/timer.h>
  51. #include <linux/list.h>
  52. #include <linux/interrupt.h>
  53. #include <linux/ioctl.h>
  54. #include <linux/fs.h>
  55. #include <linux/dmapool.h>
  56. #include <linux/moduleparam.h>
  57. #include <linux/device.h>
  58. #include <linux/io.h>
  59. #include <linux/irq.h>
  60. #include <asm/byteorder.h>
  61. #include <asm/system.h>
  62. #include <asm/unaligned.h>
  63. /* gadget stack */
  64. #include <linux/usb/ch9.h>
  65. #include <linux/usb/gadget.h>
  66. /* udc specific */
  67. #include "amd5536udc.h"
  68. static void udc_tasklet_disconnect(unsigned long);
  69. static void empty_req_queue(struct udc_ep *);
  70. static int udc_probe(struct udc *dev);
  71. static void udc_basic_init(struct udc *dev);
  72. static void udc_setup_endpoints(struct udc *dev);
  73. static void udc_soft_reset(struct udc *dev);
  74. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  75. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  76. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  77. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  78. unsigned long buf_len, gfp_t gfp_flags);
  79. static int udc_remote_wakeup(struct udc *dev);
  80. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  81. static void udc_pci_remove(struct pci_dev *pdev);
  82. /* description */
  83. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  84. static const char name[] = "amd5536udc";
  85. /* structure to hold endpoint function pointers */
  86. static const struct usb_ep_ops udc_ep_ops;
  87. /* received setup data */
  88. static union udc_setup_data setup_data;
  89. /* pointer to device object */
  90. static struct udc *udc;
  91. /* irq spin lock for soft reset */
  92. static DEFINE_SPINLOCK(udc_irq_spinlock);
  93. /* stall spin lock */
  94. static DEFINE_SPINLOCK(udc_stall_spinlock);
  95. /*
  96. * slave mode: pending bytes in rx fifo after nyet,
  97. * used if EPIN irq came but no req was available
  98. */
  99. static unsigned int udc_rxfifo_pending;
  100. /* count soft resets after suspend to avoid loop */
  101. static int soft_reset_occured;
  102. static int soft_reset_after_usbreset_occured;
  103. /* timer */
  104. static struct timer_list udc_timer;
  105. static int stop_timer;
  106. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  107. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  108. * all OUT endpoints. So we have to handle race conditions like
  109. * when OUT data reaches the fifo but no request was queued yet.
  110. * This cannot be solved by letting the RX DMA disabled until a
  111. * request gets queued because there may be other OUT packets
  112. * in the FIFO (important for not blocking control traffic).
  113. * The value of set_rde controls the correspondig timer.
  114. *
  115. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  116. * set_rde 0 == do not touch RDE, do no start the RDE timer
  117. * set_rde 1 == timer function will look whether FIFO has data
  118. * set_rde 2 == set by timer function to enable RX DMA on next call
  119. */
  120. static int set_rde = -1;
  121. static DECLARE_COMPLETION(on_exit);
  122. static struct timer_list udc_pollstall_timer;
  123. static int stop_pollstall_timer;
  124. static DECLARE_COMPLETION(on_pollstall_exit);
  125. /* tasklet for usb disconnect */
  126. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  127. (unsigned long) &udc);
  128. /* endpoint names used for print */
  129. static const char ep0_string[] = "ep0in";
  130. static const char *ep_string[] = {
  131. ep0_string,
  132. "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
  133. "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
  134. "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
  135. "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
  136. "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
  137. "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
  138. "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
  139. };
  140. /* DMA usage flag */
  141. static int use_dma = 1;
  142. /* packet per buffer dma */
  143. static int use_dma_ppb = 1;
  144. /* with per descr. update */
  145. static int use_dma_ppb_du;
  146. /* buffer fill mode */
  147. static int use_dma_bufferfill_mode;
  148. /* full speed only mode */
  149. static int use_fullspeed;
  150. /* tx buffer size for high speed */
  151. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  152. /* module parameters */
  153. module_param(use_dma, bool, S_IRUGO);
  154. MODULE_PARM_DESC(use_dma, "true for DMA");
  155. module_param(use_dma_ppb, bool, S_IRUGO);
  156. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  157. module_param(use_dma_ppb_du, bool, S_IRUGO);
  158. MODULE_PARM_DESC(use_dma_ppb_du,
  159. "true for DMA in packet per buffer mode with descriptor update");
  160. module_param(use_fullspeed, bool, S_IRUGO);
  161. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  162. /*---------------------------------------------------------------------------*/
  163. /* Prints UDC device registers and endpoint irq registers */
  164. static void print_regs(struct udc *dev)
  165. {
  166. DBG(dev, "------- Device registers -------\n");
  167. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  168. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  169. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  170. DBG(dev, "\n");
  171. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  172. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  173. DBG(dev, "\n");
  174. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  175. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  176. DBG(dev, "\n");
  177. DBG(dev, "USE DMA = %d\n", use_dma);
  178. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  179. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  180. "WITHOUT desc. update)\n");
  181. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  182. } else if (use_dma && use_dma_ppb_du && use_dma_ppb_du) {
  183. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  184. "WITH desc. update)\n");
  185. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  186. }
  187. if (use_dma && use_dma_bufferfill_mode) {
  188. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  189. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  190. }
  191. if (!use_dma) {
  192. dev_info(&dev->pdev->dev, "FIFO mode\n");
  193. }
  194. DBG(dev, "-------------------------------------------------------\n");
  195. }
  196. /* Masks unused interrupts */
  197. static int udc_mask_unused_interrupts(struct udc *dev)
  198. {
  199. u32 tmp;
  200. /* mask all dev interrupts */
  201. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  202. AMD_BIT(UDC_DEVINT_ENUM) |
  203. AMD_BIT(UDC_DEVINT_US) |
  204. AMD_BIT(UDC_DEVINT_UR) |
  205. AMD_BIT(UDC_DEVINT_ES) |
  206. AMD_BIT(UDC_DEVINT_SI) |
  207. AMD_BIT(UDC_DEVINT_SOF)|
  208. AMD_BIT(UDC_DEVINT_SC);
  209. writel(tmp, &dev->regs->irqmsk);
  210. /* mask all ep interrupts */
  211. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  212. return 0;
  213. }
  214. /* Enables endpoint 0 interrupts */
  215. static int udc_enable_ep0_interrupts(struct udc *dev)
  216. {
  217. u32 tmp;
  218. DBG(dev, "udc_enable_ep0_interrupts()\n");
  219. /* read irq mask */
  220. tmp = readl(&dev->regs->ep_irqmsk);
  221. /* enable ep0 irq's */
  222. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  223. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  224. writel(tmp, &dev->regs->ep_irqmsk);
  225. return 0;
  226. }
  227. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  228. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  229. {
  230. u32 tmp;
  231. DBG(dev, "enable device interrupts for setup data\n");
  232. /* read irq mask */
  233. tmp = readl(&dev->regs->irqmsk);
  234. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  235. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  236. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  237. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  238. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  239. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  240. writel(tmp, &dev->regs->irqmsk);
  241. return 0;
  242. }
  243. /* Calculates fifo start of endpoint based on preceeding endpoints */
  244. static int udc_set_txfifo_addr(struct udc_ep *ep)
  245. {
  246. struct udc *dev;
  247. u32 tmp;
  248. int i;
  249. if (!ep || !(ep->in))
  250. return -EINVAL;
  251. dev = ep->dev;
  252. ep->txfifo = dev->txfifo;
  253. /* traverse ep's */
  254. for (i = 0; i < ep->num; i++) {
  255. if (dev->ep[i].regs) {
  256. /* read fifo size */
  257. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  258. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  259. ep->txfifo += tmp;
  260. }
  261. }
  262. return 0;
  263. }
  264. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  265. static u32 cnak_pending;
  266. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  267. {
  268. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  269. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  270. cnak_pending |= 1 << (num);
  271. ep->naking = 1;
  272. } else
  273. cnak_pending = cnak_pending & (~(1 << (num)));
  274. }
  275. /* Enables endpoint, is called by gadget driver */
  276. static int
  277. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  278. {
  279. struct udc_ep *ep;
  280. struct udc *dev;
  281. u32 tmp;
  282. unsigned long iflags;
  283. u8 udc_csr_epix;
  284. unsigned maxpacket;
  285. if (!usbep
  286. || usbep->name == ep0_string
  287. || !desc
  288. || desc->bDescriptorType != USB_DT_ENDPOINT)
  289. return -EINVAL;
  290. ep = container_of(usbep, struct udc_ep, ep);
  291. dev = ep->dev;
  292. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  293. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  294. return -ESHUTDOWN;
  295. spin_lock_irqsave(&dev->lock, iflags);
  296. ep->desc = desc;
  297. ep->halted = 0;
  298. /* set traffic type */
  299. tmp = readl(&dev->ep[ep->num].regs->ctl);
  300. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  301. writel(tmp, &dev->ep[ep->num].regs->ctl);
  302. /* set max packet size */
  303. maxpacket = le16_to_cpu(desc->wMaxPacketSize);
  304. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  305. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  306. ep->ep.maxpacket = maxpacket;
  307. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  308. /* IN ep */
  309. if (ep->in) {
  310. /* ep ix in UDC CSR register space */
  311. udc_csr_epix = ep->num;
  312. /* set buffer size (tx fifo entries) */
  313. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  314. /* double buffering: fifo size = 2 x max packet size */
  315. tmp = AMD_ADDBITS(
  316. tmp,
  317. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  318. / UDC_DWORD_BYTES,
  319. UDC_EPIN_BUFF_SIZE);
  320. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  321. /* calc. tx fifo base addr */
  322. udc_set_txfifo_addr(ep);
  323. /* flush fifo */
  324. tmp = readl(&ep->regs->ctl);
  325. tmp |= AMD_BIT(UDC_EPCTL_F);
  326. writel(tmp, &ep->regs->ctl);
  327. /* OUT ep */
  328. } else {
  329. /* ep ix in UDC CSR register space */
  330. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  331. /* set max packet size UDC CSR */
  332. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  333. tmp = AMD_ADDBITS(tmp, maxpacket,
  334. UDC_CSR_NE_MAX_PKT);
  335. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  336. if (use_dma && !ep->in) {
  337. /* alloc and init BNA dummy request */
  338. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  339. ep->bna_occurred = 0;
  340. }
  341. if (ep->num != UDC_EP0OUT_IX)
  342. dev->data_ep_enabled = 1;
  343. }
  344. /* set ep values */
  345. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  346. /* max packet */
  347. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  348. /* ep number */
  349. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  350. /* ep direction */
  351. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  352. /* ep type */
  353. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  354. /* ep config */
  355. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  356. /* ep interface */
