main.c 31 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393
  1. /*
  2. * Sonics Silicon Backplane
  3. * Subsystem core
  4. *
  5. * Copyright 2005, Broadcom Corporation
  6. * Copyright 2006, 2007, Michael Buesch <mb@bu3sch.de>
  7. *
  8. * Licensed under the GNU/GPL. See COPYING for details.
  9. */
  10. #include "ssb_private.h"
  11. #include <linux/delay.h>
  12. #include <linux/io.h>
  13. #include <linux/ssb/ssb.h>
  14. #include <linux/ssb/ssb_regs.h>
  15. #include <linux/ssb/ssb_driver_gige.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/pci.h>
  18. #include <pcmcia/cs_types.h>
  19. #include <pcmcia/cs.h>
  20. #include <pcmcia/cistpl.h>
  21. #include <pcmcia/ds.h>
  22. MODULE_DESCRIPTION("Sonics Silicon Backplane driver");
  23. MODULE_LICENSE("GPL");
  24. /* Temporary list of yet-to-be-attached buses */
  25. static LIST_HEAD(attach_queue);
  26. /* List if running buses */
  27. static LIST_HEAD(buses);
  28. /* Software ID counter */
  29. static unsigned int next_busnumber;
  30. /* buses_mutes locks the two buslists and the next_busnumber.
  31. * Don't lock this directly, but use ssb_buses_[un]lock() below. */
  32. static DEFINE_MUTEX(buses_mutex);
  33. /* There are differences in the codeflow, if the bus is
  34. * initialized from early boot, as various needed services
  35. * are not available early. This is a mechanism to delay
  36. * these initializations to after early boot has finished.
  37. * It's also used to avoid mutex locking, as that's not
  38. * available and needed early. */
  39. static bool ssb_is_early_boot = 1;
  40. static void ssb_buses_lock(void);
  41. static void ssb_buses_unlock(void);
  42. #ifdef CONFIG_SSB_PCIHOST
  43. struct ssb_bus *ssb_pci_dev_to_bus(struct pci_dev *pdev)
  44. {
  45. struct ssb_bus *bus;
  46. ssb_buses_lock();
  47. list_for_each_entry(bus, &buses, list) {
  48. if (bus->bustype == SSB_BUSTYPE_PCI &&
  49. bus->host_pci == pdev)
  50. goto found;
  51. }
  52. bus = NULL;
  53. found:
  54. ssb_buses_unlock();
  55. return bus;
  56. }
  57. #endif /* CONFIG_SSB_PCIHOST */
  58. #ifdef CONFIG_SSB_PCMCIAHOST
  59. struct ssb_bus *ssb_pcmcia_dev_to_bus(struct pcmcia_device *pdev)
  60. {
  61. struct ssb_bus *bus;
  62. ssb_buses_lock();
  63. list_for_each_entry(bus, &buses, list) {
  64. if (bus->bustype == SSB_BUSTYPE_PCMCIA &&
  65. bus->host_pcmcia == pdev)
  66. goto found;
  67. }
  68. bus = NULL;
  69. found:
  70. ssb_buses_unlock();
  71. return bus;
  72. }
  73. #endif /* CONFIG_SSB_PCMCIAHOST */
  74. int ssb_for_each_bus_call(unsigned long data,
  75. int (*func)(struct ssb_bus *bus, unsigned long data))
  76. {
  77. struct ssb_bus *bus;
  78. int res;
  79. ssb_buses_lock();
  80. list_for_each_entry(bus, &buses, list) {
  81. res = func(bus, data);
  82. if (res >= 0) {
  83. ssb_buses_unlock();
  84. return res;
  85. }
  86. }
  87. ssb_buses_unlock();
  88. return -ENODEV;
  89. }
  90. static struct ssb_device *ssb_device_get(struct ssb_device *dev)
  91. {
  92. if (dev)
  93. get_device(dev->dev);
  94. return dev;
  95. }
  96. static void ssb_device_put(struct ssb_device *dev)
  97. {
  98. if (dev)
  99. put_device(dev->dev);
  100. }
  101. static int ssb_device_resume(struct device *dev)
  102. {
  103. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  104. struct ssb_driver *ssb_drv;
  105. int err = 0;
  106. if (dev->driver) {
  107. ssb_drv = drv_to_ssb_drv(dev->driver);
  108. if (ssb_drv && ssb_drv->resume)
  109. err = ssb_drv->resume(ssb_dev);
  110. if (err)
  111. goto out;
  112. }
  113. out:
  114. return err;
  115. }
  116. static int ssb_device_suspend(struct device *dev, pm_message_t state)
  117. {
  118. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  119. struct ssb_driver *ssb_drv;
  120. int err = 0;
  121. if (dev->driver) {
  122. ssb_drv = drv_to_ssb_drv(dev->driver);
  123. if (ssb_drv && ssb_drv->suspend)
  124. err = ssb_drv->suspend(ssb_dev, state);
  125. if (err)
  126. goto out;
  127. }
  128. out:
  129. return err;
  130. }
  131. int ssb_bus_resume(struct ssb_bus *bus)
  132. {
  133. int err;
  134. /* Reset HW state information in memory, so that HW is
  135. * completely reinitialized. */
  136. bus->mapped_device = NULL;
  137. #ifdef CONFIG_SSB_DRIVER_PCICORE
  138. bus->pcicore.setup_done = 0;
  139. #endif
  140. err = ssb_bus_powerup(bus, 0);
  141. if (err)
  142. return err;
  143. err = ssb_pcmcia_hardware_setup(bus);
  144. if (err) {
  145. ssb_bus_may_powerdown(bus);
  146. return err;
  147. }
  148. ssb_chipco_resume(&bus->chipco);
  149. ssb_bus_may_powerdown(bus);
  150. return 0;
  151. }
  152. EXPORT_SYMBOL(ssb_bus_resume);
  153. int ssb_bus_suspend(struct ssb_bus *bus)
  154. {
  155. ssb_chipco_suspend(&bus->chipco);
  156. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  157. return 0;
  158. }
  159. EXPORT_SYMBOL(ssb_bus_suspend);
