pxa2xx_spi.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672
  1. /*
  2. * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  17. */
  18. #include <linux/init.h>
  19. #include <linux/module.h>
  20. #include <linux/device.h>
  21. #include <linux/ioport.h>
  22. #include <linux/errno.h>
  23. #include <linux/interrupt.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/dma-mapping.h>
  26. #include <linux/spi/spi.h>
  27. #include <linux/workqueue.h>
  28. #include <linux/delay.h>
  29. #include <linux/clk.h>
  30. #include <asm/io.h>
  31. #include <asm/irq.h>
  32. #include <asm/delay.h>
  33. #include <asm/dma.h>
  34. #include <mach/hardware.h>
  35. #include <mach/pxa-regs.h>
  36. #include <mach/regs-ssp.h>
  37. #include <mach/ssp.h>
  38. #include <mach/pxa2xx_spi.h>
  39. MODULE_AUTHOR("Stephen Street");
  40. MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41. MODULE_LICENSE("GPL");
  42. MODULE_ALIAS("platform:pxa2xx-spi");
  43. #define MAX_BUSES 3
  44. #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
  45. #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
  46. #define IS_DMA_ALIGNED(x) ((((u32)(x)) & 0x07) == 0)
  47. #define MAX_DMA_LEN 8191
  48. /*
  49. * for testing SSCR1 changes that require SSP restart, basically
  50. * everything except the service and interrupt enables, the pxa270 developer
  51. * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  52. * list, but the PXA255 dev man says all bits without really meaning the
  53. * service and interrupt enables
  54. */
  55. #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  56. | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  57. | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  58. | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  59. | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  60. | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  61. #define DEFINE_SSP_REG(reg, off) \
  62. static inline u32 read_##reg(void const __iomem *p) \
  63. { return __raw_readl(p + (off)); } \
  64. \
  65. static inline void write_##reg(u32 v, void __iomem *p) \
  66. { __raw_writel(v, p + (off)); }
  67. DEFINE_SSP_REG(SSCR0, 0x00)
  68. DEFINE_SSP_REG(SSCR1, 0x04)
  69. DEFINE_SSP_REG(SSSR, 0x08)
  70. DEFINE_SSP_REG(SSITR, 0x0c)
  71. DEFINE_SSP_REG(SSDR, 0x10)
  72. DEFINE_SSP_REG(SSTO, 0x28)
  73. DEFINE_SSP_REG(SSPSP, 0x2c)
  74. #define START_STATE ((void*)0)
  75. #define RUNNING_STATE ((void*)1)
  76. #define DONE_STATE ((void*)2)
  77. #define ERROR_STATE ((void*)-1)
  78. #define QUEUE_RUNNING 0
  79. #define QUEUE_STOPPED 1
  80. struct driver_data {
  81. /* Driver model hookup */
  82. struct platform_device *pdev;
  83. /* SSP Info */
  84. struct ssp_device *ssp;
  85. /* SPI framework hookup */
  86. enum pxa_ssp_type ssp_type;
  87. struct spi_master *master;
  88. /* PXA hookup */
  89. struct pxa2xx_spi_master *master_info;
  90. /* DMA setup stuff */
  91. int rx_channel;
  92. int tx_channel;
  93. u32 *null_dma_buf;
  94. /* SSP register addresses */
  95. void __iomem *ioaddr;
  96. u32 ssdr_physical;
  97. /* SSP masks*/
  98. u32 dma_cr1;
  99. u32 int_cr1;
  100. u32 clear_sr;
  101. u32 mask_sr;
  102. /* Driver message queue */
  103. struct workqueue_struct *workqueue;
  104. struct work_struct pump_messages;
  105. spinlock_t lock;
  106. struct list_head queue;
  107. int busy;
  108. int run;
  109. /* Message Transfer pump */
  110. struct tasklet_struct pump_transfers;
  111. /* Current message transfer state info */
  112. struct spi_message* cur_msg;
  113. struct spi_transfer* cur_transfer;
  114. struct chip_data *cur_chip;
  115. size_t len;
  116. void *tx;
  117. void *tx_end;
  118. void *rx;
  119. void *rx_end;
  120. int dma_mapped;
  121. dma_addr_t rx_dma;
  122. dma_addr_t tx_dma;
  123. size_t rx_map_len;
  124. size_t tx_map_len;
  125. u8 n_bytes;
  126. u32 dma_width;
  127. int (*write)(struct driver_data *drv_data);
  128. int (*read)(struct driver_data *drv_data);
  129. irqreturn_t (*transfer_handler)(struct driver_data *drv_data);
  130. void (*cs_control)(u32 command);
  131. };
  132. struct chip_data {
  133. u32 cr0;
  134. u32 cr1;
  135. u32 psp;
  136. u32 timeout;
  137. u8 n_bytes;
  138. u32 dma_width;
  139. u32 dma_burst_size;
  140. u32 threshold;
  141. u32 dma_threshold;
  142. u8 enable_dma;
  143. u8 bits_per_word;
  144. u32 speed_hz;
  145. int (*write)(struct driver_data *drv_data);
  146. int (*read)(struct driver_data *drv_data);
  147. void (*cs_control)(u32 command);
  148. };
  149. static void pump_messages(struct work_struct *work);
  150. static int flush(struct driver_data *drv_data)
  151. {
  152. unsigned long limit = loops_per_jiffy << 1;
  153. void __iomem *reg = drv_data->ioaddr;
  154. do {
  155. while (read_SSSR(reg) & SSSR_RNE) {
  156. read_SSDR(reg);
  157. }
  158. } while ((read_SSSR(reg) & SSSR_BSY) && limit--);
  159. write_SSSR(SSSR_ROR, reg);
  160. return limit;
  161. }
  162. static void null_cs_control(u32 command)
  163. {
  164. }
  165. static int null_writer(struct driver_data *drv_data)
  166. {
  167. void __iomem *reg = drv_data->ioaddr;
  168. u8 n_bytes = drv_data->n_bytes;
  169. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  170. || (drv_data->tx == drv_data->tx_end))
  171. return 0;
  172. write_SSDR(0, reg);
  173. drv_data->tx += n_bytes;
  174. return 1;
  175. }
  176. static int null_reader(struct driver_data *drv_data)
  177. {
  178. void __iomem *reg = drv_data->ioaddr;
  179. u8 n_bytes = drv_data->n_bytes;
  180. while ((read_SSSR(reg) & SSSR_RNE)
  181. && (drv_data->rx < drv_data->rx_end)) {
  182. read_SSDR(reg);
  183. drv_data->rx += n_bytes;
  184. }
  185. return drv_data->rx == drv_data->rx_end;
  186. }
  187. static int u8_writer(struct driver_data *drv_data)
  188. {
  189. void __iomem *reg = drv_data->ioaddr;