  357. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  358. /* ep alt */
  359. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  360. /* write reg */
  361. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  362. /* enable ep irq */
  363. tmp = readl(&dev->regs->ep_irqmsk);
  364. tmp &= AMD_UNMASK_BIT(ep->num);
  365. writel(tmp, &dev->regs->ep_irqmsk);
  366. /*
  367. * clear NAK by writing CNAK
  368. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  369. */
  370. if (!use_dma || ep->in) {
  371. tmp = readl(&ep->regs->ctl);
  372. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  373. writel(tmp, &ep->regs->ctl);
  374. ep->naking = 0;
  375. UDC_QUEUE_CNAK(ep, ep->num);
  376. }
  377. tmp = desc->bEndpointAddress;
  378. DBG(dev, "%s enabled\n", usbep->name);
  379. spin_unlock_irqrestore(&dev->lock, iflags);
  380. return 0;
  381. }
  382. /* Resets endpoint */
  383. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  384. {
  385. u32 tmp;
  386. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  387. ep->desc = NULL;
  388. ep->ep.ops = &udc_ep_ops;
  389. INIT_LIST_HEAD(&ep->queue);
  390. ep->ep.maxpacket = (u16) ~0;
  391. /* set NAK */
  392. tmp = readl(&ep->regs->ctl);
  393. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  394. writel(tmp, &ep->regs->ctl);
  395. ep->naking = 1;
  396. /* disable interrupt */
  397. tmp = readl(&regs->ep_irqmsk);
  398. tmp |= AMD_BIT(ep->num);
  399. writel(tmp, &regs->ep_irqmsk);
  400. if (ep->in) {
  401. /* unset P and IN bit of potential former DMA */
  402. tmp = readl(&ep->regs->ctl);
  403. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  404. writel(tmp, &ep->regs->ctl);
  405. tmp = readl(&ep->regs->sts);
  406. tmp |= AMD_BIT(UDC_EPSTS_IN);
  407. writel(tmp, &ep->regs->sts);
  408. /* flush the fifo */
  409. tmp = readl(&ep->regs->ctl);
  410. tmp |= AMD_BIT(UDC_EPCTL_F);
  411. writel(tmp, &ep->regs->ctl);
  412. }
  413. /* reset desc pointer */
  414. writel(0, &ep->regs->desptr);
  415. }
  416. /* Disables endpoint, is called by gadget driver */
  417. static int udc_ep_disable(struct usb_ep *usbep)
  418. {
  419. struct udc_ep *ep = NULL;
  420. unsigned long iflags;
  421. if (!usbep)
  422. return -EINVAL;
  423. ep = container_of(usbep, struct udc_ep, ep);
  424. if (usbep->name == ep0_string || !ep->desc)
  425. return -EINVAL;
  426. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  427. spin_lock_irqsave(&ep->dev->lock, iflags);
  428. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  429. empty_req_queue(ep);
  430. ep_init(ep->dev->regs, ep);
  431. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  432. return 0;
  433. }
  434. /* Allocates request packet, called by gadget driver */
  435. static struct usb_request *
  436. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  437. {
  438. struct udc_request *req;
  439. struct udc_data_dma *dma_desc;
  440. struct udc_ep *ep;
  441. if (!usbep)
  442. return NULL;
  443. ep = container_of(usbep, struct udc_ep, ep);
  444. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  445. req = kzalloc(sizeof(struct udc_request), gfp);
  446. if (!req)
  447. return NULL;
  448. req->req.dma = DMA_DONT_USE;
  449. INIT_LIST_HEAD(&req->queue);
  450. if (ep->dma) {
  451. /* ep0 in requests are allocated from data pool here */
  452. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  453. &req->td_phys);
  454. if (!dma_desc) {
  455. kfree(req);
  456. return NULL;
  457. }
  458. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  459. "td_phys = %lx\n",
  460. req, dma_desc,
  461. (unsigned long)req->td_phys);
  462. /* prevent from using desc. - set HOST BUSY */
  463. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  464. UDC_DMA_STP_STS_BS_HOST_BUSY,
  465. UDC_DMA_STP_STS_BS);
  466. dma_desc->bufptr = __constant_cpu_to_le32(DMA_DONT_USE);
  467. req->td_data = dma_desc;
  468. req->td_data_last = NULL;
  469. req->chain_len = 1;
  470. }
  471. return &req->req;
  472. }
  473. /* Frees request packet, called by gadget driver */
  474. static void
  475. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  476. {
  477. struct udc_ep *ep;
  478. struct udc_request *req;
  479. if (!usbep || !usbreq)
  480. return;
  481. ep = container_of(usbep, struct udc_ep, ep);
  482. req = container_of(usbreq, struct udc_request, req);
  483. VDBG(ep->dev, "free_req req=%p\n", req);
  484. BUG_ON(!list_empty(&req->queue));
  485. if (req->td_data) {
  486. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  487. /* free dma chain if created */
  488. if (req->chain_len > 1) {
  489. udc_free_dma_chain(ep->dev, req);
  490. }
  491. pci_pool_free(ep->dev->data_requests, req->td_data,
  492. req->td_phys);
  493. }
  494. kfree(req);
  495. }
  496. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  497. static void udc_init_bna_dummy(struct udc_request *req)
  498. {
  499. if (req) {
  500. /* set last bit */
  501. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  502. /* set next pointer to itself */
  503. req->td_data->next = req->td_phys;
  504. /* set HOST BUSY */
  505. req->td_data->status
  506. = AMD_ADDBITS(req->td_data->status,
  507. UDC_DMA_STP_STS_BS_DMA_DONE,
  508. UDC_DMA_STP_STS_BS);
  509. #ifdef UDC_VERBOSE
  510. pr_debug("bna desc = %p, sts = %08x\n",
  511. req->td_data, req->td_data->status);
  512. #endif
  513. }
  514. }
  515. /* Allocate BNA dummy descriptor */
  516. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  517. {
  518. struct udc_request *req = NULL;
  519. struct usb_request *_req = NULL;
  520. /* alloc the dummy request */
  521. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  522. if (_req) {
  523. req = container_of(_req, struct udc_request, req);
  524. ep->bna_dummy_req = req;
  525. udc_init_bna_dummy(req);
  526. }
  527. return req;
  528. }
  529. /* Write data to TX fifo for IN packets */
  530. static void
  531. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  532. {
  533. u8 *req_buf;
  534. u32 *buf;
  535. int i, j;
  536. unsigned bytes = 0;
  537. unsigned remaining = 0;
  538. if (!req || !ep)
  539. return;
  540. req_buf = req->buf + req->actual;
  541. prefetch(req_buf);
  542. remaining = req->length - req->actual;
  543. buf = (u32 *) req_buf;
  544. bytes = ep->ep.maxpacket;
  545. if (bytes > remaining)
  546. bytes = remaining;
  547. /* dwords first */
  548. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  549. writel(*(buf + i), ep->txfifo);
  550. }
  551. /* remaining bytes must be written by byte access */
  552. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  553. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  554. ep->txfifo);
  555. }
  556. /* dummy write confirm */
  557. writel(0, &ep->regs->confirm);
  558. }
  559. /* Read dwords from RX fifo for OUT transfers */
  560. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  561. {
  562. int i;
  563. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  564. for (i = 0; i < dwords; i++) {
  565. *(buf + i) = readl(dev->rxfifo);
  566. }
  567. return 0;
  568. }
  569. /* Read bytes from RX fifo for OUT transfers */
  570. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  571. {
  572. int i, j;
  573. u32 tmp;
  574. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  575. /* dwords first */
  576. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  577. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  578. }
  579. /* remaining bytes must be read by byte access */
  580. if (bytes % UDC_DWORD_BYTES) {
  581. tmp = readl(dev->rxfifo);
  582. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  583. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  584. tmp = tmp >> UDC_BITS_PER_BYTE;
  585. }
  586. }
  587. return 0;
  588. }
  589. /* Read data from RX fifo for OUT transfers */
  590. static int
  591. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  592. {
  593. u8 *buf;
  594. unsigned buf_space;
  595. unsigned bytes = 0;
  596. unsigned finished = 0;
  597. /* received number bytes */
  598. bytes = readl(&ep->regs->sts);
  599. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  600. buf_space = req->req.length - req->req.actual;
  601. buf = req->req.buf + req->req.actual;
  602. if (bytes > buf_space) {
  603. if ((buf_space % ep->ep.maxpacket) != 0) {
  604. DBG(ep->dev,
  605. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  606. ep->ep.name, bytes, buf_space);
  607. req->req.status = -EOVERFLOW;
  608. }
  609. bytes = buf_space;
  610. }
  611. req->req.actual += bytes;
  612. /* last packet ? */
  613. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  614. || ((req->req.actual == req->req.length) && !req->req.zero))
  615. finished = 1;
  616. /* read rx fifo bytes */
  617. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  618. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  619. return finished;
  620. }
  621. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  622. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  623. {
  624. int retval = 0;
  625. u32 tmp;
  626. VDBG(ep->dev, "prep_dma\n");
  627. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  628. ep->num, req->td_data);
  629. /* set buffer pointer */
  630. req->td_data->bufptr = req->req.dma;
  631. /* set last bit */
  632. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  633. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  634. if (use_dma_ppb) {
  635. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  636. if (retval != 0) {
  637. if (retval == -ENOMEM)
  638. DBG(ep->dev, "Out of DMA memory\n");
  639. return retval;
  640. }
  641. if (ep->in) {
  642. if (req->req.length == ep->ep.maxpacket) {
  643. /* write tx bytes */
  644. req->td_data->status =
  645. AMD_ADDBITS(req->td_data->status,
  646. ep->ep.maxpacket,
  647. UDC_DMA_IN_STS_TXBYTES);
  648. }
  649. }
  650. }
  651. if (ep->in) {
  652. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  653. "maxpacket=%d ep%d\n",
  654. use_dma_ppb, req->req.length,
  655. ep->ep.maxpacket, ep->num);
  656. /*
  657. * if bytes < max packet then tx bytes must
  658. * be written in packet per buffer mode
  659. */
  660. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  661. || ep->num == UDC_EP0OUT_IX
  662. || ep->num == UDC_EP0IN_IX) {
  663. /* write tx bytes */
  664. req->td_data->status =
  665. AMD_ADDBITS(req->td_data->status,
  666. req->req.length,
  667. UDC_DMA_IN_STS_TXBYTES);
  668. /* reset frame num */
  669. req->td_data->status =
  670. AMD_ADDBITS(req->td_data->status,
  671. 0,
  672. UDC_DMA_IN_STS_FRAMENUM);
  673. }
  674. /* set HOST BUSY */
  675. req->td_data->status =
  676. AMD_ADDBITS(req->td_data->status,
  677. UDC_DMA_STP_STS_BS_HOST_BUSY,
  678. UDC_DMA_STP_STS_BS);
  679. } else {
  680. VDBG(ep->dev, "OUT set host ready\n");
  681. /* set HOST READY */
  682. req->td_data->status =
  683. AMD_ADDBITS(req->td_data->status,
  684. UDC_DMA_STP_STS_BS_HOST_READY,
  685. UDC_DMA_STP_STS_BS);
  686. /* clear NAK by writing CNAK */
  687. if (ep->naking) {
  688. tmp = readl(&ep->regs->ctl);
  689. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  690. writel(tmp, &ep->regs->ctl);
  691. ep->naking = 0;
  692. UDC_QUEUE_CNAK(ep, ep->num);
  693. }
  694. }
  695. return retval;
  696. }
  697. /* Completes request packet ... caller MUST hold lock */
  698. static void
  699. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  700. __releases(ep->dev->lock)
  701. __acquires(ep->dev->lock)
  702. {
  703. struct udc *dev;
  704. unsigned halted;
  705. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  706. dev = ep->dev;
  707. /* unmap DMA */
  708. if (req->dma_mapping) {
  709. if (ep->in)
  710. pci_unmap_single(dev->pdev,
  711. req->req.dma,
  712. req->req.length,
  713. PCI_DMA_TODEVICE);
  714. else
  715. pci_unmap_single(dev->pdev,
  716. req->req.dma,
  717. req->req.length,
  718. PCI_DMA_FROMDEVICE);
  719. req->dma_mapping = 0;
  720. req->req.dma = DMA_DONT_USE;
  721. }
  722. halted = ep->halted;
  723. ep->halted = 1;
  724. /* set new status if pending */
  725. if (req->req.status == -EINPROGRESS)
  726. req->req.status = sts;
  727. /* remove from ep queue */
  728. list_del_init(&req->queue);