  160. #ifdef CONFIG_SSB_SPROM
  161. int ssb_devices_freeze(struct ssb_bus *bus)
  162. {
  163. struct ssb_device *dev;
  164. struct ssb_driver *drv;
  165. int err = 0;
  166. int i;
  167. pm_message_t state = PMSG_FREEZE;
  168. /* First check that we are capable to freeze all devices. */
  169. for (i = 0; i < bus->nr_devices; i++) {
  170. dev = &(bus->devices[i]);
  171. if (!dev->dev ||
  172. !dev->dev->driver ||
  173. !device_is_registered(dev->dev))
  174. continue;
  175. drv = drv_to_ssb_drv(dev->dev->driver);
  176. if (!drv)
  177. continue;
  178. if (!drv->suspend) {
  179. /* Nope, can't suspend this one. */
  180. return -EOPNOTSUPP;
  181. }
  182. }
  183. /* Now suspend all devices */
  184. for (i = 0; i < bus->nr_devices; i++) {
  185. dev = &(bus->devices[i]);
  186. if (!dev->dev ||
  187. !dev->dev->driver ||
  188. !device_is_registered(dev->dev))
  189. continue;
  190. drv = drv_to_ssb_drv(dev->dev->driver);
  191. if (!drv)
  192. continue;
  193. err = drv->suspend(dev, state);
  194. if (err) {
  195. ssb_printk(KERN_ERR PFX "Failed to freeze device %s\n",
  196. dev->dev->bus_id);
  197. goto err_unwind;
  198. }
  199. }
  200. return 0;
  201. err_unwind:
  202. for (i--; i >= 0; i--) {
  203. dev = &(bus->devices[i]);
  204. if (!dev->dev ||
  205. !dev->dev->driver ||
  206. !device_is_registered(dev->dev))
  207. continue;
  208. drv = drv_to_ssb_drv(dev->dev->driver);
  209. if (!drv)
  210. continue;
  211. if (drv->resume)
  212. drv->resume(dev);
  213. }
  214. return err;
  215. }
  216. int ssb_devices_thaw(struct ssb_bus *bus)
  217. {
  218. struct ssb_device *dev;
  219. struct ssb_driver *drv;
  220. int err;
  221. int i;
  222. for (i = 0; i < bus->nr_devices; i++) {
  223. dev = &(bus->devices[i]);
  224. if (!dev->dev ||
  225. !dev->dev->driver ||
  226. !device_is_registered(dev->dev))
  227. continue;
  228. drv = drv_to_ssb_drv(dev->dev->driver);
  229. if (!drv)
  230. continue;
  231. if (SSB_WARN_ON(!drv->resume))
  232. continue;
  233. err = drv->resume(dev);
  234. if (err) {
  235. ssb_printk(KERN_ERR PFX "Failed to thaw device %s\n",
  236. dev->dev->bus_id);
  237. }
  238. }
  239. return 0;
  240. }
  241. #endif /* CONFIG_SSB_SPROM */
  242. static void ssb_device_shutdown(struct device *dev)
  243. {
  244. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  245. struct ssb_driver *ssb_drv;
  246. if (!dev->driver)
  247. return;
  248. ssb_drv = drv_to_ssb_drv(dev->driver);
  249. if (ssb_drv && ssb_drv->shutdown)
  250. ssb_drv->shutdown(ssb_dev);
  251. }
  252. static int ssb_device_remove(struct device *dev)
  253. {
  254. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  255. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  256. if (ssb_drv && ssb_drv->remove)
  257. ssb_drv->remove(ssb_dev);
  258. ssb_device_put(ssb_dev);
  259. return 0;
  260. }
  261. static int ssb_device_probe(struct device *dev)
  262. {
  263. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  264. struct ssb_driver *ssb_drv = drv_to_ssb_drv(dev->driver);
  265. int err = 0;
  266. ssb_device_get(ssb_dev);
  267. if (ssb_drv && ssb_drv->probe)
  268. err = ssb_drv->probe(ssb_dev, &ssb_dev->id);
  269. if (err)
  270. ssb_device_put(ssb_dev);
  271. return err;
  272. }
  273. static int ssb_match_devid(const struct ssb_device_id *tabid,
  274. const struct ssb_device_id *devid)
  275. {
  276. if ((tabid->vendor != devid->vendor) &&
  277. tabid->vendor != SSB_ANY_VENDOR)
  278. return 0;
  279. if ((tabid->coreid != devid->coreid) &&
  280. tabid->coreid != SSB_ANY_ID)
  281. return 0;
  282. if ((tabid->revision != devid->revision) &&
  283. tabid->revision != SSB_ANY_REV)
  284. return 0;
  285. return 1;
  286. }
  287. static int ssb_bus_match(struct device *dev, struct device_driver *drv)
  288. {
  289. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  290. struct ssb_driver *ssb_drv = drv_to_ssb_drv(drv);
  291. const struct ssb_device_id *id;
  292. for (id = ssb_drv->id_table;
  293. id->vendor || id->coreid || id->revision;
  294. id++) {
  295. if (ssb_match_devid(id, &ssb_dev->id))
  296. return 1; /* found */
  297. }
  298. return 0;
  299. }
  300. static int ssb_device_uevent(struct device *dev, struct kobj_uevent_env *env)
  301. {
  302. struct ssb_device *ssb_dev = dev_to_ssb_dev(dev);
  303. if (!dev)
  304. return -ENODEV;
  305. return add_uevent_var(env,
  306. "MODALIAS=ssb:v%04Xid%04Xrev%02X",
  307. ssb_dev->id.vendor, ssb_dev->id.coreid,
  308. ssb_dev->id.revision);
  309. }
  310. static struct bus_type ssb_bustype = {
  311. .name = "ssb",
  312. .match = ssb_bus_match,
  313. .probe = ssb_device_probe,
  314. .remove = ssb_device_remove,
  315. .shutdown = ssb_device_shutdown,
  316. .suspend = ssb_device_suspend,
  317. .resume = ssb_device_resume,
  318. .uevent = ssb_device_uevent,
  319. };
  320. static void ssb_buses_lock(void)
  321. {