  190. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  191. || (drv_data->tx == drv_data->tx_end))
  192. return 0;
  193. write_SSDR(*(u8 *)(drv_data->tx), reg);
  194. ++drv_data->tx;
  195. return 1;
  196. }
  197. static int u8_reader(struct driver_data *drv_data)
  198. {
  199. void __iomem *reg = drv_data->ioaddr;
  200. while ((read_SSSR(reg) & SSSR_RNE)
  201. && (drv_data->rx < drv_data->rx_end)) {
  202. *(u8 *)(drv_data->rx) = read_SSDR(reg);
  203. ++drv_data->rx;
  204. }
  205. return drv_data->rx == drv_data->rx_end;
  206. }
  207. static int u16_writer(struct driver_data *drv_data)
  208. {
  209. void __iomem *reg = drv_data->ioaddr;
  210. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  211. || (drv_data->tx == drv_data->tx_end))
  212. return 0;
  213. write_SSDR(*(u16 *)(drv_data->tx), reg);
  214. drv_data->tx += 2;
  215. return 1;
  216. }
  217. static int u16_reader(struct driver_data *drv_data)
  218. {
  219. void __iomem *reg = drv_data->ioaddr;
  220. while ((read_SSSR(reg) & SSSR_RNE)
  221. && (drv_data->rx < drv_data->rx_end)) {
  222. *(u16 *)(drv_data->rx) = read_SSDR(reg);
  223. drv_data->rx += 2;
  224. }
  225. return drv_data->rx == drv_data->rx_end;
  226. }
  227. static int u32_writer(struct driver_data *drv_data)
  228. {
  229. void __iomem *reg = drv_data->ioaddr;
  230. if (((read_SSSR(reg) & 0x00000f00) == 0x00000f00)
  231. || (drv_data->tx == drv_data->tx_end))
  232. return 0;
  233. write_SSDR(*(u32 *)(drv_data->tx), reg);
  234. drv_data->tx += 4;
  235. return 1;
  236. }
  237. static int u32_reader(struct driver_data *drv_data)
  238. {
  239. void __iomem *reg = drv_data->ioaddr;
  240. while ((read_SSSR(reg) & SSSR_RNE)
  241. && (drv_data->rx < drv_data->rx_end)) {
  242. *(u32 *)(drv_data->rx) = read_SSDR(reg);
  243. drv_data->rx += 4;
  244. }
  245. return drv_data->rx == drv_data->rx_end;
  246. }
  247. static void *next_transfer(struct driver_data *drv_data)
  248. {
  249. struct spi_message *msg = drv_data->cur_msg;
  250. struct spi_transfer *trans = drv_data->cur_transfer;
  251. /* Move to next transfer */
  252. if (trans->transfer_list.next != &msg->transfers) {
  253. drv_data->cur_transfer =
  254. list_entry(trans->transfer_list.next,
  255. struct spi_transfer,
  256. transfer_list);
  257. return RUNNING_STATE;
  258. } else
  259. return DONE_STATE;
  260. }
  261. static int map_dma_buffers(struct driver_data *drv_data)
  262. {
  263. struct spi_message *msg = drv_data->cur_msg;
  264. struct device *dev = &msg->spi->dev;
  265. if (!drv_data->cur_chip->enable_dma)
  266. return 0;
  267. if (msg->is_dma_mapped)
  268. return drv_data->rx_dma && drv_data->tx_dma;
  269. if (!IS_DMA_ALIGNED(drv_data->rx) || !IS_DMA_ALIGNED(drv_data->tx))
  270. return 0;
  271. /* Modify setup if rx buffer is null */
  272. if (drv_data->rx == NULL) {
  273. *drv_data->null_dma_buf = 0;
  274. drv_data->rx = drv_data->null_dma_buf;
  275. drv_data->rx_map_len = 4;
  276. } else
  277. drv_data->rx_map_len = drv_data->len;
  278. /* Modify setup if tx buffer is null */
  279. if (drv_data->tx == NULL) {
  280. *drv_data->null_dma_buf = 0;
  281. drv_data->tx = drv_data->null_dma_buf;
  282. drv_data->tx_map_len = 4;
  283. } else
  284. drv_data->tx_map_len = drv_data->len;
  285. /* Stream map the rx buffer */
  286. drv_data->rx_dma = dma_map_single(dev, drv_data->rx,
  287. drv_data->rx_map_len,
  288. DMA_FROM_DEVICE);
  289. if (dma_mapping_error(dev, drv_data->rx_dma))
  290. return 0;
  291. /* Stream map the tx buffer */
  292. drv_data->tx_dma = dma_map_single(dev, drv_data->tx,
  293. drv_data->tx_map_len,
  294. DMA_TO_DEVICE);
  295. if (dma_mapping_error(dev, drv_data->tx_dma)) {
  296. dma_unmap_single(dev, drv_data->rx_dma,
  297. drv_data->rx_map_len, DMA_FROM_DEVICE);
  298. return 0;
  299. }
  300. return 1;
  301. }
  302. static void unmap_dma_buffers(struct driver_data *drv_data)
  303. {
  304. struct device *dev;
  305. if (!drv_data->dma_mapped)
  306. return;
  307. if (!drv_data->cur_msg->is_dma_mapped) {
  308. dev = &drv_data->cur_msg->spi->dev;
  309. dma_unmap_single(dev, drv_data->rx_dma,
  310. drv_data->rx_map_len, DMA_FROM_DEVICE);
  311. dma_unmap_single(dev, drv_data->tx_dma,
  312. drv_data->tx_map_len, DMA_TO_DEVICE);
  313. }
  314. drv_data->dma_mapped = 0;
  315. }
  316. /* caller already set message->status; dma and pio irqs are blocked */
  317. static void giveback(struct driver_data *drv_data)
  318. {
  319. struct spi_transfer* last_transfer;
  320. unsigned long flags;
  321. struct spi_message *msg;
  322. spin_lock_irqsave(&drv_data->lock, flags);
  323. msg = drv_data->cur_msg;
  324. drv_data->cur_msg = NULL;
  325. drv_data->cur_transfer = NULL;
  326. drv_data->cur_chip = NULL;
  327. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  328. spin_unlock_irqrestore(&drv_data->lock, flags);
  329. last_transfer = list_entry(msg->transfers.prev,
  330. struct spi_transfer,
  331. transfer_list);
  332. /* Delay if requested before any change in chip select */
  333. if (last_transfer->delay_usecs)
  334. udelay(last_transfer->delay_usecs);
  335. /* Drop chip select UNLESS cs_change is true or we are returning
  336. * a message with an error, or next message is for another chip
  337. */
  338. if (!last_transfer->cs_change)
  339. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  340. else {
  341. struct spi_message *next_msg;
  342. /* Holding of cs was hinted, but we need to make sure
  343. * the next message is for the same chip. Don't waste
  344. * time with the following tests unless this was hinted.
  345. *
  346. * We cannot postpone this until pump_messages, because
  347. * after calling msg->complete (below) the driver that
  348. * sent the current message could be unloaded, which
  349. * could invalidate the cs_control() callback...
