aic94xx_scb.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. /*
  2. * Aic94xx SAS/SATA driver SCB management.
  3. *
  4. * Copyright (C) 2005 Adaptec, Inc. All rights reserved.
  5. * Copyright (C) 2005 Luben Tuikov <luben_tuikov@adaptec.com>
  6. *
  7. * This file is licensed under GPLv2.
  8. *
  9. * This file is part of the aic94xx driver.
  10. *
  11. * The aic94xx driver is free software; you can redistribute it and/or
  12. * modify it under the terms of the GNU General Public License as
  13. * published by the Free Software Foundation; version 2 of the
  14. * License.
  15. *
  16. * The aic94xx driver is distributed in the hope that it will be useful,
  17. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  19. * General Public License for more details.
  20. *
  21. * You should have received a copy of the GNU General Public License
  22. * along with the aic94xx driver; if not, write to the Free Software
  23. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  24. *
  25. */
  26. #include <scsi/scsi_host.h>
  27. #include "aic94xx.h"
  28. #include "aic94xx_reg.h"
  29. #include "aic94xx_hwi.h"
  30. #include "aic94xx_seq.h"
  31. #include "aic94xx_dump.h"
  32. /* ---------- EMPTY SCB ---------- */
  33. #define DL_PHY_MASK 7
  34. #define BYTES_DMAED 0
  35. #define PRIMITIVE_RECVD 0x08
  36. #define PHY_EVENT 0x10
  37. #define LINK_RESET_ERROR 0x18
  38. #define TIMER_EVENT 0x20
  39. #define REQ_TASK_ABORT 0xF0
  40. #define REQ_DEVICE_RESET 0xF1
  41. #define SIGNAL_NCQ_ERROR 0xF2
  42. #define CLEAR_NCQ_ERROR 0xF3
  43. #define PHY_EVENTS_STATUS (CURRENT_LOSS_OF_SIGNAL | CURRENT_OOB_DONE \
  44. | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
  45. | CURRENT_OOB_ERROR)
  46. static void get_lrate_mode(struct asd_phy *phy, u8 oob_mode)
  47. {
  48. struct sas_phy *sas_phy = phy->sas_phy.phy;
  49. switch (oob_mode & 7) {
  50. case PHY_SPEED_60:
  51. /* FIXME: sas transport class doesn't have this */
  52. phy->sas_phy.linkrate = SAS_LINK_RATE_6_0_GBPS;
  53. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_6_0_GBPS;
  54. break;
  55. case PHY_SPEED_30:
  56. phy->sas_phy.linkrate = SAS_LINK_RATE_3_0_GBPS;
  57. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_3_0_GBPS;
  58. break;
  59. case PHY_SPEED_15:
  60. phy->sas_phy.linkrate = SAS_LINK_RATE_1_5_GBPS;
  61. phy->sas_phy.phy->negotiated_linkrate = SAS_LINK_RATE_1_5_GBPS;
  62. break;
  63. }
  64. sas_phy->negotiated_linkrate = phy->sas_phy.linkrate;
  65. sas_phy->maximum_linkrate_hw = SAS_LINK_RATE_3_0_GBPS;
  66. sas_phy->minimum_linkrate_hw = SAS_LINK_RATE_1_5_GBPS;
  67. sas_phy->maximum_linkrate = phy->phy_desc->max_sas_lrate;
  68. sas_phy->minimum_linkrate = phy->phy_desc->min_sas_lrate;
  69. if (oob_mode & SAS_MODE)
  70. phy->sas_phy.oob_mode = SAS_OOB_MODE;
  71. else if (oob_mode & SATA_MODE)
  72. phy->sas_phy.oob_mode = SATA_OOB_MODE;
  73. }
  74. static void asd_phy_event_tasklet(struct asd_ascb *ascb,
  75. struct done_list_struct *dl)
  76. {
  77. struct asd_ha_struct *asd_ha = ascb->ha;
  78. struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
  79. int phy_id = dl->status_block[0] & DL_PHY_MASK;
  80. struct asd_phy *phy = &asd_ha->phys[phy_id];
  81. u8 oob_status = dl->status_block[1] & PHY_EVENTS_STATUS;
  82. u8 oob_mode = dl->status_block[2];
  83. switch (oob_status) {
  84. case CURRENT_LOSS_OF_SIGNAL:
  85. /* directly attached device was removed */
  86. ASD_DPRINTK("phy%d: device unplugged\n", phy_id);
  87. asd_turn_led(asd_ha, phy_id, 0);
  88. sas_phy_disconnected(&phy->sas_phy);
  89. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_LOSS_OF_SIGNAL);
  90. break;
  91. case CURRENT_OOB_DONE:
  92. /* hot plugged device */
  93. asd_turn_led(asd_ha, phy_id, 1);
  94. get_lrate_mode(phy, oob_mode);
  95. ASD_DPRINTK("phy%d device plugged: lrate:0x%x, proto:0x%x\n",
  96. phy_id, phy->sas_phy.linkrate, phy->sas_phy.iproto);
  97. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_DONE);
  98. break;