  322. /* See the comment at the ssb_is_early_boot definition */
  323. if (!ssb_is_early_boot)
  324. mutex_lock(&buses_mutex);
  325. }
  326. static void ssb_buses_unlock(void)
  327. {
  328. /* See the comment at the ssb_is_early_boot definition */
  329. if (!ssb_is_early_boot)
  330. mutex_unlock(&buses_mutex);
  331. }
  332. static void ssb_devices_unregister(struct ssb_bus *bus)
  333. {
  334. struct ssb_device *sdev;
  335. int i;
  336. for (i = bus->nr_devices - 1; i >= 0; i--) {
  337. sdev = &(bus->devices[i]);
  338. if (sdev->dev)
  339. device_unregister(sdev->dev);
  340. }
  341. }
  342. void ssb_bus_unregister(struct ssb_bus *bus)
  343. {
  344. ssb_buses_lock();
  345. ssb_devices_unregister(bus);
  346. list_del(&bus->list);
  347. ssb_buses_unlock();
  348. ssb_pcmcia_exit(bus);
  349. ssb_pci_exit(bus);
  350. ssb_iounmap(bus);
  351. }
  352. EXPORT_SYMBOL(ssb_bus_unregister);
  353. static void ssb_release_dev(struct device *dev)
  354. {
  355. struct __ssb_dev_wrapper *devwrap;
  356. devwrap = container_of(dev, struct __ssb_dev_wrapper, dev);
  357. kfree(devwrap);
  358. }
  359. static int ssb_devices_register(struct ssb_bus *bus)
  360. {
  361. struct ssb_device *sdev;
  362. struct device *dev;
  363. struct __ssb_dev_wrapper *devwrap;
  364. int i, err = 0;
  365. int dev_idx = 0;
  366. for (i = 0; i < bus->nr_devices; i++) {
  367. sdev = &(bus->devices[i]);
  368. /* We don't register SSB-system devices to the kernel,
  369. * as the drivers for them are built into SSB. */
  370. switch (sdev->id.coreid) {
  371. case SSB_DEV_CHIPCOMMON:
  372. case SSB_DEV_PCI:
  373. case SSB_DEV_PCIE:
  374. case SSB_DEV_PCMCIA:
  375. case SSB_DEV_MIPS:
  376. case SSB_DEV_MIPS_3302:
  377. case SSB_DEV_EXTIF:
  378. continue;
  379. }
  380. devwrap = kzalloc(sizeof(*devwrap), GFP_KERNEL);
  381. if (!devwrap) {
  382. ssb_printk(KERN_ERR PFX
  383. "Could not allocate device\n");
  384. err = -ENOMEM;
  385. goto error;
  386. }
  387. dev = &devwrap->dev;
  388. devwrap->sdev = sdev;
  389. dev->release = ssb_release_dev;
  390. dev->bus = &ssb_bustype;
  391. snprintf(dev->bus_id, sizeof(dev->bus_id),
  392. "ssb%u:%d", bus->busnumber, dev_idx);
  393. switch (bus->bustype) {
  394. case SSB_BUSTYPE_PCI:
  395. #ifdef CONFIG_SSB_PCIHOST
  396. sdev->irq = bus->host_pci->irq;
  397. dev->parent = &bus->host_pci->dev;
  398. #endif
  399. break;
  400. case SSB_BUSTYPE_PCMCIA:
  401. #ifdef CONFIG_SSB_PCMCIAHOST
  402. sdev->irq = bus->host_pcmcia->irq.AssignedIRQ;
  403. dev->parent = &bus->host_pcmcia->dev;
  404. #endif
  405. break;
  406. case SSB_BUSTYPE_SSB:
  407. dev->dma_mask = &dev->coherent_dma_mask;
  408. break;
  409. }
  410. sdev->dev = dev;
  411. err = device_register(dev);
  412. if (err) {
  413. ssb_printk(KERN_ERR PFX
  414. "Could not register %s\n",
  415. dev->bus_id);
  416. /* Set dev to NULL to not unregister
  417. * dev on error unwinding. */
  418. sdev->dev = NULL;
  419. kfree(devwrap);
  420. goto error;
  421. }
  422. dev_idx++;
  423. }
  424. return 0;
  425. error:
  426. /* Unwind the already registered devices. */
  427. ssb_devices_unregister(bus);
  428. return err;
  429. }
  430. /* Needs ssb_buses_lock() */
  431. static int ssb_attach_queued_buses(void)
  432. {
  433. struct ssb_bus *bus, *n;
  434. int err = 0;
  435. int drop_them_all = 0;
  436. list_for_each_entry_safe(bus, n, &attach_queue, list) {
  437. if (drop_them_all) {
  438. list_del(&bus->list);
  439. continue;
  440. }
  441. /* Can't init the PCIcore in ssb_bus_register(), as that
  442. * is too early in boot for embedded systems
  443. * (no udelay() available). So do it here in attach stage.
  444. */
  445. err = ssb_bus_powerup(bus, 0);
  446. if (err)
  447. goto error;
  448. ssb_pcicore_init(&bus->pcicore);
  449. ssb_bus_may_powerdown(bus);
  450. err = ssb_devices_register(bus);
  451. error:
  452. if (err) {
  453. drop_them_all = 1;
  454. list_del(&bus->list);
  455. continue;
  456. }
  457. list_move_tail(&bus->list, &buses);
  458. }
  459. return err;
  460. }
  461. static u8 ssb_ssb_read8(struct ssb_device *dev, u16 offset)
  462. {
  463. struct ssb_bus *bus = dev->bus;
  464. offset += dev->core_index * SSB_CORE_SIZE;
  465. return readb(bus->mmio + offset);
  466. }
  467. static u16 ssb_ssb_read16(struct ssb_device *dev, u16 offset)
  468. {
  469. struct ssb_bus *bus = dev->bus;
  470. offset += dev->core_index * SSB_CORE_SIZE;
  471. return readw(bus->mmio + offset);
  472. }
  473. static u32 ssb_ssb_read32(struct ssb_device *dev, u16 offset)
  474. {
  475. struct ssb_bus *bus = dev->bus;
  476. offset += dev->core_index * SSB_CORE_SIZE;
  477. return readl(bus->mmio + offset);
  478. }
  479. #ifdef CONFIG_SSB_BLOCKIO
  480. static void ssb_ssb_block_read(struct ssb_device *dev, void *buffer,
  481. size_t count, u16 offset, u8 reg_width)
  482. {