  729. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  730. &req->req, req->req.length, ep->ep.name, sts);
  731. spin_unlock(&dev->lock);
  732. req->req.complete(&ep->ep, &req->req);
  733. spin_lock(&dev->lock);
  734. ep->halted = halted;
  735. }
  736. /* frees pci pool descriptors of a DMA chain */
  737. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  738. {
  739. int ret_val = 0;
  740. struct udc_data_dma *td;
  741. struct udc_data_dma *td_last = NULL;
  742. unsigned int i;
  743. DBG(dev, "free chain req = %p\n", req);
  744. /* do not free first desc., will be done by free for request */
  745. td_last = req->td_data;
  746. td = phys_to_virt(td_last->next);
  747. for (i = 1; i < req->chain_len; i++) {
  748. pci_pool_free(dev->data_requests, td,
  749. (dma_addr_t) td_last->next);
  750. td_last = td;
  751. td = phys_to_virt(td_last->next);
  752. }
  753. return ret_val;
  754. }
  755. /* Iterates to the end of a DMA chain and returns last descriptor */
  756. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  757. {
  758. struct udc_data_dma *td;
  759. td = req->td_data;
  760. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  761. td = phys_to_virt(td->next);
  762. }
  763. return td;
  764. }
  765. /* Iterates to the end of a DMA chain and counts bytes received */
  766. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  767. {
  768. struct udc_data_dma *td;
  769. u32 count;
  770. td = req->td_data;
  771. /* received number bytes */
  772. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  773. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  774. td = phys_to_virt(td->next);
  775. /* received number bytes */
  776. if (td) {
  777. count += AMD_GETBITS(td->status,
  778. UDC_DMA_OUT_STS_RXBYTES);
  779. }
  780. }
  781. return count;
  782. }
  783. /* Creates or re-inits a DMA chain */
  784. static int udc_create_dma_chain(
  785. struct udc_ep *ep,
  786. struct udc_request *req,
  787. unsigned long buf_len, gfp_t gfp_flags
  788. )
  789. {
  790. unsigned long bytes = req->req.length;
  791. unsigned int i;
  792. dma_addr_t dma_addr;
  793. struct udc_data_dma *td = NULL;
  794. struct udc_data_dma *last = NULL;
  795. unsigned long txbytes;
  796. unsigned create_new_chain = 0;
  797. unsigned len;
  798. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  799. bytes, buf_len);
  800. dma_addr = DMA_DONT_USE;
  801. /* unset L bit in first desc for OUT */
  802. if (!ep->in) {
  803. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  804. }
  805. /* alloc only new desc's if not already available */
  806. len = req->req.length / ep->ep.maxpacket;
  807. if (req->req.length % ep->ep.maxpacket) {
  808. len++;
  809. }
  810. if (len > req->chain_len) {
  811. /* shorter chain already allocated before */
  812. if (req->chain_len > 1) {
  813. udc_free_dma_chain(ep->dev, req);
  814. }
  815. req->chain_len = len;
  816. create_new_chain = 1;
  817. }
  818. td = req->td_data;
  819. /* gen. required number of descriptors and buffers */
  820. for (i = buf_len; i < bytes; i += buf_len) {
  821. /* create or determine next desc. */
  822. if (create_new_chain) {
  823. td = pci_pool_alloc(ep->dev->data_requests,
  824. gfp_flags, &dma_addr);
  825. if (!td)
  826. return -ENOMEM;
  827. td->status = 0;
  828. } else if (i == buf_len) {
  829. /* first td */
  830. td = (struct udc_data_dma *) phys_to_virt(
  831. req->td_data->next);
  832. td->status = 0;
  833. } else {
  834. td = (struct udc_data_dma *) phys_to_virt(last->next);
  835. td->status = 0;
  836. }
  837. if (td)
  838. td->bufptr = req->req.dma + i; /* assign buffer */
  839. else
  840. break;
  841. /* short packet ? */
  842. if ((bytes - i) >= buf_len) {
  843. txbytes = buf_len;
  844. } else {
  845. /* short packet */
  846. txbytes = bytes - i;
  847. }
  848. /* link td and assign tx bytes */
  849. if (i == buf_len) {
  850. if (create_new_chain) {
  851. req->td_data->next = dma_addr;
  852. } else {
  853. /* req->td_data->next = virt_to_phys(td); */
  854. }
  855. /* write tx bytes */
  856. if (ep->in) {
  857. /* first desc */
  858. req->td_data->status =
  859. AMD_ADDBITS(req->td_data->status,
  860. ep->ep.maxpacket,
  861. UDC_DMA_IN_STS_TXBYTES);
  862. /* second desc */
  863. td->status = AMD_ADDBITS(td->status,
  864. txbytes,
  865. UDC_DMA_IN_STS_TXBYTES);
  866. }
  867. } else {
  868. if (create_new_chain) {
  869. last->next = dma_addr;
  870. } else {
  871. /* last->next = virt_to_phys(td); */
  872. }
  873. if (ep->in) {
  874. /* write tx bytes */
  875. td->status = AMD_ADDBITS(td->status,
  876. txbytes,
  877. UDC_DMA_IN_STS_TXBYTES);
  878. }
  879. }
  880. last = td;
  881. }
  882. /* set last bit */
  883. if (td) {
  884. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  885. /* last desc. points to itself */
  886. req->td_data_last = td;
  887. }
  888. return 0;
  889. }
  890. /* Enabling RX DMA */
  891. static void udc_set_rde(struct udc *dev)
  892. {
  893. u32 tmp;
  894. VDBG(dev, "udc_set_rde()\n");
  895. /* stop RDE timer */
  896. if (timer_pending(&udc_timer)) {
  897. set_rde = 0;
  898. mod_timer(&udc_timer, jiffies - 1);
  899. }
  900. /* set RDE */
  901. tmp = readl(&dev->regs->ctl);
  902. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  903. writel(tmp, &dev->regs->ctl);
  904. }
  905. /* Queues a request packet, called by gadget driver */
  906. static int
  907. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  908. {
  909. int retval = 0;
  910. u8 open_rxfifo = 0;
  911. unsigned long iflags;
  912. struct udc_ep *ep;
  913. struct udc_request *req;
  914. struct udc *dev;
  915. u32 tmp;
  916. /* check the inputs */
  917. req = container_of(usbreq, struct udc_request, req);
  918. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  919. || !list_empty(&req->queue))
  920. return -EINVAL;
  921. ep = container_of(usbep, struct udc_ep, ep);
  922. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  923. return -EINVAL;
  924. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  925. dev = ep->dev;
  926. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  927. return -ESHUTDOWN;
  928. /* map dma (usually done before) */
  929. if (ep->dma && usbreq->length != 0
  930. && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
  931. VDBG(dev, "DMA map req %p\n", req);
  932. if (ep->in)
  933. usbreq->dma = pci_map_single(dev->pdev,
  934. usbreq->buf,
  935. usbreq->length,
  936. PCI_DMA_TODEVICE);
  937. else
  938. usbreq->dma = pci_map_single(dev->pdev,
  939. usbreq->buf,
  940. usbreq->length,
  941. PCI_DMA_FROMDEVICE);
  942. req->dma_mapping = 1;
  943. }
  944. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  945. usbep->name, usbreq, usbreq->length,
  946. req->td_data, usbreq->buf);
  947. spin_lock_irqsave(&dev->lock, iflags);
  948. usbreq->actual = 0;
  949. usbreq->status = -EINPROGRESS;
  950. req->dma_done = 0;
  951. /* on empty queue just do first transfer */
  952. if (list_empty(&ep->queue)) {
  953. /* zlp */
  954. if (usbreq->length == 0) {
  955. /* IN zlp's are handled by hardware */
  956. complete_req(ep, req, 0);
  957. VDBG(dev, "%s: zlp\n", ep->ep.name);
  958. /*
  959. * if set_config or set_intf is waiting for ack by zlp
  960. * then set CSR_DONE
  961. */
  962. if (dev->set_cfg_not_acked) {
  963. tmp = readl(&dev->regs->ctl);
  964. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  965. writel(tmp, &dev->regs->ctl);
  966. dev->set_cfg_not_acked = 0;
  967. }
  968. /* setup command is ACK'ed now by zlp */
  969. if (dev->waiting_zlp_ack_ep0in) {
  970. /* clear NAK by writing CNAK in EP0_IN */
  971. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  972. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  973. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  974. dev->ep[UDC_EP0IN_IX].naking = 0;
  975. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  976. UDC_EP0IN_IX);
  977. dev->waiting_zlp_ack_ep0in = 0;
  978. }
  979. goto finished;
  980. }
  981. if (ep->dma) {
  982. retval = prep_dma(ep, req, gfp);
  983. if (retval != 0)
  984. goto finished;
  985. /* write desc pointer to enable DMA */
  986. if (ep->in) {
  987. /* set HOST READY */
  988. req->td_data->status =
  989. AMD_ADDBITS(req->td_data->status,
  990. UDC_DMA_IN_STS_BS_HOST_READY,
  991. UDC_DMA_IN_STS_BS);
  992. }
  993. /* disabled rx dma while descriptor update */
  994. if (!ep->in) {
  995. /* stop RDE timer */
  996. if (timer_pending(&udc_timer)) {
  997. set_rde = 0;
  998. mod_timer(&udc_timer, jiffies - 1);
  999. }
  1000. /* clear RDE */
  1001. tmp = readl(&dev->regs->ctl);
  1002. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1003. writel(tmp, &dev->regs->ctl);
  1004. open_rxfifo = 1;
  1005. /*
  1006. * if BNA occurred then let BNA dummy desc.
  1007. * point to current desc.
  1008. */
  1009. if (ep->bna_occurred) {
  1010. VDBG(dev, "copy to BNA dummy desc.\n");
  1011. memcpy(ep->bna_dummy_req->td_data,
  1012. req->td_data,
  1013. sizeof(struct udc_data_dma));
  1014. }
  1015. }
  1016. /* write desc pointer */
  1017. writel(req->td_phys, &ep->regs->desptr);
  1018. /* clear NAK by writing CNAK */
  1019. if (ep->naking) {
  1020. tmp = readl(&ep->regs->ctl);
  1021. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1022. writel(tmp, &ep->regs->ctl);
  1023. ep->naking = 0;
  1024. UDC_QUEUE_CNAK(ep, ep->num);
  1025. }
  1026. if (ep->in) {
  1027. /* enable ep irq */
  1028. tmp = readl(&dev->regs->ep_irqmsk);
  1029. tmp &= AMD_UNMASK_BIT(ep->num);
  1030. writel(tmp, &dev->regs->ep_irqmsk);
  1031. }
  1032. }
  1033. } else if (ep->dma) {
  1034. /*
  1035. * prep_dma not used for OUT ep's, this is not possible
  1036. * for PPB modes, because of chain creation reasons
  1037. */
  1038. if (ep->in) {
  1039. retval = prep_dma(ep, req, gfp);
  1040. if (retval != 0)
  1041. goto finished;
  1042. }
  1043. }
  1044. VDBG(dev, "list_add\n");
  1045. /* add request to ep queue */
  1046. if (req) {
  1047. list_add_tail(&req->queue, &ep->queue);
  1048. /* open rxfifo if out data queued */
  1049. if (open_rxfifo) {
  1050. /* enable DMA */
  1051. req->dma_going = 1;
  1052. udc_set_rde(dev);
  1053. if (ep->num != UDC_EP0OUT_IX)
  1054. dev->data_ep_queued = 1;
  1055. }
  1056. /* stop OUT naking */
  1057. if (!ep->in) {
  1058. if (!use_dma && udc_rxfifo_pending) {
  1059. DBG(dev, "udc_queue(): pending bytes in "
  1060. "rxfifo after nyet\n");
  1061. /*
  1062. * read pending bytes afer nyet:
  1063. * referring to isr
  1064. */
  1065. if (udc_rxfifo_read(ep, req)) {
  1066. /* finish */
  1067. complete_req(ep, req, 0);
  1068. }
  1069. udc_rxfifo_pending = 0;
  1070. }
  1071. }
  1072. }
  1073. finished:
  1074. spin_unlock_irqrestore(&dev->lock, iflags);
  1075. return retval;
  1076. }
  1077. /* Empty request queue of an endpoint; caller holds spinlock */
  1078. static void empty_req_queue(struct udc_ep *ep)
  1079. {
  1080. struct udc_request *req;
  1081. ep->halted = 1;
  1082. while (!list_empty(&ep->queue)) {
  1083. req = list_entry(ep->queue.next,
  1084. struct udc_request,
  1085. queue);
  1086. complete_req(ep, req, -ESHUTDOWN);
  1087. }
  1088. }
  1089. /* Dequeues a request packet, called by gadget driver */
  1090. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1091. {
  1092. struct udc_ep *ep;
  1093. struct udc_request *req;
  1094. unsigned halted;
  1095. unsigned long iflags;
  1096. ep = container_of(usbep, struct udc_ep, ep);
  1097. if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
  1098. && ep->num != UDC_EP0OUT_IX)))
  1099. return -EINVAL;
  1100. req = container_of(usbreq, struct udc_request, req);
  1101. spin_lock_irqsave(&ep->dev->lock, iflags);
  1102. halted = ep->halted;
  1103. ep->halted = 1;
  1104. /* request in processing or next one */
  1105. if (ep->queue.next == &req->queue) {
  1106. if (ep->dma && req->dma_going) {
  1107. if (ep->in)
  1108. ep->cancel_transfer = 1;
  1109. else {
  1110. u32 tmp;
  1111. u32 dma_sts;
  1112. /* stop potential receive DMA */
  1113. tmp = readl(&udc->regs->ctl);
  1114. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1115. &udc->regs->ctl);
  1116. /*
  1117. * Cancel transfer later in ISR
  1118. * if descriptor was touched.