  99. case CURRENT_SPINUP_HOLD:
  100. /* hot plug SATA, no COMWAKE sent */
  101. asd_turn_led(asd_ha, phy_id, 1);
  102. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_SPINUP_HOLD);
  103. break;
  104. case CURRENT_GTO_TIMEOUT:
  105. case CURRENT_OOB_ERROR:
  106. ASD_DPRINTK("phy%d error while OOB: oob status:0x%x\n", phy_id,
  107. dl->status_block[1]);
  108. asd_turn_led(asd_ha, phy_id, 0);
  109. sas_phy_disconnected(&phy->sas_phy);
  110. sas_ha->notify_phy_event(&phy->sas_phy, PHYE_OOB_ERROR);
  111. break;
  112. }
  113. }
  114. /* If phys are enabled sparsely, this will do the right thing. */
  115. static unsigned ord_phy(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
  116. {
  117. u8 enabled_mask = asd_ha->hw_prof.enabled_phys;
  118. int i, k = 0;
  119. for_each_phy(enabled_mask, enabled_mask, i) {
  120. if (&asd_ha->phys[i] == phy)
  121. return k;
  122. k++;
  123. }
  124. return 0;
  125. }
  126. /**
  127. * asd_get_attached_sas_addr -- extract/generate attached SAS address
  128. * phy: pointer to asd_phy
  129. * sas_addr: pointer to buffer where the SAS address is to be written
  130. *
  131. * This function extracts the SAS address from an IDENTIFY frame
  132. * received. If OOB is SATA, then a SAS address is generated from the
  133. * HA tables.
  134. *
  135. * LOCKING: the frame_rcvd_lock needs to be held since this parses the frame
  136. * buffer.
  137. */
  138. static void asd_get_attached_sas_addr(struct asd_phy *phy, u8 *sas_addr)
  139. {
  140. if (phy->sas_phy.frame_rcvd[0] == 0x34
  141. && phy->sas_phy.oob_mode == SATA_OOB_MODE) {
  142. struct asd_ha_struct *asd_ha = phy->sas_phy.ha->lldd_ha;
  143. /* FIS device-to-host */
  144. u64 addr = be64_to_cpu(*(__be64 *)phy->phy_desc->sas_addr);
  145. addr += asd_ha->hw_prof.sata_name_base + ord_phy(asd_ha, phy);
  146. *(__be64 *)sas_addr = cpu_to_be64(addr);
  147. } else {
  148. struct sas_identify_frame *idframe =
  149. (void *) phy->sas_phy.frame_rcvd;
  150. memcpy(sas_addr, idframe->sas_addr, SAS_ADDR_SIZE);
  151. }
  152. }
  153. static void asd_form_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
  154. {
  155. int i;
  156. struct asd_port *free_port = NULL;
  157. struct asd_port *port;
  158. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  159. unsigned long flags;
  160. spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
  161. if (!phy->asd_port) {
  162. for (i = 0; i < ASD_MAX_PHYS; i++) {
  163. port = &asd_ha->asd_ports[i];
  164. /* Check for wide port */
  165. if (port->num_phys > 0 &&
  166. memcmp(port->sas_addr, sas_phy->sas_addr,
  167. SAS_ADDR_SIZE) == 0 &&
  168. memcmp(port->attached_sas_addr,
  169. sas_phy->attached_sas_addr,
  170. SAS_ADDR_SIZE) == 0) {
  171. break;
  172. }
  173. /* Find a free port */
  174. if (port->num_phys == 0 && free_port == NULL) {
  175. free_port = port;
  176. }
  177. }
  178. /* Use a free port if this doesn't form a wide port */
  179. if (i >= ASD_MAX_PHYS) {
  180. port = free_port;
  181. BUG_ON(!port);
  182. memcpy(port->sas_addr, sas_phy->sas_addr,
  183. SAS_ADDR_SIZE);
  184. memcpy(port->attached_sas_addr,
  185. sas_phy->attached_sas_addr,
  186. SAS_ADDR_SIZE);
  187. }
  188. port->num_phys++;
  189. port->phy_mask |= (1U << sas_phy->id);
  190. phy->asd_port = port;
  191. }
  192. ASD_DPRINTK("%s: updating phy_mask 0x%x for phy%d\n",
  193. __func__, phy->asd_port->phy_mask, sas_phy->id);
  194. asd_update_port_links(asd_ha, phy);
  195. spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
  196. }
  197. static void asd_deform_port(struct asd_ha_struct *asd_ha, struct asd_phy *phy)
  198. {
  199. struct asd_port *port = phy->asd_port;
  200. struct asd_sas_phy *sas_phy = &phy->sas_phy;
  201. unsigned long flags;
  202. spin_lock_irqsave(&asd_ha->asd_ports_lock, flags);
  203. if (port) {
  204. port->num_phys--;
  205. port->phy_mask &= ~(1U << sas_phy->id);
  206. phy->asd_port = NULL;
  207. }
  208. spin_unlock_irqrestore(&asd_ha->asd_ports_lock, flags);