  483. struct ssb_bus *bus = dev->bus;
  484. void __iomem *addr;
  485. offset += dev->core_index * SSB_CORE_SIZE;
  486. addr = bus->mmio + offset;
  487. switch (reg_width) {
  488. case sizeof(u8): {
  489. u8 *buf = buffer;
  490. while (count) {
  491. *buf = __raw_readb(addr);
  492. buf++;
  493. count--;
  494. }
  495. break;
  496. }
  497. case sizeof(u16): {
  498. __le16 *buf = buffer;
  499. SSB_WARN_ON(count & 1);
  500. while (count) {
  501. *buf = (__force __le16)__raw_readw(addr);
  502. buf++;
  503. count -= 2;
  504. }
  505. break;
  506. }
  507. case sizeof(u32): {
  508. __le32 *buf = buffer;
  509. SSB_WARN_ON(count & 3);
  510. while (count) {
  511. *buf = (__force __le32)__raw_readl(addr);
  512. buf++;
  513. count -= 4;
  514. }
  515. break;
  516. }
  517. default:
  518. SSB_WARN_ON(1);
  519. }
  520. }
  521. #endif /* CONFIG_SSB_BLOCKIO */
  522. static void ssb_ssb_write8(struct ssb_device *dev, u16 offset, u8 value)
  523. {
  524. struct ssb_bus *bus = dev->bus;
  525. offset += dev->core_index * SSB_CORE_SIZE;
  526. writeb(value, bus->mmio + offset);
  527. }
  528. static void ssb_ssb_write16(struct ssb_device *dev, u16 offset, u16 value)
  529. {
  530. struct ssb_bus *bus = dev->bus;
  531. offset += dev->core_index * SSB_CORE_SIZE;
  532. writew(value, bus->mmio + offset);
  533. }
  534. static void ssb_ssb_write32(struct ssb_device *dev, u16 offset, u32 value)
  535. {
  536. struct ssb_bus *bus = dev->bus;
  537. offset += dev->core_index * SSB_CORE_SIZE;
  538. writel(value, bus->mmio + offset);
  539. }
  540. #ifdef CONFIG_SSB_BLOCKIO
  541. static void ssb_ssb_block_write(struct ssb_device *dev, const void *buffer,
  542. size_t count, u16 offset, u8 reg_width)
  543. {
  544. struct ssb_bus *bus = dev->bus;
  545. void __iomem *addr;
  546. offset += dev->core_index * SSB_CORE_SIZE;
  547. addr = bus->mmio + offset;
  548. switch (reg_width) {
  549. case sizeof(u8): {
  550. const u8 *buf = buffer;
  551. while (count) {
  552. __raw_writeb(*buf, addr);
  553. buf++;
  554. count--;
  555. }
  556. break;
  557. }
  558. case sizeof(u16): {
  559. const __le16 *buf = buffer;
  560. SSB_WARN_ON(count & 1);
  561. while (count) {
  562. __raw_writew((__force u16)(*buf), addr);
  563. buf++;
  564. count -= 2;
  565. }
  566. break;
  567. }
  568. case sizeof(u32): {
  569. const __le32 *buf = buffer;
  570. SSB_WARN_ON(count & 3);
  571. while (count) {
  572. __raw_writel((__force u32)(*buf), addr);
  573. buf++;
  574. count -= 4;
  575. }
  576. break;
  577. }
  578. default:
  579. SSB_WARN_ON(1);
  580. }
  581. }
  582. #endif /* CONFIG_SSB_BLOCKIO */
  583. /* Ops for the plain SSB bus without a host-device (no PCI or PCMCIA). */
  584. static const struct ssb_bus_ops ssb_ssb_ops = {
  585. .read8 = ssb_ssb_read8,
  586. .read16 = ssb_ssb_read16,
  587. .read32 = ssb_ssb_read32,
  588. .write8 = ssb_ssb_write8,
  589. .write16 = ssb_ssb_write16,
  590. .write32 = ssb_ssb_write32,
  591. #ifdef CONFIG_SSB_BLOCKIO
  592. .block_read = ssb_ssb_block_read,
  593. .block_write = ssb_ssb_block_write,
  594. #endif
  595. };
  596. static int ssb_fetch_invariants(struct ssb_bus *bus,
  597. ssb_invariants_func_t get_invariants)
  598. {
  599. struct ssb_init_invariants iv;
  600. int err;
  601. memset(&iv, 0, sizeof(iv));
  602. err = get_invariants(bus, &iv);
  603. if (err)
  604. goto out;
  605. memcpy(&bus->boardinfo, &iv.boardinfo, sizeof(iv.boardinfo));
  606. memcpy(&bus->sprom, &iv.sprom, sizeof(iv.sprom));
  607. bus->has_cardbus_slot = iv.has_cardbus_slot;
  608. out:
  609. return err;
  610. }
  611. static int ssb_bus_register(struct ssb_bus *bus,
  612. ssb_invariants_func_t get_invariants,
  613. unsigned long baseaddr)
  614. {
  615. int err;
  616. spin_lock_init(&bus->bar_lock);
  617. INIT_LIST_HEAD(&bus->list);
  618. #ifdef CONFIG_SSB_EMBEDDED
  619. spin_lock_init(&bus->gpio_lock);
  620. #endif
  621. /* Powerup the bus */
  622. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  623. if (err)
  624. goto out;
  625. ssb_buses_lock();
  626. bus->busnumber = next_busnumber;
  627. /* Scan for devices (cores) */
  628. err = ssb_bus_scan(bus, baseaddr);
  629. if (err)
  630. goto err_disable_xtal;
  631. /* Init PCI-host device (if any) */
  632. err = ssb_pci_init(bus);
  633. if (err)
  634. goto err_unmap;
  635. /* Init PCMCIA-host device (if any) */
  636. err = ssb_pcmcia_init(bus);
  637. if (err)
  638. goto err_pci_exit;
  639. /* Initialize basic system devices (if available) */
  640. err = ssb_bus_powerup(bus, 0);
  641. if (err)
  642. goto err_pcmcia_exit;
  643. ssb_chipcommon_init(&bus->chipco);
  644. ssb_mipscore_init(&bus->mipscore);
  645. err = ssb_fetch_invariants(bus, get_invariants);
  646. if (err) {
  647. ssb_bus_may_powerdown(bus);
  648. goto err_pcmcia_exit;
  649. }
  650. ssb_bus_may_powerdown(bus);
  651. /* Queue it for attach.