  350. */
  351. /* get a pointer to the next message, if any */
  352. spin_lock_irqsave(&drv_data->lock, flags);
  353. if (list_empty(&drv_data->queue))
  354. next_msg = NULL;
  355. else
  356. next_msg = list_entry(drv_data->queue.next,
  357. struct spi_message, queue);
  358. spin_unlock_irqrestore(&drv_data->lock, flags);
  359. /* see if the next and current messages point
  360. * to the same chip
  361. */
  362. if (next_msg && next_msg->spi != msg->spi)
  363. next_msg = NULL;
  364. if (!next_msg || msg->state == ERROR_STATE)
  365. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  366. }
  367. msg->state = NULL;
  368. if (msg->complete)
  369. msg->complete(msg->context);
  370. }
  371. static int wait_ssp_rx_stall(void const __iomem *ioaddr)
  372. {
  373. unsigned long limit = loops_per_jiffy << 1;
  374. while ((read_SSSR(ioaddr) & SSSR_BSY) && limit--)
  375. cpu_relax();
  376. return limit;
  377. }
  378. static int wait_dma_channel_stop(int channel)
  379. {
  380. unsigned long limit = loops_per_jiffy << 1;
  381. while (!(DCSR(channel) & DCSR_STOPSTATE) && limit--)
  382. cpu_relax();
  383. return limit;
  384. }
  385. static void dma_error_stop(struct driver_data *drv_data, const char *msg)
  386. {
  387. void __iomem *reg = drv_data->ioaddr;
  388. /* Stop and reset */
  389. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  390. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  391. write_SSSR(drv_data->clear_sr, reg);
  392. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  393. if (drv_data->ssp_type != PXA25x_SSP)
  394. write_SSTO(0, reg);
  395. flush(drv_data);
  396. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  397. unmap_dma_buffers(drv_data);
  398. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  399. drv_data->cur_msg->state = ERROR_STATE;
  400. tasklet_schedule(&drv_data->pump_transfers);
  401. }
  402. static void dma_transfer_complete(struct driver_data *drv_data)
  403. {
  404. void __iomem *reg = drv_data->ioaddr;
  405. struct spi_message *msg = drv_data->cur_msg;
  406. /* Clear and disable interrupts on SSP and DMA channels*/
  407. write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
  408. write_SSSR(drv_data->clear_sr, reg);
  409. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  410. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  411. if (wait_dma_channel_stop(drv_data->rx_channel) == 0)
  412. dev_err(&drv_data->pdev->dev,
  413. "dma_handler: dma rx channel stop failed\n");
  414. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  415. dev_err(&drv_data->pdev->dev,
  416. "dma_transfer: ssp rx stall failed\n");
  417. unmap_dma_buffers(drv_data);
  418. /* update the buffer pointer for the amount completed in dma */
  419. drv_data->rx += drv_data->len -
  420. (DCMD(drv_data->rx_channel) & DCMD_LENGTH);
  421. /* read trailing data from fifo, it does not matter how many
  422. * bytes are in the fifo just read until buffer is full
  423. * or fifo is empty, which ever occurs first */
  424. drv_data->read(drv_data);
  425. /* return count of what was actually read */
  426. msg->actual_length += drv_data->len -
  427. (drv_data->rx_end - drv_data->rx);
  428. /* Transfer delays and chip select release are
  429. * handled in pump_transfers or giveback
  430. */
  431. /* Move to next transfer */
  432. msg->state = next_transfer(drv_data);
  433. /* Schedule transfer tasklet */
  434. tasklet_schedule(&drv_data->pump_transfers);
  435. }
  436. static void dma_handler(int channel, void *data)
  437. {
  438. struct driver_data *drv_data = data;
  439. u32 irq_status = DCSR(channel) & DMA_INT_MASK;
  440. if (irq_status & DCSR_BUSERR) {
  441. if (channel == drv_data->tx_channel)
  442. dma_error_stop(drv_data,
  443. "dma_handler: "
  444. "bad bus address on tx channel");
  445. else
  446. dma_error_stop(drv_data,
  447. "dma_handler: "
  448. "bad bus address on rx channel");
  449. return;
  450. }
  451. /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
  452. if ((channel == drv_data->tx_channel)
  453. && (irq_status & DCSR_ENDINTR)
  454. && (drv_data->ssp_type == PXA25x_SSP)) {
  455. /* Wait for rx to stall */
  456. if (wait_ssp_rx_stall(drv_data->ioaddr) == 0)
  457. dev_err(&drv_data->pdev->dev,
  458. "dma_handler: ssp rx stall failed\n");
  459. /* finish this transfer, start the next */
  460. dma_transfer_complete(drv_data);
  461. }
  462. }
  463. static irqreturn_t dma_transfer(struct driver_data *drv_data)
  464. {
  465. u32 irq_status;
  466. void __iomem *reg = drv_data->ioaddr;
  467. irq_status = read_SSSR(reg) & drv_data->mask_sr;
  468. if (irq_status & SSSR_ROR) {
  469. dma_error_stop(drv_data, "dma_transfer: fifo overrun");
  470. return IRQ_HANDLED;
  471. }
  472. /* Check for false positive timeout */
  473. if ((irq_status & SSSR_TINT)
  474. && (DCSR(drv_data->tx_channel) & DCSR_RUN)) {
  475. write_SSSR(SSSR_TINT, reg);
  476. return IRQ_HANDLED;
  477. }
  478. if (irq_status & SSSR_TINT || drv_data->rx == drv_data->rx_end) {
  479. /* Clear and disable timeout interrupt, do the rest in
  480. * dma_transfer_complete */
  481. if (drv_data->ssp_type != PXA25x_SSP)
  482. write_SSTO(0, reg);
  483. /* finish this transfer, start the next */
  484. dma_transfer_complete(drv_data);
  485. return IRQ_HANDLED;
  486. }
  487. /* Opps problem detected */
  488. return IRQ_NONE;
  489. }
  490. static void int_error_stop(struct driver_data *drv_data, const char* msg)
  491. {
  492. void __iomem *reg = drv_data->ioaddr;
  493. /* Stop and reset SSP */
  494. write_SSSR(drv_data->clear_sr, reg);
  495. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  496. if (drv_data->ssp_type != PXA25x_SSP)
  497. write_SSTO(0, reg);
  498. flush(drv_data);
  499. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  500. dev_err(&drv_data->pdev->dev, "%s\n", msg);
  501. drv_data->cur_msg->state = ERROR_STATE;
  502. tasklet_schedule(&drv_data->pump_transfers);
  503. }
  504. static void int_transfer_complete(struct driver_data *drv_data)
  505. {
  506. void __iomem *reg = drv_data->ioaddr;
  507. /* Stop SSP */
  508. write_SSSR(drv_data->clear_sr, reg);
  509. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  510. if (drv_data->ssp_type != PXA25x_SSP)
  511. write_SSTO(0, reg);
  512. /* Update total byte transfered return count actual bytes read */
  513. drv_data->cur_msg->actual_length += drv_data->len -
  514. (drv_data->rx_end - drv_data->rx);
  515. /* Transfer delays and chip select release are
  516. * handled in pump_transfers or giveback
  517. */
  518. /* Move to next transfer */
  519. drv_data->cur_msg->state = next_transfer(drv_data);
  520. /* Schedule transfer tasklet */
  521. tasklet_schedule(&drv_data->pump_transfers);
  522. }
  523. static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
  524. {
  525. void __iomem *reg = drv_data->ioaddr;
  526. u32 irq_mask = (read_SSCR1(reg) & SSCR1_TIE) ?