  1119. */
  1120. dma_sts = AMD_GETBITS(req->td_data->status,
  1121. UDC_DMA_OUT_STS_BS);
  1122. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1123. ep->cancel_transfer = 1;
  1124. else {
  1125. udc_init_bna_dummy(ep->req);
  1126. writel(ep->bna_dummy_req->td_phys,
  1127. &ep->regs->desptr);
  1128. }
  1129. writel(tmp, &udc->regs->ctl);
  1130. }
  1131. }
  1132. }
  1133. complete_req(ep, req, -ECONNRESET);
  1134. ep->halted = halted;
  1135. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1136. return 0;
  1137. }
  1138. /* Halt or clear halt of endpoint */
  1139. static int
  1140. udc_set_halt(struct usb_ep *usbep, int halt)
  1141. {
  1142. struct udc_ep *ep;
  1143. u32 tmp;
  1144. unsigned long iflags;
  1145. int retval = 0;
  1146. if (!usbep)
  1147. return -EINVAL;
  1148. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1149. ep = container_of(usbep, struct udc_ep, ep);
  1150. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1151. return -EINVAL;
  1152. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1153. return -ESHUTDOWN;
  1154. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1155. /* halt or clear halt */
  1156. if (halt) {
  1157. if (ep->num == 0)
  1158. ep->dev->stall_ep0in = 1;
  1159. else {
  1160. /*
  1161. * set STALL
  1162. * rxfifo empty not taken into acount
  1163. */
  1164. tmp = readl(&ep->regs->ctl);
  1165. tmp |= AMD_BIT(UDC_EPCTL_S);
  1166. writel(tmp, &ep->regs->ctl);
  1167. ep->halted = 1;
  1168. /* setup poll timer */
  1169. if (!timer_pending(&udc_pollstall_timer)) {
  1170. udc_pollstall_timer.expires = jiffies +
  1171. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1172. / (1000 * 1000);
  1173. if (!stop_pollstall_timer) {
  1174. DBG(ep->dev, "start polltimer\n");
  1175. add_timer(&udc_pollstall_timer);
  1176. }
  1177. }
  1178. }
  1179. } else {
  1180. /* ep is halted by set_halt() before */
  1181. if (ep->halted) {
  1182. tmp = readl(&ep->regs->ctl);
  1183. /* clear stall bit */
  1184. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1185. /* clear NAK by writing CNAK */
  1186. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1187. writel(tmp, &ep->regs->ctl);
  1188. ep->halted = 0;
  1189. UDC_QUEUE_CNAK(ep, ep->num);
  1190. }
  1191. }
  1192. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1193. return retval;
  1194. }
  1195. /* gadget interface */
  1196. static const struct usb_ep_ops udc_ep_ops = {
  1197. .enable = udc_ep_enable,
  1198. .disable = udc_ep_disable,
  1199. .alloc_request = udc_alloc_request,
  1200. .free_request = udc_free_request,
  1201. .queue = udc_queue,
  1202. .dequeue = udc_dequeue,
  1203. .set_halt = udc_set_halt,
  1204. /* fifo ops not implemented */
  1205. };
  1206. /*-------------------------------------------------------------------------*/
  1207. /* Get frame counter (not implemented) */
  1208. static int udc_get_frame(struct usb_gadget *gadget)
  1209. {
  1210. return -EOPNOTSUPP;
  1211. }
  1212. /* Remote wakeup gadget interface */
  1213. static int udc_wakeup(struct usb_gadget *gadget)
  1214. {
  1215. struct udc *dev;
  1216. if (!gadget)
  1217. return -EINVAL;
  1218. dev = container_of(gadget, struct udc, gadget);
  1219. udc_remote_wakeup(dev);
  1220. return 0;
  1221. }
  1222. /* gadget operations */
  1223. static const struct usb_gadget_ops udc_ops = {
  1224. .wakeup = udc_wakeup,
  1225. .get_frame = udc_get_frame,
  1226. };
  1227. /* Setups endpoint parameters, adds endpoints to linked list */
  1228. static void make_ep_lists(struct udc *dev)
  1229. {
  1230. /* make gadget ep lists */
  1231. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1232. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1233. &dev->gadget.ep_list);
  1234. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1235. &dev->gadget.ep_list);
  1236. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1237. &dev->gadget.ep_list);
  1238. /* fifo config */
  1239. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1240. if (dev->gadget.speed == USB_SPEED_FULL)
  1241. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1242. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1243. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1244. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1245. }
  1246. /* init registers at driver load time */
  1247. static int startup_registers(struct udc *dev)
  1248. {
  1249. u32 tmp;
  1250. /* init controller by soft reset */
  1251. udc_soft_reset(dev);
  1252. /* mask not needed interrupts */
  1253. udc_mask_unused_interrupts(dev);
  1254. /* put into initial config */
  1255. udc_basic_init(dev);
  1256. /* link up all endpoints */
  1257. udc_setup_endpoints(dev);
  1258. /* program speed */
  1259. tmp = readl(&dev->regs->cfg);
  1260. if (use_fullspeed) {
  1261. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1262. } else {
  1263. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1264. }
  1265. writel(tmp, &dev->regs->cfg);
  1266. return 0;
  1267. }
  1268. /* Inits UDC context */
  1269. static void udc_basic_init(struct udc *dev)
  1270. {
  1271. u32 tmp;
  1272. DBG(dev, "udc_basic_init()\n");
  1273. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1274. /* stop RDE timer */
  1275. if (timer_pending(&udc_timer)) {
  1276. set_rde = 0;
  1277. mod_timer(&udc_timer, jiffies - 1);
  1278. }
  1279. /* stop poll stall timer */
  1280. if (timer_pending(&udc_pollstall_timer)) {
  1281. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1282. }
  1283. /* disable DMA */
  1284. tmp = readl(&dev->regs->ctl);
  1285. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1286. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1287. writel(tmp, &dev->regs->ctl);
  1288. /* enable dynamic CSR programming */
  1289. tmp = readl(&dev->regs->cfg);
  1290. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1291. /* set self powered */
  1292. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1293. /* set remote wakeupable */
  1294. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1295. writel(tmp, &dev->regs->cfg);
  1296. make_ep_lists(dev);
  1297. dev->data_ep_enabled = 0;
  1298. dev->data_ep_queued = 0;
  1299. }
  1300. /* Sets initial endpoint parameters */
  1301. static void udc_setup_endpoints(struct udc *dev)
  1302. {
  1303. struct udc_ep *ep;
  1304. u32 tmp;
  1305. u32 reg;
  1306. DBG(dev, "udc_setup_endpoints()\n");
  1307. /* read enum speed */
  1308. tmp = readl(&dev->regs->sts);
  1309. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1310. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
  1311. dev->gadget.speed = USB_SPEED_HIGH;
  1312. } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
  1313. dev->gadget.speed = USB_SPEED_FULL;
  1314. }
  1315. /* set basic ep parameters */
  1316. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1317. ep = &dev->ep[tmp];
  1318. ep->dev = dev;
  1319. ep->ep.name = ep_string[tmp];
  1320. ep->num = tmp;
  1321. /* txfifo size is calculated at enable time */
  1322. ep->txfifo = dev->txfifo;
  1323. /* fifo size */
  1324. if (tmp < UDC_EPIN_NUM) {
  1325. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1326. ep->in = 1;
  1327. } else {
  1328. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1329. ep->in = 0;
  1330. }
  1331. ep->regs = &dev->ep_regs[tmp];
  1332. /*
  1333. * ep will be reset only if ep was not enabled before to avoid
  1334. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1335. * not enabled by gadget driver
  1336. */
  1337. if (!ep->desc) {
  1338. ep_init(dev->regs, ep);
  1339. }
  1340. if (use_dma) {
  1341. /*
  1342. * ep->dma is not really used, just to indicate that
  1343. * DMA is active: remove this
  1344. * dma regs = dev control regs
  1345. */
  1346. ep->dma = &dev->regs->ctl;
  1347. /* nak OUT endpoints until enable - not for ep0 */
  1348. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1349. && tmp > UDC_EPIN_NUM) {
  1350. /* set NAK */
  1351. reg = readl(&dev->ep[tmp].regs->ctl);
  1352. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1353. writel(reg, &dev->ep[tmp].regs->ctl);
  1354. dev->ep[tmp].naking = 1;
  1355. }
  1356. }
  1357. }
  1358. /* EP0 max packet */
  1359. if (dev->gadget.speed == USB_SPEED_FULL) {
  1360. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
  1361. dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
  1362. UDC_FS_EP0OUT_MAX_PKT_SIZE;
  1363. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1364. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  1365. dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  1366. }
  1367. /*
  1368. * with suspend bug workaround, ep0 params for gadget driver
  1369. * are set at gadget driver bind() call
  1370. */
  1371. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1372. dev->ep[UDC_EP0IN_IX].halted = 0;
  1373. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1374. /* init cfg/alt/int */
  1375. dev->cur_config = 0;
  1376. dev->cur_intf = 0;
  1377. dev->cur_alt = 0;
  1378. }
  1379. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1380. static void usb_connect(struct udc *dev)
  1381. {
  1382. dev_info(&dev->pdev->dev, "USB Connect\n");
  1383. dev->connected = 1;
  1384. /* put into initial config */
  1385. udc_basic_init(dev);
  1386. /* enable device setup interrupts */
  1387. udc_enable_dev_setup_interrupts(dev);
  1388. }
  1389. /*
  1390. * Calls gadget with disconnect event and resets the UDC and makes
  1391. * initial bringup to be ready for ep0 events
  1392. */
  1393. static void usb_disconnect(struct udc *dev)
  1394. {
  1395. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1396. dev->connected = 0;
  1397. /* mask interrupts */
  1398. udc_mask_unused_interrupts(dev);
  1399. /* REVISIT there doesn't seem to be a point to having this
  1400. * talk to a tasklet ... do it directly, we already hold
  1401. * the spinlock needed to process the disconnect.
  1402. */
  1403. tasklet_schedule(&disconnect_tasklet);
  1404. }
  1405. /* Tasklet for disconnect to be outside of interrupt context */
  1406. static void udc_tasklet_disconnect(unsigned long par)
  1407. {
  1408. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1409. u32 tmp;
  1410. DBG(dev, "Tasklet disconnect\n");
  1411. spin_lock_irq(&dev->lock);
  1412. if (dev->driver) {
  1413. spin_unlock(&dev->lock);
  1414. dev->driver->disconnect(&dev->gadget);
  1415. spin_lock(&dev->lock);
  1416. /* empty queues */
  1417. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1418. empty_req_queue(&dev->ep[tmp]);
  1419. }
  1420. }
  1421. /* disable ep0 */
  1422. ep_init(dev->regs,
  1423. &dev->ep[UDC_EP0IN_IX]);
  1424. if (!soft_reset_occured) {
  1425. /* init controller by soft reset */
  1426. udc_soft_reset(dev);
  1427. soft_reset_occured++;
  1428. }
  1429. /* re-enable dev interrupts */
  1430. udc_enable_dev_setup_interrupts(dev);
  1431. /* back to full speed ? */
  1432. if (use_fullspeed) {
  1433. tmp = readl(&dev->regs->cfg);
  1434. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1435. writel(tmp, &dev->regs->cfg);
  1436. }
  1437. spin_unlock_irq(&dev->lock);
  1438. }
  1439. /* Reset the UDC core */
  1440. static void udc_soft_reset(struct udc *dev)
  1441. {
  1442. unsigned long flags;
  1443. DBG(dev, "Soft reset\n");
  1444. /*
  1445. * reset possible waiting interrupts, because int.
  1446. * status is lost after soft reset,
  1447. * ep int. status reset
  1448. */
  1449. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1450. /* device int. status reset */
  1451. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1452. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1453. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1454. readl(&dev->regs->cfg);
  1455. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1456. }
  1457. /* RDE timer callback to set RDE bit */
  1458. static void udc_timer_function(unsigned long v)
  1459. {
  1460. u32 tmp;
  1461. spin_lock_irq(&udc_irq_spinlock);
  1462. if (set_rde > 0) {
  1463. /*
  1464. * open the fifo if fifo was filled on last timer call
  1465. * conditionally
  1466. */
  1467. if (set_rde > 1) {
  1468. /* set RDE to receive setup data */
  1469. tmp = readl(&udc->regs->ctl);
  1470. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1471. writel(tmp, &udc->regs->ctl);
  1472. set_rde = -1;
  1473. } else if (readl(&udc->regs->sts)
  1474. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1475. /*
  1476. * if fifo empty setup polling, do not just
  1477. * open the fifo
  1478. */
  1479. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1480. if (!stop_timer) {
  1481. add_timer(&udc_timer);
  1482. }
  1483. } else {
  1484. /*
  1485. * fifo contains data now, setup timer for opening
  1486. * the fifo when timer expires to be able to receive
  1487. * setup packets, when data packets gets queued by
  1488. * gadget layer then timer will forced to expire with
  1489. * set_rde=0 (RDE is set in udc_queue())
  1490. */
  1491. set_rde++;
  1492. /* debug: lhadmot_timer_start = 221070 */
  1493. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1494. if (!stop_timer) {
  1495. add_timer(&udc_timer);
  1496. }
  1497. }
  1498. } else
  1499. set_rde = -1; /* RDE was set by udc_queue() */
  1500. spin_unlock_irq(&udc_irq_spinlock);
  1501. if (stop_timer)
  1502. complete(&on_exit);
  1503. }
  1504. /* Handle halt state, used in stall poll timer */
  1505. static void udc_handle_halt_state(struct udc_ep *ep)
  1506. {
  1507. u32 tmp;
  1508. /* set stall as long not halted */
  1509. if (ep->halted == 1) {
  1510. tmp = readl(&ep->regs->ctl);
  1511. /* STALL cleared ? */
  1512. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1513. /*
  1514. * FIXME: MSC spec requires that stall remains
  1515. * even on receivng of CLEAR_FEATURE HALT. So
  1516. * we would set STALL again here to be compliant.
  1517. * But with current mass storage drivers this does
  1518. * not work (would produce endless host retries).
  1519. * So we clear halt on CLEAR_FEATURE.