  652. * See the comment at the ssb_is_early_boot definition. */
  653. list_add_tail(&bus->list, &attach_queue);
  654. if (!ssb_is_early_boot) {
  655. /* This is not early boot, so we must attach the bus now */
  656. err = ssb_attach_queued_buses();
  657. if (err)
  658. goto err_dequeue;
  659. }
  660. next_busnumber++;
  661. ssb_buses_unlock();
  662. out:
  663. return err;
  664. err_dequeue:
  665. list_del(&bus->list);
  666. err_pcmcia_exit:
  667. ssb_pcmcia_exit(bus);
  668. err_pci_exit:
  669. ssb_pci_exit(bus);
  670. err_unmap:
  671. ssb_iounmap(bus);
  672. err_disable_xtal:
  673. ssb_buses_unlock();
  674. ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  675. return err;
  676. }
  677. #ifdef CONFIG_SSB_PCIHOST
  678. int ssb_bus_pcibus_register(struct ssb_bus *bus,
  679. struct pci_dev *host_pci)
  680. {
  681. int err;
  682. bus->bustype = SSB_BUSTYPE_PCI;
  683. bus->host_pci = host_pci;
  684. bus->ops = &ssb_pci_ops;
  685. err = ssb_bus_register(bus, ssb_pci_get_invariants, 0);
  686. if (!err) {
  687. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  688. "PCI device %s\n", host_pci->dev.bus_id);
  689. }
  690. return err;
  691. }
  692. EXPORT_SYMBOL(ssb_bus_pcibus_register);
  693. #endif /* CONFIG_SSB_PCIHOST */
  694. #ifdef CONFIG_SSB_PCMCIAHOST
  695. int ssb_bus_pcmciabus_register(struct ssb_bus *bus,
  696. struct pcmcia_device *pcmcia_dev,
  697. unsigned long baseaddr)
  698. {
  699. int err;
  700. bus->bustype = SSB_BUSTYPE_PCMCIA;
  701. bus->host_pcmcia = pcmcia_dev;
  702. bus->ops = &ssb_pcmcia_ops;
  703. err = ssb_bus_register(bus, ssb_pcmcia_get_invariants, baseaddr);
  704. if (!err) {
  705. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found on "
  706. "PCMCIA device %s\n", pcmcia_dev->devname);
  707. }
  708. return err;
  709. }
  710. EXPORT_SYMBOL(ssb_bus_pcmciabus_register);
  711. #endif /* CONFIG_SSB_PCMCIAHOST */
  712. int ssb_bus_ssbbus_register(struct ssb_bus *bus,
  713. unsigned long baseaddr,
  714. ssb_invariants_func_t get_invariants)
  715. {
  716. int err;
  717. bus->bustype = SSB_BUSTYPE_SSB;
  718. bus->ops = &ssb_ssb_ops;
  719. err = ssb_bus_register(bus, get_invariants, baseaddr);
  720. if (!err) {
  721. ssb_printk(KERN_INFO PFX "Sonics Silicon Backplane found at "
  722. "address 0x%08lX\n", baseaddr);
  723. }
  724. return err;
  725. }
  726. int __ssb_driver_register(struct ssb_driver *drv, struct module *owner)
  727. {
  728. drv->drv.name = drv->name;
  729. drv->drv.bus = &ssb_bustype;
  730. drv->drv.owner = owner;
  731. return driver_register(&drv->drv);
  732. }
  733. EXPORT_SYMBOL(__ssb_driver_register);
  734. void ssb_driver_unregister(struct ssb_driver *drv)
  735. {
  736. driver_unregister(&drv->drv);
  737. }
  738. EXPORT_SYMBOL(ssb_driver_unregister);
  739. void ssb_set_devtypedata(struct ssb_device *dev, void *data)
  740. {
  741. struct ssb_bus *bus = dev->bus;
  742. struct ssb_device *ent;
  743. int i;
  744. for (i = 0; i < bus->nr_devices; i++) {
  745. ent = &(bus->devices[i]);
  746. if (ent->id.vendor != dev->id.vendor)
  747. continue;
  748. if (ent->id.coreid != dev->id.coreid)
  749. continue;
  750. ent->devtypedata = data;
  751. }
  752. }
  753. EXPORT_SYMBOL(ssb_set_devtypedata);
  754. static u32 clkfactor_f6_resolve(u32 v)
  755. {
  756. /* map the magic values */
  757. switch (v) {
  758. case SSB_CHIPCO_CLK_F6_2:
  759. return 2;
  760. case SSB_CHIPCO_CLK_F6_3:
  761. return 3;
  762. case SSB_CHIPCO_CLK_F6_4:
  763. return 4;
  764. case SSB_CHIPCO_CLK_F6_5:
  765. return 5;
  766. case SSB_CHIPCO_CLK_F6_6:
  767. return 6;
  768. case SSB_CHIPCO_CLK_F6_7:
  769. return 7;
  770. }
  771. return 0;
  772. }
  773. /* Calculate the speed the backplane would run at a given set of clockcontrol values */
  774. u32 ssb_calc_clock_rate(u32 plltype, u32 n, u32 m)
  775. {
  776. u32 n1, n2, clock, m1, m2, m3, mc;
  777. n1 = (n & SSB_CHIPCO_CLK_N1);
  778. n2 = ((n & SSB_CHIPCO_CLK_N2) >> SSB_CHIPCO_CLK_N2_SHIFT);
  779. switch (plltype) {
  780. case SSB_PLLTYPE_6: /* 100/200 or 120/240 only */
  781. if (m & SSB_CHIPCO_CLK_T6_MMASK)
  782. return SSB_CHIPCO_CLK_T6_M0;
  783. return SSB_CHIPCO_CLK_T6_M1;
  784. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  785. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  786. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  787. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  788. n1 = clkfactor_f6_resolve(n1);
  789. n2 += SSB_CHIPCO_CLK_F5_BIAS;
  790. break;