  527. drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
  528. u32 irq_status = read_SSSR(reg) & irq_mask;
  529. if (irq_status & SSSR_ROR) {
  530. int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
  531. return IRQ_HANDLED;
  532. }
  533. if (irq_status & SSSR_TINT) {
  534. write_SSSR(SSSR_TINT, reg);
  535. if (drv_data->read(drv_data)) {
  536. int_transfer_complete(drv_data);
  537. return IRQ_HANDLED;
  538. }
  539. }
  540. /* Drain rx fifo, Fill tx fifo and prevent overruns */
  541. do {
  542. if (drv_data->read(drv_data)) {
  543. int_transfer_complete(drv_data);
  544. return IRQ_HANDLED;
  545. }
  546. } while (drv_data->write(drv_data));
  547. if (drv_data->read(drv_data)) {
  548. int_transfer_complete(drv_data);
  549. return IRQ_HANDLED;
  550. }
  551. if (drv_data->tx == drv_data->tx_end) {
  552. write_SSCR1(read_SSCR1(reg) & ~SSCR1_TIE, reg);
  553. /* PXA25x_SSP has no timeout, read trailing bytes */
  554. if (drv_data->ssp_type == PXA25x_SSP) {
  555. if (!wait_ssp_rx_stall(reg))
  556. {
  557. int_error_stop(drv_data, "interrupt_transfer: "
  558. "rx stall failed");
  559. return IRQ_HANDLED;
  560. }
  561. if (!drv_data->read(drv_data))
  562. {
  563. int_error_stop(drv_data,
  564. "interrupt_transfer: "
  565. "trailing byte read failed");
  566. return IRQ_HANDLED;
  567. }
  568. int_transfer_complete(drv_data);
  569. }
  570. }
  571. /* We did something */
  572. return IRQ_HANDLED;
  573. }
  574. static irqreturn_t ssp_int(int irq, void *dev_id)
  575. {
  576. struct driver_data *drv_data = dev_id;
  577. void __iomem *reg = drv_data->ioaddr;
  578. if (!drv_data->cur_msg) {
  579. write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
  580. write_SSCR1(read_SSCR1(reg) & ~drv_data->int_cr1, reg);
  581. if (drv_data->ssp_type != PXA25x_SSP)
  582. write_SSTO(0, reg);
  583. write_SSSR(drv_data->clear_sr, reg);
  584. dev_err(&drv_data->pdev->dev, "bad message state "
  585. "in interrupt handler\n");
  586. /* Never fail */
  587. return IRQ_HANDLED;
  588. }
  589. return drv_data->transfer_handler(drv_data);
  590. }
  591. static int set_dma_burst_and_threshold(struct chip_data *chip,
  592. struct spi_device *spi,
  593. u8 bits_per_word, u32 *burst_code,
  594. u32 *threshold)
  595. {
  596. struct pxa2xx_spi_chip *chip_info =
  597. (struct pxa2xx_spi_chip *)spi->controller_data;
  598. int bytes_per_word;
  599. int burst_bytes;
  600. int thresh_words;
  601. int req_burst_size;
  602. int retval = 0;
  603. /* Set the threshold (in registers) to equal the same amount of data
  604. * as represented by burst size (in bytes). The computation below
  605. * is (burst_size rounded up to nearest 8 byte, word or long word)
  606. * divided by (bytes/register); the tx threshold is the inverse of
  607. * the rx, so that there will always be enough data in the rx fifo
  608. * to satisfy a burst, and there will always be enough space in the
  609. * tx fifo to accept a burst (a tx burst will overwrite the fifo if
  610. * there is not enough space), there must always remain enough empty
  611. * space in the rx fifo for any data loaded to the tx fifo.
  612. * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
  613. * will be 8, or half the fifo;
  614. * The threshold can only be set to 2, 4 or 8, but not 16, because
  615. * to burst 16 to the tx fifo, the fifo would have to be empty;
  616. * however, the minimum fifo trigger level is 1, and the tx will
  617. * request service when the fifo is at this level, with only 15 spaces.
  618. */
  619. /* find bytes/word */
  620. if (bits_per_word <= 8)
  621. bytes_per_word = 1;
  622. else if (bits_per_word <= 16)
  623. bytes_per_word = 2;
  624. else
  625. bytes_per_word = 4;
  626. /* use struct pxa2xx_spi_chip->dma_burst_size if available */
  627. if (chip_info)
  628. req_burst_size = chip_info->dma_burst_size;
  629. else {
  630. switch (chip->dma_burst_size) {
  631. default:
  632. /* if the default burst size is not set,
  633. * do it now */
  634. chip->dma_burst_size = DCMD_BURST8;
  635. case DCMD_BURST8:
  636. req_burst_size = 8;
  637. break;
  638. case DCMD_BURST16:
  639. req_burst_size = 16;
  640. break;
  641. case DCMD_BURST32:
  642. req_burst_size = 32;
  643. break;
  644. }
  645. }
  646. if (req_burst_size <= 8) {
  647. *burst_code = DCMD_BURST8;
  648. burst_bytes = 8;
  649. } else if (req_burst_size <= 16) {
  650. if (bytes_per_word == 1) {
  651. /* don't burst more than 1/2 the fifo */
  652. *burst_code = DCMD_BURST8;
  653. burst_bytes = 8;
  654. retval = 1;
  655. } else {
  656. *burst_code = DCMD_BURST16;
  657. burst_bytes = 16;
  658. }
  659. } else {
  660. if (bytes_per_word == 1) {
  661. /* don't burst more than 1/2 the fifo */
  662. *burst_code = DCMD_BURST8;
  663. burst_bytes = 8;
  664. retval = 1;
  665. } else if (bytes_per_word == 2) {
  666. /* don't burst more than 1/2 the fifo */
  667. *burst_code = DCMD_BURST16;
  668. burst_bytes = 16;
  669. retval = 1;
  670. } else {
  671. *burst_code = DCMD_BURST32;
  672. burst_bytes = 32;
  673. }
  674. }
  675. thresh_words = burst_bytes / bytes_per_word;
  676. /* thresh_words will be between 2 and 8 */
  677. *threshold = (SSCR1_RxTresh(thresh_words) & SSCR1_RFT)
  678. | (SSCR1_TxTresh(16-thresh_words) & SSCR1_TFT);
  679. return retval;
  680. }
  681. static unsigned int ssp_get_clk_div(struct ssp_device *ssp, int rate)
  682. {
  683. unsigned long ssp_clk = clk_get_rate(ssp->clk);
  684. if (ssp->type == PXA25x_SSP)
  685. return ((ssp_clk / (2 * rate) - 1) & 0xff) << 8;
  686. else
  687. return ((ssp_clk / rate - 1) & 0xfff) << 8;
  688. }
  689. static void pump_transfers(unsigned long data)
  690. {
  691. struct driver_data *drv_data = (struct driver_data *)data;
  692. struct spi_message *message = NULL;
  693. struct spi_transfer *transfer = NULL;
  694. struct spi_transfer *previous = NULL;
  695. struct chip_data *chip = NULL;
  696. struct ssp_device *ssp = drv_data->ssp;
  697. void __iomem *reg = drv_data->ioaddr;
  698. u32 clk_div = 0;
  699. u8 bits = 0;
  700. u32 speed = 0;
  701. u32 cr0;
  702. u32 cr1;
  703. u32 dma_thresh = drv_data->cur_chip->dma_threshold;
  704. u32 dma_burst = drv_data->cur_chip->dma_burst_size;
  705. /* Get current state information */
  706. message = drv_data->cur_msg;
  707. transfer = drv_data->cur_transfer;
  708. chip = drv_data->cur_chip;
  709. /* Handle for abort */
  710. if (message->state == ERROR_STATE) {
  711. message->status = -EIO;
  712. giveback(drv_data);
  713. return;
  714. }
  715. /* Handle end of message */
  716. if (message->state == DONE_STATE) {