  1520. *
  1521. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1522. tmp |= AMD_BIT(UDC_EPCTL_S);
  1523. writel(tmp, &ep->regs->ctl);*/
  1524. /* clear NAK by writing CNAK */
  1525. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1526. writel(tmp, &ep->regs->ctl);
  1527. ep->halted = 0;
  1528. UDC_QUEUE_CNAK(ep, ep->num);
  1529. }
  1530. }
  1531. }
  1532. /* Stall timer callback to poll S bit and set it again after */
  1533. static void udc_pollstall_timer_function(unsigned long v)
  1534. {
  1535. struct udc_ep *ep;
  1536. int halted = 0;
  1537. spin_lock_irq(&udc_stall_spinlock);
  1538. /*
  1539. * only one IN and OUT endpoints are handled
  1540. * IN poll stall
  1541. */
  1542. ep = &udc->ep[UDC_EPIN_IX];
  1543. udc_handle_halt_state(ep);
  1544. if (ep->halted)
  1545. halted = 1;
  1546. /* OUT poll stall */
  1547. ep = &udc->ep[UDC_EPOUT_IX];
  1548. udc_handle_halt_state(ep);
  1549. if (ep->halted)
  1550. halted = 1;
  1551. /* setup timer again when still halted */
  1552. if (!stop_pollstall_timer && halted) {
  1553. udc_pollstall_timer.expires = jiffies +
  1554. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1555. / (1000 * 1000);
  1556. add_timer(&udc_pollstall_timer);
  1557. }
  1558. spin_unlock_irq(&udc_stall_spinlock);
  1559. if (stop_pollstall_timer)
  1560. complete(&on_pollstall_exit);
  1561. }
  1562. /* Inits endpoint 0 so that SETUP packets are processed */
  1563. static void activate_control_endpoints(struct udc *dev)
  1564. {
  1565. u32 tmp;
  1566. DBG(dev, "activate_control_endpoints\n");
  1567. /* flush fifo */
  1568. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1569. tmp |= AMD_BIT(UDC_EPCTL_F);
  1570. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1571. /* set ep0 directions */
  1572. dev->ep[UDC_EP0IN_IX].in = 1;
  1573. dev->ep[UDC_EP0OUT_IX].in = 0;
  1574. /* set buffer size (tx fifo entries) of EP0_IN */
  1575. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1576. if (dev->gadget.speed == USB_SPEED_FULL)
  1577. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1578. UDC_EPIN_BUFF_SIZE);
  1579. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1580. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1581. UDC_EPIN_BUFF_SIZE);
  1582. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1583. /* set max packet size of EP0_IN */
  1584. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1585. if (dev->gadget.speed == USB_SPEED_FULL)
  1586. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1587. UDC_EP_MAX_PKT_SIZE);
  1588. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1589. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1590. UDC_EP_MAX_PKT_SIZE);
  1591. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1592. /* set max packet size of EP0_OUT */
  1593. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1594. if (dev->gadget.speed == USB_SPEED_FULL)
  1595. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1596. UDC_EP_MAX_PKT_SIZE);
  1597. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1598. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1599. UDC_EP_MAX_PKT_SIZE);
  1600. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1601. /* set max packet size of EP0 in UDC CSR */
  1602. tmp = readl(&dev->csr->ne[0]);
  1603. if (dev->gadget.speed == USB_SPEED_FULL)
  1604. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1605. UDC_CSR_NE_MAX_PKT);
  1606. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1607. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1608. UDC_CSR_NE_MAX_PKT);
  1609. writel(tmp, &dev->csr->ne[0]);
  1610. if (use_dma) {
  1611. dev->ep[UDC_EP0OUT_IX].td->status |=
  1612. AMD_BIT(UDC_DMA_OUT_STS_L);
  1613. /* write dma desc address */
  1614. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1615. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1616. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1617. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1618. /* stop RDE timer */
  1619. if (timer_pending(&udc_timer)) {
  1620. set_rde = 0;
  1621. mod_timer(&udc_timer, jiffies - 1);
  1622. }
  1623. /* stop pollstall timer */
  1624. if (timer_pending(&udc_pollstall_timer)) {
  1625. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1626. }
  1627. /* enable DMA */
  1628. tmp = readl(&dev->regs->ctl);
  1629. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1630. | AMD_BIT(UDC_DEVCTL_RDE)
  1631. | AMD_BIT(UDC_DEVCTL_TDE);
  1632. if (use_dma_bufferfill_mode) {
  1633. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1634. } else if (use_dma_ppb_du) {
  1635. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1636. }
  1637. writel(tmp, &dev->regs->ctl);
  1638. }
  1639. /* clear NAK by writing CNAK for EP0IN */
  1640. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1641. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1642. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1643. dev->ep[UDC_EP0IN_IX].naking = 0;
  1644. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1645. /* clear NAK by writing CNAK for EP0OUT */
  1646. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1647. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1648. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1649. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1650. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1651. }
  1652. /* Make endpoint 0 ready for control traffic */
  1653. static int setup_ep0(struct udc *dev)
  1654. {
  1655. activate_control_endpoints(dev);
  1656. /* enable ep0 interrupts */
  1657. udc_enable_ep0_interrupts(dev);
  1658. /* enable device setup interrupts */
  1659. udc_enable_dev_setup_interrupts(dev);
  1660. return 0;
  1661. }
  1662. /* Called by gadget driver to register itself */
  1663. int usb_gadget_register_driver(struct usb_gadget_driver *driver)
  1664. {
  1665. struct udc *dev = udc;
  1666. int retval;
  1667. u32 tmp;
  1668. if (!driver || !driver->bind || !driver->setup
  1669. || driver->speed != USB_SPEED_HIGH)
  1670. return -EINVAL;
  1671. if (!dev)
  1672. return -ENODEV;
  1673. if (dev->driver)
  1674. return -EBUSY;
  1675. driver->driver.bus = NULL;
  1676. dev->driver = driver;
  1677. dev->gadget.dev.driver = &driver->driver;
  1678. retval = driver->bind(&dev->gadget);
  1679. /* Some gadget drivers use both ep0 directions.
  1680. * NOTE: to gadget driver, ep0 is just one endpoint...
  1681. */
  1682. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1683. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1684. if (retval) {
  1685. DBG(dev, "binding to %s returning %d\n",
  1686. driver->driver.name, retval);
  1687. dev->driver = NULL;
  1688. dev->gadget.dev.driver = NULL;
  1689. return retval;
  1690. }
  1691. /* get ready for ep0 traffic */
  1692. setup_ep0(dev);
  1693. /* clear SD */
  1694. tmp = readl(&dev->regs->ctl);
  1695. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1696. writel(tmp, &dev->regs->ctl);
  1697. usb_connect(dev);
  1698. return 0;
  1699. }
  1700. EXPORT_SYMBOL(usb_gadget_register_driver);
  1701. /* shutdown requests and disconnect from gadget */
  1702. static void
  1703. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1704. __releases(dev->lock)
  1705. __acquires(dev->lock)
  1706. {
  1707. int tmp;
  1708. /* empty queues and init hardware */
  1709. udc_basic_init(dev);
  1710. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1711. empty_req_queue(&dev->ep[tmp]);
  1712. }
  1713. if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
  1714. spin_unlock(&dev->lock);
  1715. driver->disconnect(&dev->gadget);
  1716. spin_lock(&dev->lock);
  1717. }
  1718. /* init */
  1719. udc_setup_endpoints(dev);
  1720. }
  1721. /* Called by gadget driver to unregister itself */
  1722. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
  1723. {
  1724. struct udc *dev = udc;
  1725. unsigned long flags;
  1726. u32 tmp;
  1727. if (!dev)
  1728. return -ENODEV;
  1729. if (!driver || driver != dev->driver || !driver->unbind)
  1730. return -EINVAL;
  1731. spin_lock_irqsave(&dev->lock, flags);
  1732. udc_mask_unused_interrupts(dev);
  1733. shutdown(dev, driver);
  1734. spin_unlock_irqrestore(&dev->lock, flags);
  1735. driver->unbind(&dev->gadget);
  1736. dev->gadget.dev.driver = NULL;
  1737. dev->driver = NULL;
  1738. /* set SD */
  1739. tmp = readl(&dev->regs->ctl);
  1740. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1741. writel(tmp, &dev->regs->ctl);
  1742. DBG(dev, "%s: unregistered\n", driver->driver.name);
  1743. return 0;
  1744. }
  1745. EXPORT_SYMBOL(usb_gadget_unregister_driver);
  1746. /* Clear pending NAK bits */
  1747. static void udc_process_cnak_queue(struct udc *dev)
  1748. {
  1749. u32 tmp;
  1750. u32 reg;
  1751. /* check epin's */
  1752. DBG(dev, "CNAK pending queue processing\n");
  1753. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1754. if (cnak_pending & (1 << tmp)) {
  1755. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1756. /* clear NAK by writing CNAK */
  1757. reg = readl(&dev->ep[tmp].regs->ctl);
  1758. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1759. writel(reg, &dev->ep[tmp].regs->ctl);
  1760. dev->ep[tmp].naking = 0;
  1761. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1762. }
  1763. }
  1764. /* ... and ep0out */
  1765. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1766. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1767. /* clear NAK by writing CNAK */
  1768. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1769. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1770. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1771. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1772. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1773. dev->ep[UDC_EP0OUT_IX].num);
  1774. }
  1775. }
  1776. /* Enabling RX DMA after setup packet */
  1777. static void udc_ep0_set_rde(struct udc *dev)
  1778. {
  1779. if (use_dma) {
  1780. /*
  1781. * only enable RXDMA when no data endpoint enabled
  1782. * or data is queued
  1783. */
  1784. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1785. udc_set_rde(dev);
  1786. } else {
  1787. /*
  1788. * setup timer for enabling RDE (to not enable
  1789. * RXFIFO DMA for data endpoints to early)
  1790. */
  1791. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1792. udc_timer.expires =
  1793. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1794. set_rde = 1;
  1795. if (!stop_timer) {
  1796. add_timer(&udc_timer);
  1797. }
  1798. }
  1799. }
  1800. }
  1801. }
  1802. /* Interrupt handler for data OUT traffic */
  1803. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1804. {
  1805. irqreturn_t ret_val = IRQ_NONE;
  1806. u32 tmp;
  1807. struct udc_ep *ep;
  1808. struct udc_request *req;
  1809. unsigned int count;
  1810. struct udc_data_dma *td = NULL;
  1811. unsigned dma_done;
  1812. VDBG(dev, "ep%d irq\n", ep_ix);
  1813. ep = &dev->ep[ep_ix];
  1814. tmp = readl(&ep->regs->sts);
  1815. if (use_dma) {
  1816. /* BNA event ? */
  1817. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1818. DBG(dev, "BNA ep%dout occured - DESPTR = %x \n",
  1819. ep->num, readl(&ep->regs->desptr));
  1820. /* clear BNA */
  1821. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1822. if (!ep->cancel_transfer)
  1823. ep->bna_occurred = 1;
  1824. else
  1825. ep->cancel_transfer = 0;
  1826. ret_val = IRQ_HANDLED;
  1827. goto finished;
  1828. }
  1829. }
  1830. /* HE event ? */
  1831. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1832. dev_err(&dev->pdev->dev, "HE ep%dout occured\n", ep->num);
  1833. /* clear HE */
  1834. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1835. ret_val = IRQ_HANDLED;
  1836. goto finished;
  1837. }
  1838. if (!list_empty(&ep->queue)) {
  1839. /* next request */
  1840. req = list_entry(ep->queue.next,
  1841. struct udc_request, queue);
  1842. } else {
  1843. req = NULL;
  1844. udc_rxfifo_pending = 1;
  1845. }
  1846. VDBG(dev, "req = %p\n", req);
  1847. /* fifo mode */
  1848. if (!use_dma) {
  1849. /* read fifo */
  1850. if (req && udc_rxfifo_read(ep, req)) {
  1851. ret_val = IRQ_HANDLED;
  1852. /* finish */
  1853. complete_req(ep, req, 0);
  1854. /* next request */
  1855. if (!list_empty(&ep->queue) && !ep->halted) {
  1856. req = list_entry(ep->queue.next,
  1857. struct udc_request, queue);
  1858. } else
  1859. req = NULL;
  1860. }
  1861. /* DMA */
  1862. } else if (!ep->cancel_transfer && req != NULL) {
  1863. ret_val = IRQ_HANDLED;
  1864. /* check for DMA done */
  1865. if (!use_dma_ppb) {
  1866. dma_done = AMD_GETBITS(req->td_data->status,
  1867. UDC_DMA_OUT_STS_BS);
  1868. /* packet per buffer mode - rx bytes */
  1869. } else {
  1870. /*
  1871. * if BNA occurred then recover desc. from
  1872. * BNA dummy desc.