  791. case SSB_PLLTYPE_2: /* 48Mhz, 4 dividers */
  792. n1 += SSB_CHIPCO_CLK_T2_BIAS;
  793. n2 += SSB_CHIPCO_CLK_T2_BIAS;
  794. SSB_WARN_ON(!((n1 >= 2) && (n1 <= 7)));
  795. SSB_WARN_ON(!((n2 >= 5) && (n2 <= 23)));
  796. break;
  797. case SSB_PLLTYPE_5: /* 25Mhz, 4 dividers */
  798. return 100000000;
  799. default:
  800. SSB_WARN_ON(1);
  801. }
  802. switch (plltype) {
  803. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  804. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  805. clock = SSB_CHIPCO_CLK_BASE2 * n1 * n2;
  806. break;
  807. default:
  808. clock = SSB_CHIPCO_CLK_BASE1 * n1 * n2;
  809. }
  810. if (!clock)
  811. return 0;
  812. m1 = (m & SSB_CHIPCO_CLK_M1);
  813. m2 = ((m & SSB_CHIPCO_CLK_M2) >> SSB_CHIPCO_CLK_M2_SHIFT);
  814. m3 = ((m & SSB_CHIPCO_CLK_M3) >> SSB_CHIPCO_CLK_M3_SHIFT);
  815. mc = ((m & SSB_CHIPCO_CLK_MC) >> SSB_CHIPCO_CLK_MC_SHIFT);
  816. switch (plltype) {
  817. case SSB_PLLTYPE_1: /* 48Mhz base, 3 dividers */
  818. case SSB_PLLTYPE_3: /* 25Mhz, 2 dividers */
  819. case SSB_PLLTYPE_4: /* 48Mhz, 4 dividers */
  820. case SSB_PLLTYPE_7: /* 25Mhz, 4 dividers */
  821. m1 = clkfactor_f6_resolve(m1);
  822. if ((plltype == SSB_PLLTYPE_1) ||
  823. (plltype == SSB_PLLTYPE_3))
  824. m2 += SSB_CHIPCO_CLK_F5_BIAS;
  825. else
  826. m2 = clkfactor_f6_resolve(m2);
  827. m3 = clkfactor_f6_resolve(m3);
  828. switch (mc) {
  829. case SSB_CHIPCO_CLK_MC_BYPASS:
  830. return clock;
  831. case SSB_CHIPCO_CLK_MC_M1:
  832. return (clock / m1);
  833. case SSB_CHIPCO_CLK_MC_M1M2:
  834. return (clock / (m1 * m2));
  835. case SSB_CHIPCO_CLK_MC_M1M2M3:
  836. return (clock / (m1 * m2 * m3));
  837. case SSB_CHIPCO_CLK_MC_M1M3:
  838. return (clock / (m1 * m3));
  839. }
  840. return 0;
  841. case SSB_PLLTYPE_2:
  842. m1 += SSB_CHIPCO_CLK_T2_BIAS;
  843. m2 += SSB_CHIPCO_CLK_T2M2_BIAS;
  844. m3 += SSB_CHIPCO_CLK_T2_BIAS;
  845. SSB_WARN_ON(!((m1 >= 2) && (m1 <= 7)));
  846. SSB_WARN_ON(!((m2 >= 3) && (m2 <= 10)));
  847. SSB_WARN_ON(!((m3 >= 2) && (m3 <= 7)));
  848. if (!(mc & SSB_CHIPCO_CLK_T2MC_M1BYP))
  849. clock /= m1;
  850. if (!(mc & SSB_CHIPCO_CLK_T2MC_M2BYP))
  851. clock /= m2;
  852. if (!(mc & SSB_CHIPCO_CLK_T2MC_M3BYP))
  853. clock /= m3;
  854. return clock;
  855. default:
  856. SSB_WARN_ON(1);
  857. }
  858. return 0;
  859. }
  860. /* Get the current speed the backplane is running at */
  861. u32 ssb_clockspeed(struct ssb_bus *bus)
  862. {
  863. u32 rate;
  864. u32 plltype;
  865. u32 clkctl_n, clkctl_m;
  866. if (ssb_extif_available(&bus->extif))
  867. ssb_extif_get_clockcontrol(&bus->extif, &plltype,
  868. &clkctl_n, &clkctl_m);
  869. else if (bus->chipco.dev)
  870. ssb_chipco_get_clockcontrol(&bus->chipco, &plltype,
  871. &clkctl_n, &clkctl_m);
  872. else
  873. return 0;
  874. if (bus->chip_id == 0x5365) {
  875. rate = 100000000;
  876. } else {
  877. rate = ssb_calc_clock_rate(plltype, clkctl_n, clkctl_m);
  878. if (plltype == SSB_PLLTYPE_3) /* 25Mhz, 2 dividers */
  879. rate /= 2;
  880. }
  881. return rate;
  882. }
  883. EXPORT_SYMBOL(ssb_clockspeed);
  884. static u32 ssb_tmslow_reject_bitmask(struct ssb_device *dev)
  885. {
  886. u32 rev = ssb_read32(dev, SSB_IDLOW) & SSB_IDLOW_SSBREV;
  887. /* The REJECT bit changed position in TMSLOW between
  888. * Backplane revisions. */
  889. switch (rev) {
  890. case SSB_IDLOW_SSBREV_22:
  891. return SSB_TMSLOW_REJECT_22;
  892. case SSB_IDLOW_SSBREV_23:
  893. return SSB_TMSLOW_REJECT_23;
  894. case SSB_IDLOW_SSBREV_24: /* TODO - find the proper REJECT bits */
  895. case SSB_IDLOW_SSBREV_25: /* same here */
  896. case SSB_IDLOW_SSBREV_26: /* same here */
  897. case SSB_IDLOW_SSBREV_27: /* same here */
  898. return SSB_TMSLOW_REJECT_23; /* this is a guess */
  899. default:
  900. printk(KERN_INFO "ssb: Backplane Revision 0x%.8X\n", rev);
  901. WARN_ON(1);
  902. }
  903. return (SSB_TMSLOW_REJECT_22 | SSB_TMSLOW_REJECT_23);
  904. }
  905. int ssb_device_is_enabled(struct ssb_device *dev)
  906. {
  907. u32 val;
  908. u32 reject;
  909. reject = ssb_tmslow_reject_bitmask(dev);
  910. val = ssb_read32(dev, SSB_TMSLOW);
  911. val &= SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET | reject;
  912. return (val == SSB_TMSLOW_CLOCK);
  913. }
  914. EXPORT_SYMBOL(ssb_device_is_enabled);
  915. static void ssb_flush_tmslow(struct ssb_device *dev)
  916. {
  917. /* Make _really_ sure the device has finished the TMSLOW
  918. * register write transaction, as we risk running into
  919. * a machine check exception otherwise.