  209. }
  210. static void asd_bytes_dmaed_tasklet(struct asd_ascb *ascb,
  211. struct done_list_struct *dl,
  212. int edb_id, int phy_id)
  213. {
  214. unsigned long flags;
  215. int edb_el = edb_id + ascb->edb_index;
  216. struct asd_dma_tok *edb = ascb->ha->seq.edb_arr[edb_el];
  217. struct asd_phy *phy = &ascb->ha->phys[phy_id];
  218. struct sas_ha_struct *sas_ha = phy->sas_phy.ha;
  219. u16 size = ((dl->status_block[3] & 7) << 8) | dl->status_block[2];
  220. size = min(size, (u16) sizeof(phy->frame_rcvd));
  221. spin_lock_irqsave(&phy->sas_phy.frame_rcvd_lock, flags);
  222. memcpy(phy->sas_phy.frame_rcvd, edb->vaddr, size);
  223. phy->sas_phy.frame_rcvd_size = size;
  224. asd_get_attached_sas_addr(phy, phy->sas_phy.attached_sas_addr);
  225. spin_unlock_irqrestore(&phy->sas_phy.frame_rcvd_lock, flags);
  226. asd_dump_frame_rcvd(phy, dl);
  227. asd_form_port(ascb->ha, phy);
  228. sas_ha->notify_port_event(&phy->sas_phy, PORTE_BYTES_DMAED);
  229. }
  230. static void asd_link_reset_err_tasklet(struct asd_ascb *ascb,
  231. struct done_list_struct *dl,
  232. int phy_id)
  233. {
  234. struct asd_ha_struct *asd_ha = ascb->ha;
  235. struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
  236. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  237. struct asd_phy *phy = &asd_ha->phys[phy_id];
  238. u8 lr_error = dl->status_block[1];
  239. u8 retries_left = dl->status_block[2];
  240. switch (lr_error) {
  241. case 0:
  242. ASD_DPRINTK("phy%d: Receive ID timer expired\n", phy_id);
  243. break;
  244. case 1:
  245. ASD_DPRINTK("phy%d: Loss of signal\n", phy_id);
  246. break;
  247. case 2:
  248. ASD_DPRINTK("phy%d: Loss of dword sync\n", phy_id);
  249. break;
  250. case 3:
  251. ASD_DPRINTK("phy%d: Receive FIS timeout\n", phy_id);
  252. break;
  253. default:
  254. ASD_DPRINTK("phy%d: unknown link reset error code: 0x%x\n",
  255. phy_id, lr_error);
  256. break;
  257. }
  258. asd_turn_led(asd_ha, phy_id, 0);
  259. sas_phy_disconnected(sas_phy);
  260. asd_deform_port(asd_ha, phy);
  261. sas_ha->notify_port_event(sas_phy, PORTE_LINK_RESET_ERR);
  262. if (retries_left == 0) {
  263. int num = 1;
  264. struct asd_ascb *cp = asd_ascb_alloc_list(ascb->ha, &num,
  265. GFP_ATOMIC);
  266. if (!cp) {
  267. asd_printk("%s: out of memory\n", __func__);
  268. goto out;
  269. }
  270. ASD_DPRINTK("phy%d: retries:0 performing link reset seq\n",
  271. phy_id);
  272. asd_build_control_phy(cp, phy_id, ENABLE_PHY);
  273. if (asd_post_ascb_list(ascb->ha, cp, 1) != 0)
  274. asd_ascb_free(cp);
  275. }
  276. out:
  277. ;
  278. }
  279. static void asd_primitive_rcvd_tasklet(struct asd_ascb *ascb,
  280. struct done_list_struct *dl,
  281. int phy_id)
  282. {
  283. unsigned long flags;
  284. struct sas_ha_struct *sas_ha = &ascb->ha->sas_ha;
  285. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  286. struct asd_ha_struct *asd_ha = ascb->ha;
  287. struct asd_phy *phy = &asd_ha->phys[phy_id];
  288. u8 reg = dl->status_block[1];
  289. u32 cont = dl->status_block[2] << ((reg & 3)*8);
  290. reg &= ~3;
  291. switch (reg) {
  292. case LmPRMSTAT0BYTE0:
  293. switch (cont) {
  294. case LmBROADCH:
  295. case LmBROADRVCH0:
  296. case LmBROADRVCH1:
  297. case LmBROADSES:
  298. ASD_DPRINTK("phy%d: BROADCAST change received:%d\n",
  299. phy_id, cont);
  300. spin_lock_irqsave(&sas_phy->sas_prim_lock, flags);
  301. sas_phy->sas_prim = ffs(cont);
  302. spin_unlock_irqrestore(&sas_phy->sas_prim_lock, flags);
  303. sas_ha->notify_port_event(sas_phy,PORTE_BROADCAST_RCVD);
  304. break;
  305. case LmUNKNOWNP:
  306. ASD_DPRINTK("phy%d: unknown BREAK\n", phy_id);
  307. break;
  308. default:
  309. ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
  310. phy_id, reg, cont);
  311. break;
  312. }
  313. break;
  314. case LmPRMSTAT1BYTE0:
  315. switch (cont) {
  316. case LmHARDRST:
  317. ASD_DPRINTK("phy%d: HARD_RESET primitive rcvd\n",
  318. phy_id);
  319. /* The sequencer disables all phys on that port.