  1873. */
  1874. if (ep->bna_occurred) {
  1875. VDBG(dev, "Recover desc. from BNA dummy\n");
  1876. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1877. sizeof(struct udc_data_dma));
  1878. ep->bna_occurred = 0;
  1879. udc_init_bna_dummy(ep->req);
  1880. }
  1881. td = udc_get_last_dma_desc(req);
  1882. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1883. }
  1884. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1885. /* buffer fill mode - rx bytes */
  1886. if (!use_dma_ppb) {
  1887. /* received number bytes */
  1888. count = AMD_GETBITS(req->td_data->status,
  1889. UDC_DMA_OUT_STS_RXBYTES);
  1890. VDBG(dev, "rx bytes=%u\n", count);
  1891. /* packet per buffer mode - rx bytes */
  1892. } else {
  1893. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1894. VDBG(dev, "last desc = %p\n", td);
  1895. /* received number bytes */
  1896. if (use_dma_ppb_du) {
  1897. /* every desc. counts bytes */
  1898. count = udc_get_ppbdu_rxbytes(req);
  1899. } else {
  1900. /* last desc. counts bytes */
  1901. count = AMD_GETBITS(td->status,
  1902. UDC_DMA_OUT_STS_RXBYTES);
  1903. if (!count && req->req.length
  1904. == UDC_DMA_MAXPACKET) {
  1905. /*
  1906. * on 64k packets the RXBYTES
  1907. * field is zero
  1908. */
  1909. count = UDC_DMA_MAXPACKET;
  1910. }
  1911. }
  1912. VDBG(dev, "last desc rx bytes=%u\n", count);
  1913. }
  1914. tmp = req->req.length - req->req.actual;
  1915. if (count > tmp) {
  1916. if ((tmp % ep->ep.maxpacket) != 0) {
  1917. DBG(dev, "%s: rx %db, space=%db\n",
  1918. ep->ep.name, count, tmp);
  1919. req->req.status = -EOVERFLOW;
  1920. }
  1921. count = tmp;
  1922. }
  1923. req->req.actual += count;
  1924. req->dma_going = 0;
  1925. /* complete request */
  1926. complete_req(ep, req, 0);
  1927. /* next request */
  1928. if (!list_empty(&ep->queue) && !ep->halted) {
  1929. req = list_entry(ep->queue.next,
  1930. struct udc_request,
  1931. queue);
  1932. /*
  1933. * DMA may be already started by udc_queue()
  1934. * called by gadget drivers completion
  1935. * routine. This happens when queue
  1936. * holds one request only.
  1937. */
  1938. if (req->dma_going == 0) {
  1939. /* next dma */
  1940. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1941. goto finished;
  1942. /* write desc pointer */
  1943. writel(req->td_phys,
  1944. &ep->regs->desptr);
  1945. req->dma_going = 1;
  1946. /* enable DMA */
  1947. udc_set_rde(dev);
  1948. }
  1949. } else {
  1950. /*
  1951. * implant BNA dummy descriptor to allow
  1952. * RXFIFO opening by RDE
  1953. */
  1954. if (ep->bna_dummy_req) {
  1955. /* write desc pointer */
  1956. writel(ep->bna_dummy_req->td_phys,
  1957. &ep->regs->desptr);
  1958. ep->bna_occurred = 0;
  1959. }
  1960. /*
  1961. * schedule timer for setting RDE if queue
  1962. * remains empty to allow ep0 packets pass
  1963. * through
  1964. */
  1965. if (set_rde != 0
  1966. && !timer_pending(&udc_timer)) {
  1967. udc_timer.expires =
  1968. jiffies
  1969. + HZ*UDC_RDE_TIMER_SECONDS;
  1970. set_rde = 1;
  1971. if (!stop_timer) {
  1972. add_timer(&udc_timer);
  1973. }
  1974. }
  1975. if (ep->num != UDC_EP0OUT_IX)
  1976. dev->data_ep_queued = 0;
  1977. }
  1978. } else {
  1979. /*
  1980. * RX DMA must be reenabled for each desc in PPBDU mode
  1981. * and must be enabled for PPBNDU mode in case of BNA
  1982. */
  1983. udc_set_rde(dev);
  1984. }
  1985. } else if (ep->cancel_transfer) {
  1986. ret_val = IRQ_HANDLED;
  1987. ep->cancel_transfer = 0;
  1988. }
  1989. /* check pending CNAKS */
  1990. if (cnak_pending) {
  1991. /* CNAk processing when rxfifo empty only */
  1992. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1993. udc_process_cnak_queue(dev);
  1994. }
  1995. }
  1996. /* clear OUT bits in ep status */
  1997. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  1998. finished:
  1999. return ret_val;
  2000. }
  2001. /* Interrupt handler for data IN traffic */
  2002. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  2003. {
  2004. irqreturn_t ret_val = IRQ_NONE;
  2005. u32 tmp;
  2006. u32 epsts;
  2007. struct udc_ep *ep;
  2008. struct udc_request *req;
  2009. struct udc_data_dma *td;
  2010. unsigned dma_done;
  2011. unsigned len;
  2012. ep = &dev->ep[ep_ix];
  2013. epsts = readl(&ep->regs->sts);
  2014. if (use_dma) {
  2015. /* BNA ? */
  2016. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  2017. dev_err(&dev->pdev->dev,
  2018. "BNA ep%din occured - DESPTR = %08lx \n",
  2019. ep->num,
  2020. (unsigned long) readl(&ep->regs->desptr));
  2021. /* clear BNA */
  2022. writel(epsts, &ep->regs->sts);
  2023. ret_val = IRQ_HANDLED;
  2024. goto finished;
  2025. }
  2026. }
  2027. /* HE event ? */
  2028. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  2029. dev_err(&dev->pdev->dev,
  2030. "HE ep%dn occured - DESPTR = %08lx \n",
  2031. ep->num, (unsigned long) readl(&ep->regs->desptr));
  2032. /* clear HE */
  2033. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  2034. ret_val = IRQ_HANDLED;
  2035. goto finished;
  2036. }
  2037. /* DMA completion */
  2038. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  2039. VDBG(dev, "TDC set- completion\n");
  2040. ret_val = IRQ_HANDLED;
  2041. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  2042. req = list_entry(ep->queue.next,
  2043. struct udc_request, queue);
  2044. if (req) {
  2045. /*
  2046. * length bytes transfered
  2047. * check dma done of last desc. in PPBDU mode
  2048. */
  2049. if (use_dma_ppb_du) {
  2050. td = udc_get_last_dma_desc(req);
  2051. if (td) {
  2052. dma_done =
  2053. AMD_GETBITS(td->status,
  2054. UDC_DMA_IN_STS_BS);
  2055. /* don't care DMA done */
  2056. req->req.actual =
  2057. req->req.length;
  2058. }
  2059. } else {
  2060. /* assume all bytes transferred */
  2061. req->req.actual = req->req.length;
  2062. }
  2063. if (req->req.actual == req->req.length) {
  2064. /* complete req */
  2065. complete_req(ep, req, 0);
  2066. req->dma_going = 0;
  2067. /* further request available ? */
  2068. if (list_empty(&ep->queue)) {
  2069. /* disable interrupt */
  2070. tmp = readl(
  2071. &dev->regs->ep_irqmsk);
  2072. tmp |= AMD_BIT(ep->num);
  2073. writel(tmp,
  2074. &dev->regs->ep_irqmsk);
  2075. }
  2076. }
  2077. }
  2078. }
  2079. ep->cancel_transfer = 0;
  2080. }
  2081. /*
  2082. * status reg has IN bit set and TDC not set (if TDC was handled,
  2083. * IN must not be handled (UDC defect) ?
  2084. */
  2085. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2086. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2087. ret_val = IRQ_HANDLED;
  2088. if (!list_empty(&ep->queue)) {
  2089. /* next request */
  2090. req = list_entry(ep->queue.next,
  2091. struct udc_request, queue);
  2092. /* FIFO mode */
  2093. if (!use_dma) {
  2094. /* write fifo */
  2095. udc_txfifo_write(ep, &req->req);
  2096. len = req->req.length - req->req.actual;
  2097. if (len > ep->ep.maxpacket)
  2098. len = ep->ep.maxpacket;
  2099. req->req.actual += len;
  2100. if (req->req.actual == req->req.length
  2101. || (len != ep->ep.maxpacket)) {
  2102. /* complete req */
  2103. complete_req(ep, req, 0);
  2104. }
  2105. /* DMA */
  2106. } else if (req && !req->dma_going) {
  2107. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2108. req, req->td_data);
  2109. if (req->td_data) {
  2110. req->dma_going = 1;
  2111. /*
  2112. * unset L bit of first desc.
  2113. * for chain
  2114. */
  2115. if (use_dma_ppb && req->req.length >
  2116. ep->ep.maxpacket) {
  2117. req->td_data->status &=
  2118. AMD_CLEAR_BIT(
  2119. UDC_DMA_IN_STS_L);
  2120. }
  2121. /* write desc pointer */
  2122. writel(req->td_phys, &ep->regs->desptr);
  2123. /* set HOST READY */
  2124. req->td_data->status =
  2125. AMD_ADDBITS(
  2126. req->td_data->status,
  2127. UDC_DMA_IN_STS_BS_HOST_READY,
  2128. UDC_DMA_IN_STS_BS);
  2129. /* set poll demand bit */
  2130. tmp = readl(&ep->regs->ctl);
  2131. tmp |= AMD_BIT(UDC_EPCTL_P);
  2132. writel(tmp, &ep->regs->ctl);
  2133. }
  2134. }
  2135. }
  2136. }
  2137. /* clear status bits */
  2138. writel(epsts, &ep->regs->sts);
  2139. finished:
  2140. return ret_val;
  2141. }
  2142. /* Interrupt handler for Control OUT traffic */
  2143. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2144. __releases(dev->lock)
  2145. __acquires(dev->lock)
  2146. {
  2147. irqreturn_t ret_val = IRQ_NONE;
  2148. u32 tmp;
  2149. int setup_supported;
  2150. u32 count;
  2151. int set = 0;
  2152. struct udc_ep *ep;
  2153. struct udc_ep *ep_tmp;
  2154. ep = &dev->ep[UDC_EP0OUT_IX];
  2155. /* clear irq */
  2156. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2157. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2158. /* check BNA and clear if set */
  2159. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2160. VDBG(dev, "ep0: BNA set\n");
  2161. writel(AMD_BIT(UDC_EPSTS_BNA),
  2162. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2163. ep->bna_occurred = 1;
  2164. ret_val = IRQ_HANDLED;
  2165. goto finished;
  2166. }
  2167. /* type of data: SETUP or DATA 0 bytes */
  2168. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2169. VDBG(dev, "data_typ = %x\n", tmp);
  2170. /* setup data */
  2171. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2172. ret_val = IRQ_HANDLED;
  2173. ep->dev->stall_ep0in = 0;
  2174. dev->waiting_zlp_ack_ep0in = 0;
  2175. /* set NAK for EP0_IN */
  2176. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2177. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2178. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2179. dev->ep[UDC_EP0IN_IX].naking = 1;
  2180. /* get setup data */
  2181. if (use_dma) {
  2182. /* clear OUT bits in ep status */
  2183. writel(UDC_EPSTS_OUT_CLEAR,
  2184. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2185. setup_data.data[0] =
  2186. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2187. setup_data.data[1] =
  2188. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2189. /* set HOST READY */
  2190. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2191. UDC_DMA_STP_STS_BS_HOST_READY;
  2192. } else {
  2193. /* read fifo */
  2194. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2195. }
  2196. /* determine direction of control data */
  2197. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2198. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2199. /* enable RDE */
  2200. udc_ep0_set_rde(dev);
  2201. set = 0;
  2202. } else {
  2203. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2204. /*
  2205. * implant BNA dummy descriptor to allow RXFIFO opening
  2206. * by RDE
  2207. */
  2208. if (ep->bna_dummy_req) {
  2209. /* write desc pointer */
  2210. writel(ep->bna_dummy_req->td_phys,
  2211. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2212. ep->bna_occurred = 0;
  2213. }
  2214. set = 1;
  2215. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2216. /*
  2217. * setup timer for enabling RDE (to not enable
  2218. * RXFIFO DMA for data to early)
  2219. */
  2220. set_rde = 1;
  2221. if (!timer_pending(&udc_timer)) {
  2222. udc_timer.expires = jiffies +
  2223. HZ/UDC_RDE_TIMER_DIV;
  2224. if (!stop_timer) {
  2225. add_timer(&udc_timer);
  2226. }
  2227. }
  2228. }
  2229. /*
  2230. * mass storage reset must be processed here because
  2231. * next packet may be a CLEAR_FEATURE HALT which would not
  2232. * clear the stall bit when no STALL handshake was received
  2233. * before (autostall can cause this)
  2234. */
  2235. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2236. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2237. DBG(dev, "MSC Reset\n");
  2238. /*
  2239. * clear stall bits
  2240. * only one IN and OUT endpoints are handled
  2241. */
  2242. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2243. udc_set_halt(&ep_tmp->ep, 0);
  2244. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2245. udc_set_halt(&ep_tmp->ep, 0);
  2246. }
  2247. /* call gadget with setup data received */
  2248. spin_unlock(&dev->lock);
  2249. setup_supported = dev->driver->setup(&dev->gadget,
  2250. &setup_data.request);
  2251. spin_lock(&dev->lock);
  2252. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2253. /* ep0 in returns data (not zlp) on IN phase */