  920. * Do this by reading the register back to commit the
  921. * PCI write and delay an additional usec for the device
  922. * to react to the change. */
  923. ssb_read32(dev, SSB_TMSLOW);
  924. udelay(1);
  925. }
  926. void ssb_device_enable(struct ssb_device *dev, u32 core_specific_flags)
  927. {
  928. u32 val;
  929. ssb_device_disable(dev, core_specific_flags);
  930. ssb_write32(dev, SSB_TMSLOW,
  931. SSB_TMSLOW_RESET | SSB_TMSLOW_CLOCK |
  932. SSB_TMSLOW_FGC | core_specific_flags);
  933. ssb_flush_tmslow(dev);
  934. /* Clear SERR if set. This is a hw bug workaround. */
  935. if (ssb_read32(dev, SSB_TMSHIGH) & SSB_TMSHIGH_SERR)
  936. ssb_write32(dev, SSB_TMSHIGH, 0);
  937. val = ssb_read32(dev, SSB_IMSTATE);
  938. if (val & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
  939. val &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
  940. ssb_write32(dev, SSB_IMSTATE, val);
  941. }
  942. ssb_write32(dev, SSB_TMSLOW,
  943. SSB_TMSLOW_CLOCK | SSB_TMSLOW_FGC |
  944. core_specific_flags);
  945. ssb_flush_tmslow(dev);
  946. ssb_write32(dev, SSB_TMSLOW, SSB_TMSLOW_CLOCK |
  947. core_specific_flags);
  948. ssb_flush_tmslow(dev);
  949. }
  950. EXPORT_SYMBOL(ssb_device_enable);
  951. /* Wait for a bit in a register to get set or unset.
  952. * timeout is in units of ten-microseconds */
  953. static int ssb_wait_bit(struct ssb_device *dev, u16 reg, u32 bitmask,
  954. int timeout, int set)
  955. {
  956. int i;
  957. u32 val;
  958. for (i = 0; i < timeout; i++) {
  959. val = ssb_read32(dev, reg);
  960. if (set) {
  961. if (val & bitmask)
  962. return 0;
  963. } else {
  964. if (!(val & bitmask))
  965. return 0;
  966. }
  967. udelay(10);
  968. }
  969. printk(KERN_ERR PFX "Timeout waiting for bitmask %08X on "
  970. "register %04X to %s.\n",
  971. bitmask, reg, (set ? "set" : "clear"));
  972. return -ETIMEDOUT;
  973. }
  974. void ssb_device_disable(struct ssb_device *dev, u32 core_specific_flags)
  975. {
  976. u32 reject;
  977. if (ssb_read32(dev, SSB_TMSLOW) & SSB_TMSLOW_RESET)
  978. return;
  979. reject = ssb_tmslow_reject_bitmask(dev);
  980. ssb_write32(dev, SSB_TMSLOW, reject | SSB_TMSLOW_CLOCK);
  981. ssb_wait_bit(dev, SSB_TMSLOW, reject, 1000, 1);
  982. ssb_wait_bit(dev, SSB_TMSHIGH, SSB_TMSHIGH_BUSY, 1000, 0);
  983. ssb_write32(dev, SSB_TMSLOW,
  984. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  985. reject | SSB_TMSLOW_RESET |
  986. core_specific_flags);
  987. ssb_flush_tmslow(dev);
  988. ssb_write32(dev, SSB_TMSLOW,
  989. reject | SSB_TMSLOW_RESET |
  990. core_specific_flags);
  991. ssb_flush_tmslow(dev);
  992. }
  993. EXPORT_SYMBOL(ssb_device_disable);
  994. u32 ssb_dma_translation(struct ssb_device *dev)
  995. {
  996. switch (dev->bus->bustype) {
  997. case SSB_BUSTYPE_SSB:
  998. return 0;
  999. case SSB_BUSTYPE_PCI:
  1000. return SSB_PCI_DMA;
  1001. default:
  1002. __ssb_dma_not_implemented(dev);
  1003. }
  1004. return 0;
  1005. }
  1006. EXPORT_SYMBOL(ssb_dma_translation);
  1007. int ssb_dma_set_mask(struct ssb_device *dev, u64 mask)
  1008. {
  1009. #ifdef CONFIG_SSB_PCIHOST
  1010. int err;
  1011. #endif
  1012. switch (dev->bus->bustype) {
  1013. case SSB_BUSTYPE_PCI:
  1014. #ifdef CONFIG_SSB_PCIHOST
  1015. err = pci_set_dma_mask(dev->bus->host_pci, mask);
  1016. if (err)
  1017. return err;
  1018. err = pci_set_consistent_dma_mask(dev->bus->host_pci, mask);
  1019. return err;
  1020. #endif
  1021. case SSB_BUSTYPE_SSB:
  1022. return dma_set_mask(dev->dev, mask);
  1023. default:
  1024. __ssb_dma_not_implemented(dev);
  1025. }
  1026. return -ENOSYS;
  1027. }
  1028. EXPORT_SYMBOL(ssb_dma_set_mask);
  1029. void * ssb_dma_alloc_consistent(struct ssb_device *dev, size_t size,
  1030. dma_addr_t *dma_handle, gfp_t gfp_flags)
  1031. {
  1032. switch (dev->bus->bustype) {
  1033. case SSB_BUSTYPE_PCI:
  1034. #ifdef CONFIG_SSB_PCIHOST
  1035. if (gfp_flags & GFP_DMA) {
  1036. /* Workaround: The PCI API does not support passing
  1037. * a GFP flag. */
  1038. return dma_alloc_coherent(&dev->bus->host_pci->dev,
  1039. size, dma_handle, gfp_flags);
  1040. }
  1041. return pci_alloc_consistent(dev->bus->host_pci, size, dma_handle);
  1042. #endif
  1043. case SSB_BUSTYPE_SSB:
  1044. return dma_alloc_coherent(dev->dev, size, dma_handle, gfp_flags);
  1045. default:
  1046. __ssb_dma_not_implemented(dev);
  1047. }
  1048. return NULL;
  1049. }
  1050. EXPORT_SYMBOL(ssb_dma_alloc_consistent);
  1051. void ssb_dma_free_consistent(struct ssb_device *dev, size_t size,
  1052. void *vaddr, dma_addr_t dma_handle,
  1053. gfp_t gfp_flags)
  1054. {
  1055. switch (dev->bus->bustype) {
  1056. case SSB_BUSTYPE_PCI:
  1057. #ifdef CONFIG_SSB_PCIHOST
  1058. if (gfp_flags & GFP_DMA) {