  717. message->status = 0;
  718. giveback(drv_data);
  719. return;
  720. }
  721. /* Delay if requested at end of transfer before CS change */
  722. if (message->state == RUNNING_STATE) {
  723. previous = list_entry(transfer->transfer_list.prev,
  724. struct spi_transfer,
  725. transfer_list);
  726. if (previous->delay_usecs)
  727. udelay(previous->delay_usecs);
  728. /* Drop chip select only if cs_change is requested */
  729. if (previous->cs_change)
  730. drv_data->cs_control(PXA2XX_CS_DEASSERT);
  731. }
  732. /* Check for transfers that need multiple DMA segments */
  733. if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
  734. /* reject already-mapped transfers; PIO won't always work */
  735. if (message->is_dma_mapped
  736. || transfer->rx_dma || transfer->tx_dma) {
  737. dev_err(&drv_data->pdev->dev,
  738. "pump_transfers: mapped transfer length "
  739. "of %u is greater than %d\n",
  740. transfer->len, MAX_DMA_LEN);
  741. message->status = -EINVAL;
  742. giveback(drv_data);
  743. return;
  744. }
  745. /* warn ... we force this to PIO mode */
  746. if (printk_ratelimit())
  747. dev_warn(&message->spi->dev, "pump_transfers: "
  748. "DMA disabled for transfer length %ld "
  749. "greater than %d\n",
  750. (long)drv_data->len, MAX_DMA_LEN);
  751. }
  752. /* Setup the transfer state based on the type of transfer */
  753. if (flush(drv_data) == 0) {
  754. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  755. message->status = -EIO;
  756. giveback(drv_data);
  757. return;
  758. }
  759. drv_data->n_bytes = chip->n_bytes;
  760. drv_data->dma_width = chip->dma_width;
  761. drv_data->cs_control = chip->cs_control;
  762. drv_data->tx = (void *)transfer->tx_buf;
  763. drv_data->tx_end = drv_data->tx + transfer->len;
  764. drv_data->rx = transfer->rx_buf;
  765. drv_data->rx_end = drv_data->rx + transfer->len;
  766. drv_data->rx_dma = transfer->rx_dma;
  767. drv_data->tx_dma = transfer->tx_dma;
  768. drv_data->len = transfer->len & DCMD_LENGTH;
  769. drv_data->write = drv_data->tx ? chip->write : null_writer;
  770. drv_data->read = drv_data->rx ? chip->read : null_reader;
  771. /* Change speed and bit per word on a per transfer */
  772. cr0 = chip->cr0;
  773. if (transfer->speed_hz || transfer->bits_per_word) {
  774. bits = chip->bits_per_word;
  775. speed = chip->speed_hz;
  776. if (transfer->speed_hz)
  777. speed = transfer->speed_hz;
  778. if (transfer->bits_per_word)
  779. bits = transfer->bits_per_word;
  780. clk_div = ssp_get_clk_div(ssp, speed);
  781. if (bits <= 8) {
  782. drv_data->n_bytes = 1;
  783. drv_data->dma_width = DCMD_WIDTH1;
  784. drv_data->read = drv_data->read != null_reader ?
  785. u8_reader : null_reader;
  786. drv_data->write = drv_data->write != null_writer ?
  787. u8_writer : null_writer;
  788. } else if (bits <= 16) {
  789. drv_data->n_bytes = 2;
  790. drv_data->dma_width = DCMD_WIDTH2;
  791. drv_data->read = drv_data->read != null_reader ?
  792. u16_reader : null_reader;
  793. drv_data->write = drv_data->write != null_writer ?
  794. u16_writer : null_writer;
  795. } else if (bits <= 32) {
  796. drv_data->n_bytes = 4;
  797. drv_data->dma_width = DCMD_WIDTH4;
  798. drv_data->read = drv_data->read != null_reader ?
  799. u32_reader : null_reader;
  800. drv_data->write = drv_data->write != null_writer ?
  801. u32_writer : null_writer;
  802. }
  803. /* if bits/word is changed in dma mode, then must check the
  804. * thresholds and burst also */
  805. if (chip->enable_dma) {
  806. if (set_dma_burst_and_threshold(chip, message->spi,
  807. bits, &dma_burst,
  808. &dma_thresh))
  809. if (printk_ratelimit())
  810. dev_warn(&message->spi->dev,
  811. "pump_transfers: "
  812. "DMA burst size reduced to "
  813. "match bits_per_word\n");
  814. }
  815. cr0 = clk_div
  816. | SSCR0_Motorola
  817. | SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
  818. | SSCR0_SSE
  819. | (bits > 16 ? SSCR0_EDSS : 0);
  820. }
  821. message->state = RUNNING_STATE;
  822. /* Try to map dma buffer and do a dma transfer if successful, but
  823. * only if the length is non-zero and less than MAX_DMA_LEN.
  824. *
  825. * Zero-length non-descriptor DMA is illegal on PXA2xx; force use
  826. * of PIO instead. Care is needed above because the transfer may
  827. * have have been passed with buffers that are already dma mapped.
  828. * A zero-length transfer in PIO mode will not try to write/read
  829. * to/from the buffers
  830. *
  831. * REVISIT large transfers are exactly where we most want to be
  832. * using DMA. If this happens much, split those transfers into
  833. * multiple DMA segments rather than forcing PIO.
  834. */
  835. drv_data->dma_mapped = 0;
  836. if (drv_data->len > 0 && drv_data->len <= MAX_DMA_LEN)
  837. drv_data->dma_mapped = map_dma_buffers(drv_data);
  838. if (drv_data->dma_mapped) {
  839. /* Ensure we have the correct interrupt handler */
  840. drv_data->transfer_handler = dma_transfer;
  841. /* Setup rx DMA Channel */
  842. DCSR(drv_data->rx_channel) = RESET_DMA_CHANNEL;
  843. DSADR(drv_data->rx_channel) = drv_data->ssdr_physical;
  844. DTADR(drv_data->rx_channel) = drv_data->rx_dma;
  845. if (drv_data->rx == drv_data->null_dma_buf)
  846. /* No target address increment */
  847. DCMD(drv_data->rx_channel) = DCMD_FLOWSRC
  848. | drv_data->dma_width
  849. | dma_burst
  850. | drv_data->len;
  851. else
  852. DCMD(drv_data->rx_channel) = DCMD_INCTRGADDR
  853. | DCMD_FLOWSRC
  854. | drv_data->dma_width
  855. | dma_burst
  856. | drv_data->len;
  857. /* Setup tx DMA Channel */
  858. DCSR(drv_data->tx_channel) = RESET_DMA_CHANNEL;
  859. DSADR(drv_data->tx_channel) = drv_data->tx_dma;
  860. DTADR(drv_data->tx_channel) = drv_data->ssdr_physical;
  861. if (drv_data->tx == drv_data->null_dma_buf)
  862. /* No source address increment */
  863. DCMD(drv_data->tx_channel) = DCMD_FLOWTRG
  864. | drv_data->dma_width
  865. | dma_burst
  866. | drv_data->len;
  867. else
  868. DCMD(drv_data->tx_channel) = DCMD_INCSRCADDR
  869. | DCMD_FLOWTRG
  870. | drv_data->dma_width
  871. | dma_burst
  872. | drv_data->len;
  873. /* Enable dma end irqs on SSP to detect end of transfer */
  874. if (drv_data->ssp_type == PXA25x_SSP)
  875. DCMD(drv_data->tx_channel) |= DCMD_ENDIRQEN;
  876. /* Clear status and start DMA engine */
  877. cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
  878. write_SSSR(drv_data->clear_sr, reg);
  879. DCSR(drv_data->rx_channel) |= DCSR_RUN;
  880. DCSR(drv_data->tx_channel) |= DCSR_RUN;
  881. } else {
  882. /* Ensure we have the correct interrupt handler */
