qlge_main.c 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956
  1. /*
  2. * QLogic qlge NIC HBA Driver
  3. * Copyright (c) 2003-2008 QLogic Corporation
  4. * See LICENSE.qlge for copyright and licensing details.
  5. * Author: Linux qlge network device driver by
  6. * Ron Mercer <ron.mercer@qlogic.com>
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/init.h>
  10. #include <linux/types.h>
  11. #include <linux/module.h>
  12. #include <linux/list.h>
  13. #include <linux/pci.h>
  14. #include <linux/dma-mapping.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/sched.h>
  17. #include <linux/slab.h>
  18. #include <linux/dmapool.h>
  19. #include <linux/mempool.h>
  20. #include <linux/spinlock.h>
  21. #include <linux/kthread.h>
  22. #include <linux/interrupt.h>
  23. #include <linux/errno.h>
  24. #include <linux/ioport.h>
  25. #include <linux/in.h>
  26. #include <linux/ip.h>
  27. #include <linux/ipv6.h>
  28. #include <net/ipv6.h>
  29. #include <linux/tcp.h>
  30. #include <linux/udp.h>
  31. #include <linux/if_arp.h>
  32. #include <linux/if_ether.h>
  33. #include <linux/netdevice.h>
  34. #include <linux/etherdevice.h>
  35. #include <linux/ethtool.h>
  36. #include <linux/skbuff.h>
  37. #include <linux/rtnetlink.h>
  38. #include <linux/if_vlan.h>
  39. #include <linux/init.h>
  40. #include <linux/delay.h>
  41. #include <linux/mm.h>
  42. #include <linux/vmalloc.h>
  43. #include "qlge.h"
  44. char qlge_driver_name[] = DRV_NAME;
  45. const char qlge_driver_version[] = DRV_VERSION;
  46. MODULE_AUTHOR("Ron Mercer <ron.mercer@qlogic.com>");
  47. MODULE_DESCRIPTION(DRV_STRING " ");
  48. MODULE_LICENSE("GPL");
  49. MODULE_VERSION(DRV_VERSION);
  50. static const u32 default_msg =
  51. NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK |
  52. /* NETIF_MSG_TIMER | */
  53. NETIF_MSG_IFDOWN |
  54. NETIF_MSG_IFUP |
  55. NETIF_MSG_RX_ERR |
  56. NETIF_MSG_TX_ERR |
  57. NETIF_MSG_TX_QUEUED |
  58. NETIF_MSG_INTR | NETIF_MSG_TX_DONE | NETIF_MSG_RX_STATUS |
  59. /* NETIF_MSG_PKTDATA | */
  60. NETIF_MSG_HW | NETIF_MSG_WOL | 0;
  61. static int debug = 0x00007fff; /* defaults above */
  62. module_param(debug, int, 0);
  63. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  64. #define MSIX_IRQ 0
  65. #define MSI_IRQ 1
  66. #define LEG_IRQ 2
  67. static int irq_type = MSIX_IRQ;
  68. module_param(irq_type, int, MSIX_IRQ);
  69. MODULE_PARM_DESC(irq_type, "0 = MSI-X, 1 = MSI, 2 = Legacy.");
  70. static struct pci_device_id qlge_pci_tbl[] __devinitdata = {
  71. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID)},
  72. {PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QLGE_DEVICE_ID1)},
  73. /* required last entry */
  74. {0,}
  75. };
  76. MODULE_DEVICE_TABLE(pci, qlge_pci_tbl);
  77. /* This hardware semaphore causes exclusive access to
  78. * resources shared between the NIC driver, MPI firmware,
  79. * FCOE firmware and the FC driver.
  80. */
  81. static int ql_sem_trylock(struct ql_adapter *qdev, u32 sem_mask)
  82. {
  83. u32 sem_bits = 0;
  84. switch (sem_mask) {
  85. case SEM_XGMAC0_MASK:
  86. sem_bits = SEM_SET << SEM_XGMAC0_SHIFT;
  87. break;
  88. case SEM_XGMAC1_MASK:
  89. sem_bits = SEM_SET << SEM_XGMAC1_SHIFT;
  90. break;
  91. case SEM_ICB_MASK:
  92. sem_bits = SEM_SET << SEM_ICB_SHIFT;
  93. break;
  94. case SEM_MAC_ADDR_MASK:
  95. sem_bits = SEM_SET << SEM_MAC_ADDR_SHIFT;
  96. break;
  97. case SEM_FLASH_MASK:
  98. sem_bits = SEM_SET << SEM_FLASH_SHIFT;
  99. break;
  100. case SEM_PROBE_MASK:
  101. sem_bits = SEM_SET << SEM_PROBE_SHIFT;
  102. break;
  103. case SEM_RT_IDX_MASK:
  104. sem_bits = SEM_SET << SEM_RT_IDX_SHIFT;
  105. break;
  106. case SEM_PROC_REG_MASK:
  107. sem_bits = SEM_SET << SEM_PROC_REG_SHIFT;
  108. break;
  109. default:
  110. QPRINTK(qdev, PROBE, ALERT, "Bad Semaphore mask!.\n");
  111. return -EINVAL;
  112. }
  113. ql_write32(qdev, SEM, sem_bits | sem_mask);
  114. return !(ql_read32(qdev, SEM) & sem_bits);
  115. }
  116. int ql_sem_spinlock(struct ql_adapter *qdev, u32 sem_mask)
  117. {
  118. unsigned int seconds = 3;
  119. do {
  120. if (!ql_sem_trylock(qdev, sem_mask))
  121. return 0;
  122. ssleep(1);
  123. } while (--seconds);
  124. return -ETIMEDOUT;
  125. }
  126. void ql_sem_unlock(struct ql_adapter *qdev, u32 sem_mask)
  127. {
  128. ql_write32(qdev, SEM, sem_mask);
  129. ql_read32(qdev, SEM); /* flush */
  130. }
  131. /* This function waits for a specific bit to come ready
  132. * in a given register. It is used mostly by the initialize
  133. * process, but is also used in kernel thread API such as
  134. * netdev->set_multi, netdev->set_mac_address, netdev->vlan_rx_add_vid.