  320. * We have to re-enable the phys ourselves. */
  321. asd_deform_port(asd_ha, phy);
  322. sas_ha->notify_port_event(sas_phy, PORTE_HARD_RESET);
  323. break;
  324. default:
  325. ASD_DPRINTK("phy%d: primitive reg:0x%x, cont:0x%04x\n",
  326. phy_id, reg, cont);
  327. break;
  328. }
  329. break;
  330. default:
  331. ASD_DPRINTK("unknown primitive register:0x%x\n",
  332. dl->status_block[1]);
  333. break;
  334. }
  335. }
  336. /**
  337. * asd_invalidate_edb -- invalidate an EDB and if necessary post the ESCB
  338. * @ascb: pointer to Empty SCB
  339. * @edb_id: index [0,6] to the empty data buffer which is to be invalidated
  340. *
  341. * After an EDB has been invalidated, if all EDBs in this ESCB have been
  342. * invalidated, the ESCB is posted back to the sequencer.
  343. * Context is tasklet/IRQ.
  344. */
  345. void asd_invalidate_edb(struct asd_ascb *ascb, int edb_id)
  346. {
  347. struct asd_seq_data *seq = &ascb->ha->seq;
  348. struct empty_scb *escb = &ascb->scb->escb;
  349. struct sg_el *eb = &escb->eb[edb_id];
  350. struct asd_dma_tok *edb = seq->edb_arr[ascb->edb_index + edb_id];
  351. memset(edb->vaddr, 0, ASD_EDB_SIZE);
  352. eb->flags |= ELEMENT_NOT_VALID;
  353. escb->num_valid--;
  354. if (escb->num_valid == 0) {
  355. int i;
  356. /* ASD_DPRINTK("reposting escb: vaddr: 0x%p, "
  357. "dma_handle: 0x%08llx, next: 0x%08llx, "
  358. "index:%d, opcode:0x%02x\n",
  359. ascb->dma_scb.vaddr,
  360. (u64)ascb->dma_scb.dma_handle,
  361. le64_to_cpu(ascb->scb->header.next_scb),
  362. le16_to_cpu(ascb->scb->header.index),
  363. ascb->scb->header.opcode);
  364. */
  365. escb->num_valid = ASD_EDBS_PER_SCB;
  366. for (i = 0; i < ASD_EDBS_PER_SCB; i++)
  367. escb->eb[i].flags = 0;
  368. if (!list_empty(&ascb->list))
  369. list_del_init(&ascb->list);
  370. i = asd_post_escb_list(ascb->ha, ascb, 1);
  371. if (i)
  372. asd_printk("couldn't post escb, err:%d\n", i);
  373. }
  374. }
  375. static void escb_tasklet_complete(struct asd_ascb *ascb,
  376. struct done_list_struct *dl)
  377. {
  378. struct asd_ha_struct *asd_ha = ascb->ha;
  379. struct sas_ha_struct *sas_ha = &asd_ha->sas_ha;
  380. int edb = (dl->opcode & DL_PHY_MASK) - 1; /* [0xc1,0xc7] -> [0,6] */
  381. u8 sb_opcode = dl->status_block[0];
  382. int phy_id = sb_opcode & DL_PHY_MASK;
  383. struct asd_sas_phy *sas_phy = sas_ha->sas_phy[phy_id];
  384. struct asd_phy *phy = &asd_ha->phys[phy_id];
  385. if (edb > 6 || edb < 0) {
  386. ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
  387. edb, dl->opcode);
  388. ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
  389. sb_opcode, phy_id);
  390. ASD_DPRINTK("escb: vaddr: 0x%p, "
  391. "dma_handle: 0x%llx, next: 0x%llx, "
  392. "index:%d, opcode:0x%02x\n",
  393. ascb->dma_scb.vaddr,
  394. (unsigned long long)ascb->dma_scb.dma_handle,
  395. (unsigned long long)
  396. le64_to_cpu(ascb->scb->header.next_scb),
  397. le16_to_cpu(ascb->scb->header.index),
  398. ascb->scb->header.opcode);
  399. }
  400. /* Catch these before we mask off the sb_opcode bits */
  401. switch (sb_opcode) {
  402. case REQ_TASK_ABORT: {
  403. struct asd_ascb *a, *b;
  404. u16 tc_abort;
  405. struct domain_device *failed_dev = NULL;
  406. ASD_DPRINTK("%s: REQ_TASK_ABORT, reason=0x%X\n",
  407. __func__, dl->status_block[3]);
  408. /*
  409. * Find the task that caused the abort and abort it first.
  410. * The sequencer won't put anything on the done list until
  411. * that happens.