  883. drv_data->transfer_handler = interrupt_transfer;
  884. /* Clear status */
  885. cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
  886. write_SSSR(drv_data->clear_sr, reg);
  887. }
  888. /* see if we need to reload the config registers */
  889. if ((read_SSCR0(reg) != cr0)
  890. || (read_SSCR1(reg) & SSCR1_CHANGE_MASK) !=
  891. (cr1 & SSCR1_CHANGE_MASK)) {
  892. /* stop the SSP, and update the other bits */
  893. write_SSCR0(cr0 & ~SSCR0_SSE, reg);
  894. if (drv_data->ssp_type != PXA25x_SSP)
  895. write_SSTO(chip->timeout, reg);
  896. /* first set CR1 without interrupt and service enables */
  897. write_SSCR1(cr1 & SSCR1_CHANGE_MASK, reg);
  898. /* restart the SSP */
  899. write_SSCR0(cr0, reg);
  900. } else {
  901. if (drv_data->ssp_type != PXA25x_SSP)
  902. write_SSTO(chip->timeout, reg);
  903. }
  904. /* FIXME, need to handle cs polarity,
  905. * this driver uses struct pxa2xx_spi_chip.cs_control to
  906. * specify a CS handling function, and it ignores most
  907. * struct spi_device.mode[s], including SPI_CS_HIGH */
  908. drv_data->cs_control(PXA2XX_CS_ASSERT);
  909. /* after chip select, release the data by enabling service
  910. * requests and interrupts, without changing any mode bits */
  911. write_SSCR1(cr1, reg);
  912. }
  913. static void pump_messages(struct work_struct *work)
  914. {
  915. struct driver_data *drv_data =
  916. container_of(work, struct driver_data, pump_messages);
  917. unsigned long flags;
  918. /* Lock queue and check for queue work */
  919. spin_lock_irqsave(&drv_data->lock, flags);
  920. if (list_empty(&drv_data->queue) || drv_data->run == QUEUE_STOPPED) {
  921. drv_data->busy = 0;
  922. spin_unlock_irqrestore(&drv_data->lock, flags);
  923. return;
  924. }
  925. /* Make sure we are not already running a message */
  926. if (drv_data->cur_msg) {
  927. spin_unlock_irqrestore(&drv_data->lock, flags);
  928. return;
  929. }
  930. /* Extract head of queue */
  931. drv_data->cur_msg = list_entry(drv_data->queue.next,
  932. struct spi_message, queue);
  933. list_del_init(&drv_data->cur_msg->queue);
  934. /* Initial message state*/
  935. drv_data->cur_msg->state = START_STATE;
  936. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  937. struct spi_transfer,
  938. transfer_list);
  939. /* prepare to setup the SSP, in pump_transfers, using the per
  940. * chip configuration */
  941. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  942. /* Mark as busy and launch transfers */
  943. tasklet_schedule(&drv_data->pump_transfers);
  944. drv_data->busy = 1;
  945. spin_unlock_irqrestore(&drv_data->lock, flags);
  946. }
  947. static int transfer(struct spi_device *spi, struct spi_message *msg)
  948. {
  949. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  950. unsigned long flags;
  951. spin_lock_irqsave(&drv_data->lock, flags);
  952. if (drv_data->run == QUEUE_STOPPED) {
  953. spin_unlock_irqrestore(&drv_data->lock, flags);
  954. return -ESHUTDOWN;
  955. }
  956. msg->actual_length = 0;
  957. msg->status = -EINPROGRESS;
  958. msg->state = START_STATE;
  959. list_add_tail(&msg->queue, &drv_data->queue);
  960. if (drv_data->run == QUEUE_RUNNING && !drv_data->busy)
  961. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  962. spin_unlock_irqrestore(&drv_data->lock, flags);
  963. return 0;
  964. }
  965. /* the spi->mode bits understood by this driver: */
  966. #define MODEBITS (SPI_CPOL | SPI_CPHA)
  967. static int setup(struct spi_device *spi)
  968. {
  969. struct pxa2xx_spi_chip *chip_info = NULL;
  970. struct chip_data *chip;
  971. struct driver_data *drv_data = spi_master_get_devdata(spi->master);
  972. struct ssp_device *ssp = drv_data->ssp;
  973. unsigned int clk_div;
  974. if (!spi->bits_per_word)
  975. spi->bits_per_word = 8;
  976. if (drv_data->ssp_type != PXA25x_SSP
  977. && (spi->bits_per_word < 4 || spi->bits_per_word > 32)) {
  978. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  979. "b/w not 4-32 for type non-PXA25x_SSP\n",
  980. drv_data->ssp_type, spi->bits_per_word);
  981. return -EINVAL;
  982. }
  983. else if (drv_data->ssp_type == PXA25x_SSP
  984. && (spi->bits_per_word < 4
  985. || spi->bits_per_word > 16)) {
  986. dev_err(&spi->dev, "failed setup: ssp_type=%d, bits/wrd=%d "
  987. "b/w not 4-16 for type PXA25x_SSP\n",
  988. drv_data->ssp_type, spi->bits_per_word);
  989. return -EINVAL;
  990. }
  991. if (spi->mode & ~MODEBITS) {
  992. dev_dbg(&spi->dev, "setup: unsupported mode bits %x\n",
  993. spi->mode & ~MODEBITS);
  994. return -EINVAL;
  995. }
  996. /* Only alloc on first setup */
  997. chip = spi_get_ctldata(spi);
  998. if (!chip) {
  999. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  1000. if (!chip) {
  1001. dev_err(&spi->dev,
  1002. "failed setup: can't allocate chip data\n");
  1003. return -ENOMEM;
  1004. }
  1005. chip->cs_control = null_cs_control;
  1006. chip->enable_dma = 0;
  1007. chip->timeout = 1000;
  1008. chip->threshold = SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
  1009. chip->dma_burst_size = drv_data->master_info->enable_dma ?
  1010. DCMD_BURST8 : 0;
  1011. }
  1012. /* protocol drivers may change the chip settings, so...
  1013. * if chip_info exists, use it */
  1014. chip_info = spi->controller_data;
  1015. /* chip_info isn't always needed */
  1016. chip->cr1 = 0;
  1017. if (chip_info) {
  1018. if (chip_info->cs_control)
  1019. chip->cs_control = chip_info->cs_control;
  1020. chip->timeout = chip_info->timeout;
  1021. chip->threshold = (SSCR1_RxTresh(chip_info->rx_threshold) &
  1022. SSCR1_RFT) |
  1023. (SSCR1_TxTresh(chip_info->tx_threshold) &
  1024. SSCR1_TFT);
  1025. chip->enable_dma = chip_info->dma_burst_size != 0
  1026. && drv_data->master_info->enable_dma;
  1027. chip->dma_threshold = 0;
  1028. if (chip_info->enable_loopback)
  1029. chip->cr1 = SSCR1_LBM;
  1030. }
  1031. /* set dma burst and threshold outside of chip_info path so that if
  1032. * chip_info goes away after setting chip->enable_dma, the
  1033. * burst and threshold can still respond to changes in bits_per_word */
  1034. if (chip->enable_dma) {
  1035. /* set up legal burst and threshold for dma */
  1036. if (set_dma_burst_and_threshold(chip, spi, spi->bits_per_word,
  1037. &chip->dma_burst_size,
  1038. &chip->dma_threshold)) {
  1039. dev_warn(&spi->dev, "in setup: DMA burst size reduced "
  1040. "to match bits_per_word\n");
  1041. }
  1042. }
  1043. clk_div = ssp_get_clk_div(ssp, spi->max_speed_hz);
  1044. chip->speed_hz = spi->max_speed_hz;
  1045. chip->cr0 = clk_div
  1046. | SSCR0_Motorola
  1047. | SSCR0_DataSize(spi->bits_per_word > 16 ?