  1059. /* Workaround: The PCI API does not support passing
  1060. * a GFP flag. */
  1061. dma_free_coherent(&dev->bus->host_pci->dev,
  1062. size, vaddr, dma_handle);
  1063. return;
  1064. }
  1065. pci_free_consistent(dev->bus->host_pci, size,
  1066. vaddr, dma_handle);
  1067. return;
  1068. #endif
  1069. case SSB_BUSTYPE_SSB:
  1070. dma_free_coherent(dev->dev, size, vaddr, dma_handle);
  1071. return;
  1072. default:
  1073. __ssb_dma_not_implemented(dev);
  1074. }
  1075. }
  1076. EXPORT_SYMBOL(ssb_dma_free_consistent);
  1077. int ssb_bus_may_powerdown(struct ssb_bus *bus)
  1078. {
  1079. struct ssb_chipcommon *cc;
  1080. int err = 0;
  1081. /* On buses where more than one core may be working
  1082. * at a time, we must not powerdown stuff if there are
  1083. * still cores that may want to run. */
  1084. if (bus->bustype == SSB_BUSTYPE_SSB)
  1085. goto out;
  1086. cc = &bus->chipco;
  1087. if (!cc->dev)
  1088. goto out;
  1089. if (cc->dev->id.revision < 5)
  1090. goto out;
  1091. ssb_chipco_set_clockmode(cc, SSB_CLKMODE_SLOW);
  1092. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 0);
  1093. if (err)
  1094. goto error;
  1095. out:
  1096. #ifdef CONFIG_SSB_DEBUG
  1097. bus->powered_up = 0;
  1098. #endif
  1099. return err;
  1100. error:
  1101. ssb_printk(KERN_ERR PFX "Bus powerdown failed\n");
  1102. goto out;
  1103. }
  1104. EXPORT_SYMBOL(ssb_bus_may_powerdown);
  1105. int ssb_bus_powerup(struct ssb_bus *bus, bool dynamic_pctl)
  1106. {
  1107. struct ssb_chipcommon *cc;
  1108. int err;
  1109. enum ssb_clkmode mode;
  1110. err = ssb_pci_xtal(bus, SSB_GPIO_XTAL | SSB_GPIO_PLL, 1);
  1111. if (err)
  1112. goto error;
  1113. cc = &bus->chipco;
  1114. mode = dynamic_pctl ? SSB_CLKMODE_DYNAMIC : SSB_CLKMODE_FAST;
  1115. ssb_chipco_set_clockmode(cc, mode);
  1116. #ifdef CONFIG_SSB_DEBUG
  1117. bus->powered_up = 1;
  1118. #endif
  1119. return 0;
  1120. error:
  1121. ssb_printk(KERN_ERR PFX "Bus powerup failed\n");
  1122. return err;
  1123. }
  1124. EXPORT_SYMBOL(ssb_bus_powerup);
  1125. u32 ssb_admatch_base(u32 adm)
  1126. {
  1127. u32 base = 0;
  1128. switch (adm & SSB_ADM_TYPE) {
  1129. case SSB_ADM_TYPE0:
  1130. base = (adm & SSB_ADM_BASE0);
  1131. break;
  1132. case SSB_ADM_TYPE1:
  1133. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1134. base = (adm & SSB_ADM_BASE1);
  1135. break;
  1136. case SSB_ADM_TYPE2:
  1137. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1138. base = (adm & SSB_ADM_BASE2);
  1139. break;
  1140. default:
  1141. SSB_WARN_ON(1);
  1142. }
  1143. return base;
  1144. }
  1145. EXPORT_SYMBOL(ssb_admatch_base);
  1146. u32 ssb_admatch_size(u32 adm)
  1147. {
  1148. u32 size = 0;
  1149. switch (adm & SSB_ADM_TYPE) {
  1150. case SSB_ADM_TYPE0:
  1151. size = ((adm & SSB_ADM_SZ0) >> SSB_ADM_SZ0_SHIFT);
  1152. break;
  1153. case SSB_ADM_TYPE1:
  1154. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1155. size = ((adm & SSB_ADM_SZ1) >> SSB_ADM_SZ1_SHIFT);
  1156. break;
  1157. case SSB_ADM_TYPE2:
  1158. SSB_WARN_ON(adm & SSB_ADM_NEG); /* unsupported */
  1159. size = ((adm & SSB_ADM_SZ2) >> SSB_ADM_SZ2_SHIFT);
  1160. break;
  1161. default:
  1162. SSB_WARN_ON(1);
  1163. }
  1164. size = (1 << (size + 1));
  1165. return size;
  1166. }
  1167. EXPORT_SYMBOL(ssb_admatch_size);
  1168. static int __init ssb_modinit(void)
  1169. {
  1170. int err;
  1171. /* See the comment at the ssb_is_early_boot definition */
  1172. ssb_is_early_boot = 0;
  1173. err = bus_register(&ssb_bustype);
  1174. if (err)
  1175. return err;
  1176. /* Maybe we already registered some buses at early boot.
  1177. * Check for this and attach them
  1178. */
  1179. ssb_buses_lock();
  1180. err = ssb_attach_queued_buses();
  1181. ssb_buses_unlock();
  1182. if (err)
  1183. bus_unregister(&ssb_bustype);
  1184. err = b43_pci_ssb_bridge_init();
  1185. if (err) {
  1186. ssb_printk(KERN_ERR "Broadcom 43xx PCI-SSB-bridge "
  1187. "initialization failed\n");
  1188. /* don't fail SSB init because of this */
  1189. err = 0;
  1190. }
  1191. err = ssb_gige_init();
  1192. if (err) {
  1193. ssb_printk(KERN_ERR "SSB Broadcom Gigabit Ethernet "
  1194. "driver initialization failed\n");
  1195. /* don't fail SSB init because of this */
  1196. err = 0;
  1197. }
  1198. return err;
  1199. }
  1200. /* ssb must be initialized after PCI but before the ssb drivers.
  1201. * That means we must use some initcall between subsys_initcall
  1202. * and device_initcall. */
  1203. fs_initcall(ssb_modinit);
  1204. static void __exit ssb_modexit(void)
  1205. {
  1206. ssb_gige_exit();
  1207. b43_pci_ssb_bridge_exit();
  1208. bus_unregister(&ssb_bustype);
  1209. }
  1210. module_exit(ssb_modexit)