  412. */
  413. tc_abort = *((u16*)(&dl->status_block[1]));
  414. tc_abort = le16_to_cpu(tc_abort);
  415. list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
  416. struct sas_task *task = a->uldd_task;
  417. if (a->tc_index != tc_abort)
  418. continue;
  419. if (task) {
  420. failed_dev = task->dev;
  421. sas_task_abort(task);
  422. } else {
  423. ASD_DPRINTK("R_T_A for non TASK scb 0x%x\n",
  424. a->scb->header.opcode);
  425. }
  426. break;
  427. }
  428. if (!failed_dev) {
  429. ASD_DPRINTK("%s: Can't find task (tc=%d) to abort!\n",
  430. __func__, tc_abort);
  431. goto out;
  432. }
  433. /*
  434. * Now abort everything else for that device (hba?) so
  435. * that the EH will wake up and do something.
  436. */
  437. list_for_each_entry_safe(a, b, &asd_ha->seq.pend_q, list) {
  438. struct sas_task *task = a->uldd_task;
  439. if (task &&
  440. task->dev == failed_dev &&
  441. a->tc_index != tc_abort)
  442. sas_task_abort(task);
  443. }
  444. goto out;
  445. }
  446. case REQ_DEVICE_RESET: {
  447. struct asd_ascb *a;
  448. u16 conn_handle;
  449. unsigned long flags;
  450. struct sas_task *last_dev_task = NULL;
  451. conn_handle = *((u16*)(&dl->status_block[1]));
  452. conn_handle = le16_to_cpu(conn_handle);
  453. ASD_DPRINTK("%s: REQ_DEVICE_RESET, reason=0x%X\n", __func__,
  454. dl->status_block[3]);
  455. /* Find the last pending task for the device... */
  456. list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
  457. u16 x;
  458. struct domain_device *dev;
  459. struct sas_task *task = a->uldd_task;
  460. if (!task)
  461. continue;
  462. dev = task->dev;
  463. x = (unsigned long)dev->lldd_dev;
  464. if (x == conn_handle)
  465. last_dev_task = task;
  466. }
  467. if (!last_dev_task) {
  468. ASD_DPRINTK("%s: Device reset for idle device %d?\n",
  469. __func__, conn_handle);
  470. goto out;
  471. }
  472. /* ...and set the reset flag */
  473. spin_lock_irqsave(&last_dev_task->task_state_lock, flags);
  474. last_dev_task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
  475. spin_unlock_irqrestore(&last_dev_task->task_state_lock, flags);
  476. /* Kill all pending tasks for the device */
  477. list_for_each_entry(a, &asd_ha->seq.pend_q, list) {
  478. u16 x;
  479. struct domain_device *dev;
  480. struct sas_task *task = a->uldd_task;
  481. if (!task)
  482. continue;
  483. dev = task->dev;
  484. x = (unsigned long)dev->lldd_dev;
  485. if (x == conn_handle)
  486. sas_task_abort(task);
  487. }
  488. goto out;
  489. }
  490. case SIGNAL_NCQ_ERROR:
  491. ASD_DPRINTK("%s: SIGNAL_NCQ_ERROR\n", __func__);
  492. goto out;
  493. case CLEAR_NCQ_ERROR:
  494. ASD_DPRINTK("%s: CLEAR_NCQ_ERROR\n", __func__);
  495. goto out;
  496. }
  497. sb_opcode &= ~DL_PHY_MASK;
  498. switch (sb_opcode) {
  499. case BYTES_DMAED:
  500. ASD_DPRINTK("%s: phy%d: BYTES_DMAED\n", __func__, phy_id);
  501. asd_bytes_dmaed_tasklet(ascb, dl, edb, phy_id);
  502. break;
  503. case PRIMITIVE_RECVD:
  504. ASD_DPRINTK("%s: phy%d: PRIMITIVE_RECVD\n", __func__,
  505. phy_id);
  506. asd_primitive_rcvd_tasklet(ascb, dl, phy_id);
  507. break;
  508. case PHY_EVENT:
  509. ASD_DPRINTK("%s: phy%d: PHY_EVENT\n", __func__, phy_id);
  510. asd_phy_event_tasklet(ascb, dl);
  511. break;
  512. case LINK_RESET_ERROR:
  513. ASD_DPRINTK("%s: phy%d: LINK_RESET_ERROR\n", __func__,
  514. phy_id);
  515. asd_link_reset_err_tasklet(ascb, dl, phy_id);
  516. break;
  517. case TIMER_EVENT:
  518. ASD_DPRINTK("%s: phy%d: TIMER_EVENT, lost dw sync\n",
  519. __func__, phy_id);
  520. asd_turn_led(asd_ha, phy_id, 0);
  521. /* the device is gone */
  522. sas_phy_disconnected(sas_phy);
  523. asd_deform_port(asd_ha, phy);
  524. sas_ha->notify_port_event(sas_phy, PORTE_TIMER_EVENT);
  525. break;
  526. default:
  527. ASD_DPRINTK("%s: phy%d: unknown event:0x%x\n", __func__,
  528. phy_id, sb_opcode);
  529. ASD_DPRINTK("edb is 0x%x! dl->opcode is 0x%x\n",
  530. edb, dl->opcode);
  531. ASD_DPRINTK("sb_opcode : 0x%x, phy_id: 0x%x\n",
  532. sb_opcode, phy_id);
  533. ASD_DPRINTK("escb: vaddr: 0x%p, "
  534. "dma_handle: 0x%llx, next: 0x%llx, "
  535. "index:%d, opcode:0x%02x\n",
  536. ascb->dma_scb.vaddr,
  537. (unsigned long long)ascb->dma_scb.dma_handle,
  538. (unsigned long long)
  539. le64_to_cpu(ascb->scb->header.next_scb),
  540. le16_to_cpu(ascb->scb->header.index),
  541. ascb->scb->header.opcode);
  542. break;
  543. }
  544. out:
  545. asd_invalidate_edb(ascb, edb);
  546. }
  547. int asd_init_post_escbs(struct asd_ha_struct *asd_ha)
  548. {
  549. struct asd_seq_data *seq = &asd_ha->seq;
  550. int i;
  551. for (i = 0; i < seq->num_escbs; i++)
  552. seq->escb_arr[i]->tasklet_complete = escb_tasklet_complete;
  553. ASD_DPRINTK("posting %d escbs\n", i);
  554. return asd_post_escb_list(asd_ha, seq->escb_arr[0], seq->num_escbs);
  555. }
  556. /* ---------- CONTROL PHY ---------- */
  557. #define CONTROL_PHY_STATUS (CURRENT_DEVICE_PRESENT | CURRENT_OOB_DONE \
  558. | CURRENT_SPINUP_HOLD | CURRENT_GTO_TIMEOUT \
  559. | CURRENT_OOB_ERROR)
  560. /**
  561. * control_phy_tasklet_complete -- tasklet complete for CONTROL PHY ascb
  562. * @ascb: pointer to an ascb
  563. * @dl: pointer to the done list entry
  564. *
  565. * This function completes a CONTROL PHY scb and frees the ascb.
  566. * A note on LEDs:
  567. * - an LED blinks if there is IO though it,
  568. * - if a device is connected to the LED, it is lit,
  569. * - if no device is connected to the LED, is is dimmed (off).
  570. */
  571. static void control_phy_tasklet_complete(struct asd_ascb *ascb,
  572. struct done_list_struct *dl)
  573. {
  574. struct asd_ha_struct *asd_ha = ascb->ha;
  575. struct scb *scb = ascb->scb;
  576. struct control_phy *control_phy = &scb->control_phy;
  577. u8 phy_id = control_phy->phy_id;
  578. struct asd_phy *phy = &ascb->ha->phys[phy_id];
  579. u8 status = dl->status_block[0];
  580. u8 oob_status = dl->status_block[1];
  581. u8 oob_mode = dl->status_block[2];
  582. /* u8 oob_signals= dl->status_block[3]; */
  583. if (status != 0) {
  584. ASD_DPRINTK("%s: phy%d status block opcode:0x%x\n",
  585. __func__, phy_id, status);
  586. goto out;
  587. }
  588. switch (control_phy->sub_func) {
  589. case DISABLE_PHY:
  590. asd_ha->hw_prof.enabled_phys &= ~(1 << phy_id);
  591. asd_turn_led(asd_ha, phy_id, 0);
  592. asd_control_led(asd_ha, phy_id, 0);
  593. ASD_DPRINTK("%s: disable phy%d\n", __func__, phy_id);
  594. break;
  595. case ENABLE_PHY:
  596. asd_control_led(asd_ha, phy_id, 1);
  597. if (oob_status & CURRENT_OOB_DONE) {
  598. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  599. get_lrate_mode(phy, oob_mode);
  600. asd_turn_led(asd_ha, phy_id, 1);
  601. ASD_DPRINTK("%s: phy%d, lrate:0x%x, proto:0x%x\n",
  602. __func__, phy_id,phy->sas_phy.linkrate,
  603. phy->sas_phy.iproto);
  604. } else if (oob_status & CURRENT_SPINUP_HOLD) {
  605. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  606. asd_turn_led(asd_ha, phy_id, 1);
  607. ASD_DPRINTK("%s: phy%d, spinup hold\n", __func__,
  608. phy_id);
  609. } else if (oob_status & CURRENT_ERR_MASK) {
  610. asd_turn_led(asd_ha, phy_id, 0);
  611. ASD_DPRINTK("%s: phy%d: error: oob status:0x%02x\n",
  612. __func__, phy_id, oob_status);
  613. } else if (oob_status & (CURRENT_HOT_PLUG_CNCT
  614. | CURRENT_DEVICE_PRESENT)) {
  615. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  616. asd_turn_led(asd_ha, phy_id, 1);
  617. ASD_DPRINTK("%s: phy%d: hot plug or device present\n",
  618. __func__, phy_id);
  619. } else {
  620. asd_ha->hw_prof.enabled_phys |= (1 << phy_id);
  621. asd_turn_led(asd_ha, phy_id, 0);