  1048. spi->bits_per_word - 16 : spi->bits_per_word)
  1049. | SSCR0_SSE
  1050. | (spi->bits_per_word > 16 ? SSCR0_EDSS : 0);
  1051. chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
  1052. chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
  1053. | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
  1054. /* NOTE: PXA25x_SSP _could_ use external clocking ... */
  1055. if (drv_data->ssp_type != PXA25x_SSP)
  1056. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
  1057. spi->bits_per_word,
  1058. clk_get_rate(ssp->clk)
  1059. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1060. spi->mode & 0x3);
  1061. else
  1062. dev_dbg(&spi->dev, "%d bits/word, %ld Hz, mode %d\n",
  1063. spi->bits_per_word,
  1064. clk_get_rate(ssp->clk)
  1065. / (1 + ((chip->cr0 & SSCR0_SCR) >> 8)),
  1066. spi->mode & 0x3);
  1067. if (spi->bits_per_word <= 8) {
  1068. chip->n_bytes = 1;
  1069. chip->dma_width = DCMD_WIDTH1;
  1070. chip->read = u8_reader;
  1071. chip->write = u8_writer;
  1072. } else if (spi->bits_per_word <= 16) {
  1073. chip->n_bytes = 2;
  1074. chip->dma_width = DCMD_WIDTH2;
  1075. chip->read = u16_reader;
  1076. chip->write = u16_writer;
  1077. } else if (spi->bits_per_word <= 32) {
  1078. chip->cr0 |= SSCR0_EDSS;
  1079. chip->n_bytes = 4;
  1080. chip->dma_width = DCMD_WIDTH4;
  1081. chip->read = u32_reader;
  1082. chip->write = u32_writer;
  1083. } else {
  1084. dev_err(&spi->dev, "invalid wordsize\n");
  1085. return -ENODEV;
  1086. }
  1087. chip->bits_per_word = spi->bits_per_word;
  1088. spi_set_ctldata(spi, chip);
  1089. return 0;
  1090. }
  1091. static void cleanup(struct spi_device *spi)
  1092. {
  1093. struct chip_data *chip = spi_get_ctldata(spi);
  1094. kfree(chip);
  1095. }
  1096. static int __init init_queue(struct driver_data *drv_data)
  1097. {
  1098. INIT_LIST_HEAD(&drv_data->queue);
  1099. spin_lock_init(&drv_data->lock);
  1100. drv_data->run = QUEUE_STOPPED;
  1101. drv_data->busy = 0;
  1102. tasklet_init(&drv_data->pump_transfers,
  1103. pump_transfers, (unsigned long)drv_data);
  1104. INIT_WORK(&drv_data->pump_messages, pump_messages);
  1105. drv_data->workqueue = create_singlethread_workqueue(
  1106. drv_data->master->dev.parent->bus_id);
  1107. if (drv_data->workqueue == NULL)
  1108. return -EBUSY;
  1109. return 0;
  1110. }
  1111. static int start_queue(struct driver_data *drv_data)
  1112. {
  1113. unsigned long flags;
  1114. spin_lock_irqsave(&drv_data->lock, flags);
  1115. if (drv_data->run == QUEUE_RUNNING || drv_data->busy) {
  1116. spin_unlock_irqrestore(&drv_data->lock, flags);
  1117. return -EBUSY;
  1118. }
  1119. drv_data->run = QUEUE_RUNNING;
  1120. drv_data->cur_msg = NULL;
  1121. drv_data->cur_transfer = NULL;
  1122. drv_data->cur_chip = NULL;
  1123. spin_unlock_irqrestore(&drv_data->lock, flags);
  1124. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1125. return 0;
  1126. }
  1127. static int stop_queue(struct driver_data *drv_data)
  1128. {
  1129. unsigned long flags;
  1130. unsigned limit = 500;
  1131. int status = 0;
  1132. spin_lock_irqsave(&drv_data->lock, flags);
  1133. /* This is a bit lame, but is optimized for the common execution path.
  1134. * A wait_queue on the drv_data->busy could be used, but then the common
  1135. * execution path (pump_messages) would be required to call wake_up or
  1136. * friends on every SPI message. Do this instead */
  1137. drv_data->run = QUEUE_STOPPED;
  1138. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1139. spin_unlock_irqrestore(&drv_data->lock, flags);
  1140. msleep(10);
  1141. spin_lock_irqsave(&drv_data->lock, flags);
  1142. }
  1143. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1144. status = -EBUSY;
  1145. spin_unlock_irqrestore(&drv_data->lock, flags);
  1146. return status;
  1147. }
  1148. static int destroy_queue(struct driver_data *drv_data)
  1149. {
  1150. int status;
  1151. status = stop_queue(drv_data);
  1152. /* we are unloading the module or failing to load (only two calls
  1153. * to this routine), and neither call can handle a return value.
  1154. * However, destroy_workqueue calls flush_workqueue, and that will
  1155. * block until all work is done. If the reason that stop_queue
  1156. * timed out is that the work will never finish, then it does no
  1157. * good to call destroy_workqueue, so return anyway. */
  1158. if (status != 0)
  1159. return status;
  1160. destroy_workqueue(drv_data->workqueue);
  1161. return 0;
  1162. }
  1163. static int __init pxa2xx_spi_probe(struct platform_device *pdev)
  1164. {
  1165. struct device *dev = &pdev->dev;
  1166. struct pxa2xx_spi_master *platform_info;
  1167. struct spi_master *master;
  1168. struct driver_data *drv_data = NULL;
  1169. struct ssp_device *ssp;
  1170. int status = 0;
  1171. platform_info = dev->platform_data;
  1172. ssp = ssp_request(pdev->id, pdev->name);
  1173. if (ssp == NULL) {
  1174. dev_err(&pdev->dev, "failed to request SSP%d\n", pdev->id);
  1175. return -ENODEV;
  1176. }
  1177. /* Allocate master with space for drv_data and null dma buffer */
  1178. master = spi_alloc_master(dev, sizeof(struct driver_data) + 16);
  1179. if (!master) {
  1180. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1181. ssp_free(ssp);
  1182. return -ENOMEM;
  1183. }
  1184. drv_data = spi_master_get_devdata(master);
  1185. drv_data->master = master;
  1186. drv_data->master_info = platform_info;
  1187. drv_data->pdev = pdev;
  1188. drv_data->ssp = ssp;
  1189. master->bus_num = pdev->id;
  1190. master->num_chipselect = platform_info->num_chipselect;
  1191. master->cleanup = cleanup;
  1192. master->setup = setup;
  1193. master->transfer = transfer;
  1194. drv_data->ssp_type = ssp->type;
  1195. drv_data->null_dma_buf = (u32 *)ALIGN((u32)(drv_data +
  1196. sizeof(struct driver_data)), 8);
  1197. drv_data->ioaddr = ssp->mmio_base;
  1198. drv_data->ssdr_physical = ssp->phys_base + SSDR;
  1199. if (ssp->type == PXA25x_SSP) {
  1200. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
  1201. drv_data->dma_cr1 = 0;
  1202. drv_data->clear_sr = SSSR_ROR;
  1203. drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1204. } else {
  1205. drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
  1206. drv_data->dma_cr1 = SSCR1_TSRE | SSCR1_RSRE | SSCR1_TINTE;
  1207. drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
  1208. drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