  2254. if (setup_supported >= 0 && setup_supported <
  2255. UDC_EP0IN_MAXPACKET) {
  2256. /* clear NAK by writing CNAK in EP0_IN */
  2257. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2258. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2259. dev->ep[UDC_EP0IN_IX].naking = 0;
  2260. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2261. /* if unsupported request then stall */
  2262. } else if (setup_supported < 0) {
  2263. tmp |= AMD_BIT(UDC_EPCTL_S);
  2264. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2265. } else
  2266. dev->waiting_zlp_ack_ep0in = 1;
  2267. /* clear NAK by writing CNAK in EP0_OUT */
  2268. if (!set) {
  2269. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2270. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2271. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2272. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2273. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2274. }
  2275. if (!use_dma) {
  2276. /* clear OUT bits in ep status */
  2277. writel(UDC_EPSTS_OUT_CLEAR,
  2278. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2279. }
  2280. /* data packet 0 bytes */
  2281. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2282. /* clear OUT bits in ep status */
  2283. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2284. /* get setup data: only 0 packet */
  2285. if (use_dma) {
  2286. /* no req if 0 packet, just reactivate */
  2287. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2288. VDBG(dev, "ZLP\n");
  2289. /* set HOST READY */
  2290. dev->ep[UDC_EP0OUT_IX].td->status =
  2291. AMD_ADDBITS(
  2292. dev->ep[UDC_EP0OUT_IX].td->status,
  2293. UDC_DMA_OUT_STS_BS_HOST_READY,
  2294. UDC_DMA_OUT_STS_BS);
  2295. /* enable RDE */
  2296. udc_ep0_set_rde(dev);
  2297. ret_val = IRQ_HANDLED;
  2298. } else {
  2299. /* control write */
  2300. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2301. /* re-program desc. pointer for possible ZLPs */
  2302. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2303. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2304. /* enable RDE */
  2305. udc_ep0_set_rde(dev);
  2306. }
  2307. } else {
  2308. /* received number bytes */
  2309. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2310. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2311. /* out data for fifo mode not working */
  2312. count = 0;
  2313. /* 0 packet or real data ? */
  2314. if (count != 0) {
  2315. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2316. } else {
  2317. /* dummy read confirm */
  2318. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2319. ret_val = IRQ_HANDLED;
  2320. }
  2321. }
  2322. }
  2323. /* check pending CNAKS */
  2324. if (cnak_pending) {
  2325. /* CNAk processing when rxfifo empty only */
  2326. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  2327. udc_process_cnak_queue(dev);
  2328. }
  2329. }
  2330. finished:
  2331. return ret_val;
  2332. }
  2333. /* Interrupt handler for Control IN traffic */
  2334. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2335. {
  2336. irqreturn_t ret_val = IRQ_NONE;
  2337. u32 tmp;
  2338. struct udc_ep *ep;
  2339. struct udc_request *req;
  2340. unsigned len;
  2341. ep = &dev->ep[UDC_EP0IN_IX];
  2342. /* clear irq */
  2343. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2344. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2345. /* DMA completion */
  2346. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2347. VDBG(dev, "isr: TDC clear \n");
  2348. ret_val = IRQ_HANDLED;
  2349. /* clear TDC bit */
  2350. writel(AMD_BIT(UDC_EPSTS_TDC),
  2351. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2352. /* status reg has IN bit set ? */
  2353. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2354. ret_val = IRQ_HANDLED;
  2355. if (ep->dma) {
  2356. /* clear IN bit */
  2357. writel(AMD_BIT(UDC_EPSTS_IN),
  2358. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2359. }
  2360. if (dev->stall_ep0in) {
  2361. DBG(dev, "stall ep0in\n");
  2362. /* halt ep0in */
  2363. tmp = readl(&ep->regs->ctl);
  2364. tmp |= AMD_BIT(UDC_EPCTL_S);
  2365. writel(tmp, &ep->regs->ctl);
  2366. } else {
  2367. if (!list_empty(&ep->queue)) {
  2368. /* next request */
  2369. req = list_entry(ep->queue.next,
  2370. struct udc_request, queue);
  2371. if (ep->dma) {
  2372. /* write desc pointer */
  2373. writel(req->td_phys, &ep->regs->desptr);
  2374. /* set HOST READY */
  2375. req->td_data->status =
  2376. AMD_ADDBITS(
  2377. req->td_data->status,
  2378. UDC_DMA_STP_STS_BS_HOST_READY,
  2379. UDC_DMA_STP_STS_BS);
  2380. /* set poll demand bit */
  2381. tmp =
  2382. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2383. tmp |= AMD_BIT(UDC_EPCTL_P);
  2384. writel(tmp,
  2385. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2386. /* all bytes will be transferred */
  2387. req->req.actual = req->req.length;
  2388. /* complete req */
  2389. complete_req(ep, req, 0);
  2390. } else {
  2391. /* write fifo */
  2392. udc_txfifo_write(ep, &req->req);
  2393. /* lengh bytes transfered */
  2394. len = req->req.length - req->req.actual;
  2395. if (len > ep->ep.maxpacket)
  2396. len = ep->ep.maxpacket;
  2397. req->req.actual += len;
  2398. if (req->req.actual == req->req.length
  2399. || (len != ep->ep.maxpacket)) {
  2400. /* complete req */
  2401. complete_req(ep, req, 0);
  2402. }
  2403. }
  2404. }
  2405. }
  2406. ep->halted = 0;
  2407. dev->stall_ep0in = 0;
  2408. if (!ep->dma) {
  2409. /* clear IN bit */
  2410. writel(AMD_BIT(UDC_EPSTS_IN),
  2411. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2412. }
  2413. }
  2414. return ret_val;
  2415. }
  2416. /* Interrupt handler for global device events */
  2417. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2418. __releases(dev->lock)
  2419. __acquires(dev->lock)
  2420. {
  2421. irqreturn_t ret_val = IRQ_NONE;
  2422. u32 tmp;
  2423. u32 cfg;
  2424. struct udc_ep *ep;
  2425. u16 i;
  2426. u8 udc_csr_epix;
  2427. /* SET_CONFIG irq ? */
  2428. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2429. ret_val = IRQ_HANDLED;
  2430. /* read config value */
  2431. tmp = readl(&dev->regs->sts);
  2432. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2433. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2434. dev->cur_config = cfg;
  2435. dev->set_cfg_not_acked = 1;
  2436. /* make usb request for gadget driver */
  2437. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2438. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2439. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2440. /* programm the NE registers */
  2441. for (i = 0; i < UDC_EP_NUM; i++) {
  2442. ep = &dev->ep[i];
  2443. if (ep->in) {
  2444. /* ep ix in UDC CSR register space */
  2445. udc_csr_epix = ep->num;
  2446. /* OUT ep */
  2447. } else {
  2448. /* ep ix in UDC CSR register space */
  2449. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2450. }
  2451. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2452. /* ep cfg */
  2453. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2454. UDC_CSR_NE_CFG);
  2455. /* write reg */
  2456. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2457. /* clear stall bits */
  2458. ep->halted = 0;
  2459. tmp = readl(&ep->regs->ctl);
  2460. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2461. writel(tmp, &ep->regs->ctl);
  2462. }
  2463. /* call gadget zero with setup data received */
  2464. spin_unlock(&dev->lock);
  2465. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2466. spin_lock(&dev->lock);
  2467. } /* SET_INTERFACE ? */
  2468. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2469. ret_val = IRQ_HANDLED;
  2470. dev->set_cfg_not_acked = 1;
  2471. /* read interface and alt setting values */
  2472. tmp = readl(&dev->regs->sts);
  2473. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2474. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2475. /* make usb request for gadget driver */
  2476. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2477. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2478. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2479. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2480. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2481. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2482. dev->cur_alt, dev->cur_intf);
  2483. /* programm the NE registers */
  2484. for (i = 0; i < UDC_EP_NUM; i++) {
  2485. ep = &dev->ep[i];
  2486. if (ep->in) {
  2487. /* ep ix in UDC CSR register space */
  2488. udc_csr_epix = ep->num;
  2489. /* OUT ep */
  2490. } else {
  2491. /* ep ix in UDC CSR register space */
  2492. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2493. }
  2494. /* UDC CSR reg */
  2495. /* set ep values */
  2496. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2497. /* ep interface */
  2498. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2499. UDC_CSR_NE_INTF);
  2500. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2501. /* ep alt */
  2502. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2503. UDC_CSR_NE_ALT);
  2504. /* write reg */
  2505. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2506. /* clear stall bits */
  2507. ep->halted = 0;
  2508. tmp = readl(&ep->regs->ctl);
  2509. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2510. writel(tmp, &ep->regs->ctl);
  2511. }
  2512. /* call gadget zero with setup data received */
  2513. spin_unlock(&dev->lock);
  2514. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2515. spin_lock(&dev->lock);
  2516. } /* USB reset */
  2517. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2518. DBG(dev, "USB Reset interrupt\n");
  2519. ret_val = IRQ_HANDLED;
  2520. /* allow soft reset when suspend occurs */
  2521. soft_reset_occured = 0;
  2522. dev->waiting_zlp_ack_ep0in = 0;
  2523. dev->set_cfg_not_acked = 0;
  2524. /* mask not needed interrupts */
  2525. udc_mask_unused_interrupts(dev);
  2526. /* call gadget to resume and reset configs etc. */
  2527. spin_unlock(&dev->lock);
  2528. if (dev->sys_suspended && dev->driver->resume) {
  2529. dev->driver->resume(&dev->gadget);
  2530. dev->sys_suspended = 0;
  2531. }
  2532. dev->driver->disconnect(&dev->gadget);
  2533. spin_lock(&dev->lock);
  2534. /* disable ep0 to empty req queue */
  2535. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2536. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2537. /* soft reset when rxfifo not empty */
  2538. tmp = readl(&dev->regs->sts);
  2539. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2540. && !soft_reset_after_usbreset_occured) {
  2541. udc_soft_reset(dev);
  2542. soft_reset_after_usbreset_occured++;
  2543. }
  2544. /*
  2545. * DMA reset to kill potential old DMA hw hang,
  2546. * POLL bit is already reset by ep_init() through
  2547. * disconnect()
  2548. */
  2549. DBG(dev, "DMA machine reset\n");
  2550. tmp = readl(&dev->regs->cfg);
  2551. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2552. writel(tmp, &dev->regs->cfg);
  2553. /* put into initial config */
  2554. udc_basic_init(dev);
  2555. /* enable device setup interrupts */
  2556. udc_enable_dev_setup_interrupts(dev);
  2557. /* enable suspend interrupt */
  2558. tmp = readl(&dev->regs->irqmsk);
  2559. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2560. writel(tmp, &dev->regs->irqmsk);
  2561. } /* USB suspend */
  2562. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2563. DBG(dev, "USB Suspend interrupt\n");
  2564. ret_val = IRQ_HANDLED;
  2565. if (dev->driver->suspend) {
  2566. spin_unlock(&dev->lock);
  2567. dev->sys_suspended = 1;
  2568. dev->driver->suspend(&dev->gadget);
  2569. spin_lock(&dev->lock);
  2570. }
  2571. } /* new speed ? */
  2572. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2573. DBG(dev, "ENUM interrupt\n");
  2574. ret_val = IRQ_HANDLED;
  2575. soft_reset_after_usbreset_occured = 0;
  2576. /* disable ep0 to empty req queue */
  2577. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2578. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2579. /* link up all endpoints */
  2580. udc_setup_endpoints(dev);
  2581. if (dev->gadget.speed == USB_SPEED_HIGH) {
  2582. dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
  2583. "high");
  2584. } else if (dev->gadget.speed == USB_SPEED_FULL) {