  622. ASD_DPRINTK("%s: phy%d: no device present: "
  623. "oob_status:0x%x\n",
  624. __func__, phy_id, oob_status);
  625. }
  626. break;
  627. case RELEASE_SPINUP_HOLD:
  628. case PHY_NO_OP:
  629. case EXECUTE_HARD_RESET:
  630. ASD_DPRINTK("%s: phy%d: sub_func:0x%x\n", __func__,
  631. phy_id, control_phy->sub_func);
  632. /* XXX finish */
  633. break;
  634. default:
  635. ASD_DPRINTK("%s: phy%d: sub_func:0x%x?\n", __func__,
  636. phy_id, control_phy->sub_func);
  637. break;
  638. }
  639. out:
  640. asd_ascb_free(ascb);
  641. }
  642. static void set_speed_mask(u8 *speed_mask, struct asd_phy_desc *pd)
  643. {
  644. /* disable all speeds, then enable defaults */
  645. *speed_mask = SAS_SPEED_60_DIS | SAS_SPEED_30_DIS | SAS_SPEED_15_DIS
  646. | SATA_SPEED_30_DIS | SATA_SPEED_15_DIS;
  647. switch (pd->max_sas_lrate) {
  648. case SAS_LINK_RATE_6_0_GBPS:
  649. *speed_mask &= ~SAS_SPEED_60_DIS;
  650. default:
  651. case SAS_LINK_RATE_3_0_GBPS:
  652. *speed_mask &= ~SAS_SPEED_30_DIS;
  653. case SAS_LINK_RATE_1_5_GBPS:
  654. *speed_mask &= ~SAS_SPEED_15_DIS;
  655. }
  656. switch (pd->min_sas_lrate) {
  657. case SAS_LINK_RATE_6_0_GBPS:
  658. *speed_mask |= SAS_SPEED_30_DIS;
  659. case SAS_LINK_RATE_3_0_GBPS:
  660. *speed_mask |= SAS_SPEED_15_DIS;
  661. default:
  662. case SAS_LINK_RATE_1_5_GBPS:
  663. /* nothing to do */
  664. ;
  665. }
  666. switch (pd->max_sata_lrate) {
  667. case SAS_LINK_RATE_3_0_GBPS:
  668. *speed_mask &= ~SATA_SPEED_30_DIS;
  669. default:
  670. case SAS_LINK_RATE_1_5_GBPS:
  671. *speed_mask &= ~SATA_SPEED_15_DIS;
  672. }
  673. switch (pd->min_sata_lrate) {
  674. case SAS_LINK_RATE_3_0_GBPS:
  675. *speed_mask |= SATA_SPEED_15_DIS;
  676. default:
  677. case SAS_LINK_RATE_1_5_GBPS:
  678. /* nothing to do */
  679. ;
  680. }
  681. }
  682. /**
  683. * asd_build_control_phy -- build a CONTROL PHY SCB
  684. * @ascb: pointer to an ascb
  685. * @phy_id: phy id to control, integer
  686. * @subfunc: subfunction, what to actually to do the phy
  687. *
  688. * This function builds a CONTROL PHY scb. No allocation of any kind
  689. * is performed. @ascb is allocated with the list function.
  690. * The caller can override the ascb->tasklet_complete to point
  691. * to its own callback function. It must call asd_ascb_free()
  692. * at its tasklet complete function.
  693. * See the default implementation.
  694. */
  695. void asd_build_control_phy(struct asd_ascb *ascb, int phy_id, u8 subfunc)
  696. {
  697. struct asd_phy *phy = &ascb->ha->phys[phy_id];
  698. struct scb *scb = ascb->scb;
  699. struct control_phy *control_phy = &scb->control_phy;
  700. scb->header.opcode = CONTROL_PHY;
  701. control_phy->phy_id = (u8) phy_id;
  702. control_phy->sub_func = subfunc;
  703. switch (subfunc) {
  704. case EXECUTE_HARD_RESET: /* 0x81 */
  705. case ENABLE_PHY: /* 0x01 */
  706. /* decide hot plug delay */
  707. control_phy->hot_plug_delay = HOTPLUG_DELAY_TIMEOUT;
  708. /* decide speed mask */
  709. set_speed_mask(&control_phy->speed_mask, phy->phy_desc);
  710. /* initiator port settings are in the hi nibble */
  711. if (phy->sas_phy.role == PHY_ROLE_INITIATOR)
  712. control_phy->port_type = SAS_PROTOCOL_ALL << 4;
  713. else if (phy->sas_phy.role == PHY_ROLE_TARGET)
  714. control_phy->port_type = SAS_PROTOCOL_ALL;
  715. else
  716. control_phy->port_type =
  717. (SAS_PROTOCOL_ALL << 4) | SAS_PROTOCOL_ALL;
  718. /* link reset retries, this should be nominal */
  719. control_phy->link_reset_retries = 10;
  720. case RELEASE_SPINUP_HOLD: /* 0x02 */
  721. /* decide the func_mask */
  722. control_phy->func_mask = FUNCTION_MASK_DEFAULT;
  723. if (phy->phy_desc->flags & ASD_SATA_SPINUP_HOLD)
  724. control_phy->func_mask &= ~SPINUP_HOLD_DIS;
  725. else
  726. control_phy->func_mask |= SPINUP_HOLD_DIS;
  727. }