  1209. }
  1210. status = request_irq(ssp->irq, ssp_int, 0, dev->bus_id, drv_data);
  1211. if (status < 0) {
  1212. dev_err(&pdev->dev, "can not get IRQ\n");
  1213. goto out_error_master_alloc;
  1214. }
  1215. /* Setup DMA if requested */
  1216. drv_data->tx_channel = -1;
  1217. drv_data->rx_channel = -1;
  1218. if (platform_info->enable_dma) {
  1219. /* Get two DMA channels (rx and tx) */
  1220. drv_data->rx_channel = pxa_request_dma("pxa2xx_spi_ssp_rx",
  1221. DMA_PRIO_HIGH,
  1222. dma_handler,
  1223. drv_data);
  1224. if (drv_data->rx_channel < 0) {
  1225. dev_err(dev, "problem (%d) requesting rx channel\n",
  1226. drv_data->rx_channel);
  1227. status = -ENODEV;
  1228. goto out_error_irq_alloc;
  1229. }
  1230. drv_data->tx_channel = pxa_request_dma("pxa2xx_spi_ssp_tx",
  1231. DMA_PRIO_MEDIUM,
  1232. dma_handler,
  1233. drv_data);
  1234. if (drv_data->tx_channel < 0) {
  1235. dev_err(dev, "problem (%d) requesting tx channel\n",
  1236. drv_data->tx_channel);
  1237. status = -ENODEV;
  1238. goto out_error_dma_alloc;
  1239. }
  1240. DRCMR(ssp->drcmr_rx) = DRCMR_MAPVLD | drv_data->rx_channel;
  1241. DRCMR(ssp->drcmr_tx) = DRCMR_MAPVLD | drv_data->tx_channel;
  1242. }
  1243. /* Enable SOC clock */
  1244. clk_enable(ssp->clk);
  1245. /* Load default SSP configuration */
  1246. write_SSCR0(0, drv_data->ioaddr);
  1247. write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data->ioaddr);
  1248. write_SSCR0(SSCR0_SerClkDiv(2)
  1249. | SSCR0_Motorola
  1250. | SSCR0_DataSize(8),
  1251. drv_data->ioaddr);
  1252. if (drv_data->ssp_type != PXA25x_SSP)
  1253. write_SSTO(0, drv_data->ioaddr);
  1254. write_SSPSP(0, drv_data->ioaddr);
  1255. /* Initial and start queue */
  1256. status = init_queue(drv_data);
  1257. if (status != 0) {
  1258. dev_err(&pdev->dev, "problem initializing queue\n");
  1259. goto out_error_clock_enabled;
  1260. }
  1261. status = start_queue(drv_data);
  1262. if (status != 0) {
  1263. dev_err(&pdev->dev, "problem starting queue\n");
  1264. goto out_error_clock_enabled;
  1265. }
  1266. /* Register with the SPI framework */
  1267. platform_set_drvdata(pdev, drv_data);
  1268. status = spi_register_master(master);
  1269. if (status != 0) {
  1270. dev_err(&pdev->dev, "problem registering spi master\n");
  1271. goto out_error_queue_alloc;
  1272. }
  1273. return status;
  1274. out_error_queue_alloc:
  1275. destroy_queue(drv_data);
  1276. out_error_clock_enabled:
  1277. clk_disable(ssp->clk);
  1278. out_error_dma_alloc:
  1279. if (drv_data->tx_channel != -1)
  1280. pxa_free_dma(drv_data->tx_channel);
  1281. if (drv_data->rx_channel != -1)
  1282. pxa_free_dma(drv_data->rx_channel);
  1283. out_error_irq_alloc:
  1284. free_irq(ssp->irq, drv_data);
  1285. out_error_master_alloc:
  1286. spi_master_put(master);
  1287. ssp_free(ssp);
  1288. return status;
  1289. }
  1290. static int pxa2xx_spi_remove(struct platform_device *pdev)
  1291. {
  1292. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1293. struct ssp_device *ssp = drv_data->ssp;
  1294. int status = 0;
  1295. if (!drv_data)
  1296. return 0;
  1297. /* Remove the queue */
  1298. status = destroy_queue(drv_data);
  1299. if (status != 0)
  1300. /* the kernel does not check the return status of this
  1301. * this routine (mod->exit, within the kernel). Therefore
  1302. * nothing is gained by returning from here, the module is
  1303. * going away regardless, and we should not leave any more
  1304. * resources allocated than necessary. We cannot free the
  1305. * message memory in drv_data->queue, but we can release the
  1306. * resources below. I think the kernel should honor -EBUSY
  1307. * returns but... */
  1308. dev_err(&pdev->dev, "pxa2xx_spi_remove: workqueue will not "
  1309. "complete, message memory not freed\n");
  1310. /* Disable the SSP at the peripheral and SOC level */
  1311. write_SSCR0(0, drv_data->ioaddr);
  1312. clk_disable(ssp->clk);
  1313. /* Release DMA */
  1314. if (drv_data->master_info->enable_dma) {
  1315. DRCMR(ssp->drcmr_rx) = 0;
  1316. DRCMR(ssp->drcmr_tx) = 0;
  1317. pxa_free_dma(drv_data->tx_channel);
  1318. pxa_free_dma(drv_data->rx_channel);
  1319. }
  1320. /* Release IRQ */
  1321. free_irq(ssp->irq, drv_data);
  1322. /* Release SSP */
  1323. ssp_free(ssp);
  1324. /* Disconnect from the SPI framework */
  1325. spi_unregister_master(drv_data->master);
  1326. /* Prevent double remove */
  1327. platform_set_drvdata(pdev, NULL);
  1328. return 0;
  1329. }
  1330. static void pxa2xx_spi_shutdown(struct platform_device *pdev)
  1331. {
  1332. int status = 0;
  1333. if ((status = pxa2xx_spi_remove(pdev)) != 0)
  1334. dev_err(&pdev->dev, "shutdown failed with %d\n", status);
  1335. }
  1336. #ifdef CONFIG_PM
  1337. static int pxa2xx_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1338. {
  1339. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1340. struct ssp_device *ssp = drv_data->ssp;
  1341. int status = 0;
  1342. status = stop_queue(drv_data);
  1343. if (status != 0)
  1344. return status;
  1345. write_SSCR0(0, drv_data->ioaddr);
  1346. clk_disable(ssp->clk);
  1347. return 0;
  1348. }
  1349. static int pxa2xx_spi_resume(struct platform_device *pdev)
  1350. {
  1351. struct driver_data *drv_data = platform_get_drvdata(pdev);
  1352. struct ssp_device *ssp = drv_data->ssp;
  1353. int status = 0;
  1354. /* Enable the SSP clock */
  1355. clk_enable(ssp->clk);
  1356. /* Start the queue running */
  1357. status = start_queue(drv_data);
  1358. if (status != 0) {
  1359. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1360. return status;
  1361. }
  1362. return 0;
  1363. }
  1364. #else
  1365. #define pxa2xx_spi_suspend NULL
  1366. #define pxa2xx_spi_resume NULL
  1367. #endif /* CONFIG_PM */
  1368. static struct platform_driver driver = {
  1369. .driver = {
  1370. .name = "pxa2xx-spi",
  1371. .owner = THIS_MODULE,
  1372. },
  1373. .remove = pxa2xx_spi_remove,
  1374. .shutdown = pxa2xx_spi_shutdown,
  1375. .suspend = pxa2xx_spi_suspend,
  1376. .resume = pxa2xx_spi_resume,
  1377. };
  1378. static int __init pxa2xx_spi_init(void)
  1379. {
  1380. return platform_driver_probe(&driver, pxa2xx_spi_probe);
  1381. }
  1382. module_init(pxa2xx_spi_init);
  1383. static void __exit pxa2xx_spi_exit(void)
  1384. {
  1385. platform_driver_unregister(&driver);
  1386. }
  1387. module_exit(pxa2xx_spi_exit);