  2585. dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
  2586. "full");
  2587. }
  2588. /* init ep 0 */
  2589. activate_control_endpoints(dev);
  2590. /* enable ep0 interrupts */
  2591. udc_enable_ep0_interrupts(dev);
  2592. }
  2593. /* session valid change interrupt */
  2594. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2595. DBG(dev, "USB SVC interrupt\n");
  2596. ret_val = IRQ_HANDLED;
  2597. /* check that session is not valid to detect disconnect */
  2598. tmp = readl(&dev->regs->sts);
  2599. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2600. /* disable suspend interrupt */
  2601. tmp = readl(&dev->regs->irqmsk);
  2602. tmp |= AMD_BIT(UDC_DEVINT_US);
  2603. writel(tmp, &dev->regs->irqmsk);
  2604. DBG(dev, "USB Disconnect (session valid low)\n");
  2605. /* cleanup on disconnect */
  2606. usb_disconnect(udc);
  2607. }
  2608. }
  2609. return ret_val;
  2610. }
  2611. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2612. static irqreturn_t udc_irq(int irq, void *pdev)
  2613. {
  2614. struct udc *dev = pdev;
  2615. u32 reg;
  2616. u16 i;
  2617. u32 ep_irq;
  2618. irqreturn_t ret_val = IRQ_NONE;
  2619. spin_lock(&dev->lock);
  2620. /* check for ep irq */
  2621. reg = readl(&dev->regs->ep_irqsts);
  2622. if (reg) {
  2623. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2624. ret_val |= udc_control_out_isr(dev);
  2625. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2626. ret_val |= udc_control_in_isr(dev);
  2627. /*
  2628. * data endpoint
  2629. * iterate ep's
  2630. */
  2631. for (i = 1; i < UDC_EP_NUM; i++) {
  2632. ep_irq = 1 << i;
  2633. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2634. continue;
  2635. /* clear irq status */
  2636. writel(ep_irq, &dev->regs->ep_irqsts);
  2637. /* irq for out ep ? */
  2638. if (i > UDC_EPIN_NUM)
  2639. ret_val |= udc_data_out_isr(dev, i);
  2640. else
  2641. ret_val |= udc_data_in_isr(dev, i);
  2642. }
  2643. }
  2644. /* check for dev irq */
  2645. reg = readl(&dev->regs->irqsts);
  2646. if (reg) {
  2647. /* clear irq */
  2648. writel(reg, &dev->regs->irqsts);
  2649. ret_val |= udc_dev_isr(dev, reg);
  2650. }
  2651. spin_unlock(&dev->lock);
  2652. return ret_val;
  2653. }
  2654. /* Tears down device */
  2655. static void gadget_release(struct device *pdev)
  2656. {
  2657. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2658. kfree(dev);
  2659. }
  2660. /* Cleanup on device remove */
  2661. static void udc_remove(struct udc *dev)
  2662. {
  2663. /* remove timer */
  2664. stop_timer++;
  2665. if (timer_pending(&udc_timer))
  2666. wait_for_completion(&on_exit);
  2667. if (udc_timer.data)
  2668. del_timer_sync(&udc_timer);
  2669. /* remove pollstall timer */
  2670. stop_pollstall_timer++;
  2671. if (timer_pending(&udc_pollstall_timer))
  2672. wait_for_completion(&on_pollstall_exit);
  2673. if (udc_pollstall_timer.data)
  2674. del_timer_sync(&udc_pollstall_timer);
  2675. udc = NULL;
  2676. }
  2677. /* Reset all pci context */
  2678. static void udc_pci_remove(struct pci_dev *pdev)
  2679. {
  2680. struct udc *dev;
  2681. dev = pci_get_drvdata(pdev);
  2682. /* gadget driver must not be registered */
  2683. BUG_ON(dev->driver != NULL);
  2684. /* dma pool cleanup */
  2685. if (dev->data_requests)
  2686. pci_pool_destroy(dev->data_requests);
  2687. if (dev->stp_requests) {
  2688. /* cleanup DMA desc's for ep0in */
  2689. pci_pool_free(dev->stp_requests,
  2690. dev->ep[UDC_EP0OUT_IX].td_stp,
  2691. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2692. pci_pool_free(dev->stp_requests,
  2693. dev->ep[UDC_EP0OUT_IX].td,
  2694. dev->ep[UDC_EP0OUT_IX].td_phys);
  2695. pci_pool_destroy(dev->stp_requests);
  2696. }
  2697. /* reset controller */
  2698. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2699. if (dev->irq_registered)
  2700. free_irq(pdev->irq, dev);
  2701. if (dev->regs)
  2702. iounmap(dev->regs);
  2703. if (dev->mem_region)
  2704. release_mem_region(pci_resource_start(pdev, 0),
  2705. pci_resource_len(pdev, 0));
  2706. if (dev->active)
  2707. pci_disable_device(pdev);
  2708. device_unregister(&dev->gadget.dev);
  2709. pci_set_drvdata(pdev, NULL);
  2710. udc_remove(dev);
  2711. }
  2712. /* create dma pools on init */
  2713. static int init_dma_pools(struct udc *dev)
  2714. {
  2715. struct udc_stp_dma *td_stp;
  2716. struct udc_data_dma *td_data;
  2717. int retval;
  2718. /* consistent DMA mode setting ? */
  2719. if (use_dma_ppb) {
  2720. use_dma_bufferfill_mode = 0;
  2721. } else {
  2722. use_dma_ppb_du = 0;
  2723. use_dma_bufferfill_mode = 1;
  2724. }
  2725. /* DMA setup */
  2726. dev->data_requests = dma_pool_create("data_requests", NULL,
  2727. sizeof(struct udc_data_dma), 0, 0);
  2728. if (!dev->data_requests) {
  2729. DBG(dev, "can't get request data pool\n");
  2730. retval = -ENOMEM;
  2731. goto finished;
  2732. }
  2733. /* EP0 in dma regs = dev control regs */
  2734. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2735. /* dma desc for setup data */
  2736. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2737. sizeof(struct udc_stp_dma), 0, 0);
  2738. if (!dev->stp_requests) {
  2739. DBG(dev, "can't get stp request pool\n");
  2740. retval = -ENOMEM;
  2741. goto finished;
  2742. }
  2743. /* setup */
  2744. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2745. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2746. if (td_stp == NULL) {
  2747. retval = -ENOMEM;
  2748. goto finished;
  2749. }
  2750. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2751. /* data: 0 packets !? */
  2752. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2753. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2754. if (td_data == NULL) {
  2755. retval = -ENOMEM;
  2756. goto finished;
  2757. }
  2758. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2759. return 0;
  2760. finished:
  2761. return retval;
  2762. }
  2763. /* Called by pci bus driver to init pci context */
  2764. static int udc_pci_probe(
  2765. struct pci_dev *pdev,
  2766. const struct pci_device_id *id
  2767. )
  2768. {
  2769. struct udc *dev;
  2770. unsigned long resource;
  2771. unsigned long len;
  2772. int retval = 0;
  2773. /* one udc only */
  2774. if (udc) {
  2775. dev_dbg(&pdev->dev, "already probed\n");
  2776. return -EBUSY;
  2777. }
  2778. /* init */
  2779. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2780. if (!dev) {
  2781. retval = -ENOMEM;
  2782. goto finished;
  2783. }
  2784. /* pci setup */
  2785. if (pci_enable_device(pdev) < 0) {
  2786. kfree(dev);
  2787. dev = NULL;
  2788. retval = -ENODEV;
  2789. goto finished;
  2790. }
  2791. dev->active = 1;
  2792. /* PCI resource allocation */
  2793. resource = pci_resource_start(pdev, 0);
  2794. len = pci_resource_len(pdev, 0);
  2795. if (!request_mem_region(resource, len, name)) {
  2796. dev_dbg(&pdev->dev, "pci device used already\n");
  2797. kfree(dev);
  2798. dev = NULL;
  2799. retval = -EBUSY;
  2800. goto finished;
  2801. }
  2802. dev->mem_region = 1;
  2803. dev->virt_addr = ioremap_nocache(resource, len);
  2804. if (dev->virt_addr == NULL) {
  2805. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2806. kfree(dev);
  2807. dev = NULL;
  2808. retval = -EFAULT;
  2809. goto finished;
  2810. }
  2811. if (!pdev->irq) {
  2812. dev_err(&dev->pdev->dev, "irq not set\n");
  2813. kfree(dev);
  2814. dev = NULL;
  2815. retval = -ENODEV;
  2816. goto finished;
  2817. }
  2818. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2819. dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2820. kfree(dev);
  2821. dev = NULL;
  2822. retval = -EBUSY;
  2823. goto finished;
  2824. }
  2825. dev->irq_registered = 1;
  2826. pci_set_drvdata(pdev, dev);
  2827. /* chip revision for Hs AMD5536 */
  2828. dev->chiprev = pdev->revision;
  2829. pci_set_master(pdev);
  2830. pci_try_set_mwi(pdev);
  2831. /* init dma pools */
  2832. if (use_dma) {
  2833. retval = init_dma_pools(dev);
  2834. if (retval != 0)
  2835. goto finished;
  2836. }
  2837. dev->phys_addr = resource;
  2838. dev->irq = pdev->irq;
  2839. dev->pdev = pdev;
  2840. dev->gadget.dev.parent = &pdev->dev;
  2841. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2842. /* general probing */
  2843. if (udc_probe(dev) == 0)
  2844. return 0;
  2845. finished:
  2846. if (dev)
  2847. udc_pci_remove(pdev);
  2848. return retval;
  2849. }
  2850. /* general probe */
  2851. static int udc_probe(struct udc *dev)
  2852. {
  2853. char tmp[128];
  2854. u32 reg;
  2855. int retval;
  2856. /* mark timer as not initialized */
  2857. udc_timer.data = 0;
  2858. udc_pollstall_timer.data = 0;
  2859. /* device struct setup */
  2860. spin_lock_init(&dev->lock);
  2861. dev->gadget.ops = &udc_ops;
  2862. dev_set_name(&dev->gadget.dev, "gadget");
  2863. dev->gadget.dev.release = gadget_release;
  2864. dev->gadget.name = name;
  2865. dev->gadget.name = name;
  2866. dev->gadget.is_dualspeed = 1;
  2867. /* udc csr registers base */
  2868. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2869. /* dev registers base */
  2870. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2871. /* ep registers base */
  2872. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2873. /* fifo's base */
  2874. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2875. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2876. /* init registers, interrupts, ... */
  2877. startup_registers(dev);
  2878. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2879. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2880. dev_info(&dev->pdev->dev,
  2881. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2882. tmp, dev->phys_addr, dev->chiprev,
  2883. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2884. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2885. if (dev->chiprev == UDC_HSA0_REV) {
  2886. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2887. retval = -ENODEV;
  2888. goto finished;
  2889. }
  2890. dev_info(&dev->pdev->dev,
  2891. "driver version: %s(for Geode5536 B1)\n", tmp);
  2892. udc = dev;
  2893. retval = device_register(&dev->gadget.dev);
  2894. if (retval)
  2895. goto finished;
  2896. /* timer init */
  2897. init_timer(&udc_timer);
  2898. udc_timer.function = udc_timer_function;
  2899. udc_timer.data = 1;
  2900. /* timer pollstall init */
  2901. init_timer(&udc_pollstall_timer);
  2902. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2903. udc_pollstall_timer.data = 1;
  2904. /* set SD */
  2905. reg = readl(&dev->regs->ctl);
  2906. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2907. writel(reg, &dev->regs->ctl);
  2908. /* print dev register info */
  2909. print_regs(dev);
  2910. return 0;
  2911. finished:
  2912. return retval;
  2913. }
  2914. /* Initiates a remote wakeup */
  2915. static int udc_remote_wakeup(struct udc *dev)
  2916. {
  2917. unsigned long flags;
  2918. u32 tmp;
  2919. DBG(dev, "UDC initiates remote wakeup\n");
  2920. spin_lock_irqsave(&dev->lock, flags);
  2921. tmp = readl(&dev->regs->ctl);
  2922. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2923. writel(tmp, &dev->regs->ctl);
  2924. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2925. writel(tmp, &dev->regs->ctl);
  2926. spin_unlock_irqrestore(&dev->lock, flags);
  2927. return 0;
  2928. }
  2929. /* PCI device parameters */
  2930. static const struct pci_device_id pci_id[] = {
  2931. {
  2932. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2933. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2934. .class_mask = 0xffffffff,
  2935. },
  2936. {},
  2937. };
  2938. MODULE_DEVICE_TABLE(pci, pci_id);
  2939. /* PCI functions */
  2940. static struct pci_driver udc_pci_driver = {
  2941. .name = (char *) name,
  2942. .id_table = pci_id,
  2943. .probe = udc_pci_probe,
  2944. .remove = udc_pci_remove,
  2945. };
  2946. /* Inits driver */
  2947. static int __init init(void)
  2948. {
  2949. return pci_register_driver(&udc_pci_driver);
  2950. }
  2951. module_init(init);
  2952. /* Cleans driver */
  2953. static void __exit cleanup(void)
  2954. {
  2955. pci_unregister_driver(&udc_pci_driver);
  2956. }
  2957. module_exit(cleanup);
  2958. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2959. MODULE_AUTHOR("Thomas Dahlmann");
  2960. MODULE_LICENSE("GPL");