  728. control_phy->conn_handle = cpu_to_le16(0xFFFF);
  729. ascb->tasklet_complete = control_phy_tasklet_complete;
  730. }
  731. /* ---------- INITIATE LINK ADM TASK ---------- */
  732. #if 0
  733. static void link_adm_tasklet_complete(struct asd_ascb *ascb,
  734. struct done_list_struct *dl)
  735. {
  736. u8 opcode = dl->opcode;
  737. struct initiate_link_adm *link_adm = &ascb->scb->link_adm;
  738. u8 phy_id = link_adm->phy_id;
  739. if (opcode != TC_NO_ERROR) {
  740. asd_printk("phy%d: link adm task 0x%x completed with error "
  741. "0x%x\n", phy_id, link_adm->sub_func, opcode);
  742. }
  743. ASD_DPRINTK("phy%d: link adm task 0x%x: 0x%x\n",
  744. phy_id, link_adm->sub_func, opcode);
  745. asd_ascb_free(ascb);
  746. }
  747. void asd_build_initiate_link_adm_task(struct asd_ascb *ascb, int phy_id,
  748. u8 subfunc)
  749. {
  750. struct scb *scb = ascb->scb;
  751. struct initiate_link_adm *link_adm = &scb->link_adm;
  752. scb->header.opcode = INITIATE_LINK_ADM_TASK;
  753. link_adm->phy_id = phy_id;
  754. link_adm->sub_func = subfunc;
  755. link_adm->conn_handle = cpu_to_le16(0xFFFF);
  756. ascb->tasklet_complete = link_adm_tasklet_complete;
  757. }
  758. #endif /* 0 */
  759. /* ---------- SCB timer ---------- */
  760. /**
  761. * asd_ascb_timedout -- called when a pending SCB's timer has expired
  762. * @data: unsigned long, a pointer to the ascb in question
  763. *
  764. * This is the default timeout function which does the most necessary.
  765. * Upper layers can implement their own timeout function, say to free
  766. * resources they have with this SCB, and then call this one at the
  767. * end of their timeout function. To do this, one should initialize
  768. * the ascb->timer.{function, data, expires} prior to calling the post
  769. * funcion. The timer is started by the post function.
  770. */
  771. void asd_ascb_timedout(unsigned long data)
  772. {
  773. struct asd_ascb *ascb = (void *) data;
  774. struct asd_seq_data *seq = &ascb->ha->seq;
  775. unsigned long flags;
  776. ASD_DPRINTK("scb:0x%x timed out\n", ascb->scb->header.opcode);
  777. spin_lock_irqsave(&seq->pend_q_lock, flags);
  778. seq->pending--;
  779. list_del_init(&ascb->list);
  780. spin_unlock_irqrestore(&seq->pend_q_lock, flags);
  781. asd_ascb_free(ascb);
  782. }
  783. /* ---------- CONTROL PHY ---------- */
  784. /* Given the spec value, return a driver value. */
  785. static const int phy_func_table[] = {
  786. [PHY_FUNC_NOP] = PHY_NO_OP,
  787. [PHY_FUNC_LINK_RESET] = ENABLE_PHY,
  788. [PHY_FUNC_HARD_RESET] = EXECUTE_HARD_RESET,
  789. [PHY_FUNC_DISABLE] = DISABLE_PHY,
  790. [PHY_FUNC_RELEASE_SPINUP_HOLD] = RELEASE_SPINUP_HOLD,
  791. };
  792. int asd_control_phy(struct asd_sas_phy *phy, enum phy_func func, void *arg)
  793. {
  794. struct asd_ha_struct *asd_ha = phy->ha->lldd_ha;
  795. struct asd_phy_desc *pd = asd_ha->phys[phy->id].phy_desc;
  796. struct asd_ascb *ascb;
  797. struct sas_phy_linkrates *rates;
  798. int res = 1;
  799. switch (func) {
  800. case PHY_FUNC_CLEAR_ERROR_LOG:
  801. return -ENOSYS;
  802. case PHY_FUNC_SET_LINK_RATE:
  803. rates = arg;
  804. if (rates->minimum_linkrate) {
  805. pd->min_sas_lrate = rates->minimum_linkrate;
  806. pd->min_sata_lrate = rates->minimum_linkrate;
  807. }
  808. if (rates->maximum_linkrate) {
  809. pd->max_sas_lrate = rates->maximum_linkrate;
  810. pd->max_sata_lrate = rates->maximum_linkrate;
  811. }
  812. func = PHY_FUNC_LINK_RESET;
  813. break;
  814. default:
  815. break;
  816. }
  817. ascb = asd_ascb_alloc_list(asd_ha, &res, GFP_KERNEL);
  818. if (!ascb)
  819. return -ENOMEM;
  820. asd_build_control_phy(ascb, phy->id, phy_func_table[func]);
  821. res = asd_post_ascb_list(asd_ha, ascb , 1);
  822. if (res)
  823. asd_ascb_free(ascb);
  824. return res;
  825. }