  135. */
  136. int ql_wait_reg_rdy(struct ql_adapter *qdev, u32 reg, u32 bit, u32 err_bit)
  137. {
  138. u32 temp;
  139. int count = UDELAY_COUNT;
  140. while (count) {
  141. temp = ql_read32(qdev, reg);
  142. /* check for errors */
  143. if (temp & err_bit) {
  144. QPRINTK(qdev, PROBE, ALERT,
  145. "register 0x%.08x access error, value = 0x%.08x!.\n",
  146. reg, temp);
  147. return -EIO;
  148. } else if (temp & bit)
  149. return 0;
  150. udelay(UDELAY_DELAY);
  151. count--;
  152. }
  153. QPRINTK(qdev, PROBE, ALERT,
  154. "Timed out waiting for reg %x to come ready.\n", reg);
  155. return -ETIMEDOUT;
  156. }
  157. /* The CFG register is used to download TX and RX control blocks
  158. * to the chip. This function waits for an operation to complete.
  159. */
  160. static int ql_wait_cfg(struct ql_adapter *qdev, u32 bit)
  161. {
  162. int count = UDELAY_COUNT;
  163. u32 temp;
  164. while (count) {
  165. temp = ql_read32(qdev, CFG);
  166. if (temp & CFG_LE)
  167. return -EIO;
  168. if (!(temp & bit))
  169. return 0;
  170. udelay(UDELAY_DELAY);
  171. count--;
  172. }
  173. return -ETIMEDOUT;
  174. }
  175. /* Used to issue init control blocks to hw. Maps control block,
  176. * sets address, triggers download, waits for completion.
  177. */
  178. int ql_write_cfg(struct ql_adapter *qdev, void *ptr, int size, u32 bit,
  179. u16 q_id)
  180. {
  181. u64 map;
  182. int status = 0;
  183. int direction;
  184. u32 mask;
  185. u32 value;
  186. direction =
  187. (bit & (CFG_LRQ | CFG_LR | CFG_LCQ)) ? PCI_DMA_TODEVICE :
  188. PCI_DMA_FROMDEVICE;
  189. map = pci_map_single(qdev->pdev, ptr, size, direction);
  190. if (pci_dma_mapping_error(qdev->pdev, map)) {
  191. QPRINTK(qdev, IFUP, ERR, "Couldn't map DMA area.\n");
  192. return -ENOMEM;
  193. }
  194. status = ql_wait_cfg(qdev, bit);
  195. if (status) {
  196. QPRINTK(qdev, IFUP, ERR,
  197. "Timed out waiting for CFG to come ready.\n");
  198. goto exit;
  199. }
  200. status = ql_sem_spinlock(qdev, SEM_ICB_MASK);
  201. if (status)
  202. goto exit;
  203. ql_write32(qdev, ICB_L, (u32) map);
  204. ql_write32(qdev, ICB_H, (u32) (map >> 32));
  205. ql_sem_unlock(qdev, SEM_ICB_MASK); /* does flush too */
  206. mask = CFG_Q_MASK | (bit << 16);
  207. value = bit | (q_id << CFG_Q_SHIFT);
  208. ql_write32(qdev, CFG, (mask | value));
  209. /*
  210. * Wait for the bit to clear after signaling hw.
  211. */
  212. status = ql_wait_cfg(qdev, bit);
  213. exit:
  214. pci_unmap_single(qdev->pdev, map, size, direction);
  215. return status;
  216. }
  217. /* Get a specific MAC address from the CAM. Used for debug and reg dump. */
  218. int ql_get_mac_addr_reg(struct ql_adapter *qdev, u32 type, u16 index,
  219. u32 *value)
  220. {
  221. u32 offset = 0;
  222. int status;
  223. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  224. if (status)
  225. return status;
  226. switch (type) {
  227. case MAC_ADDR_TYPE_MULTI_MAC:
  228. case MAC_ADDR_TYPE_CAM_MAC:
  229. {
  230. status =
  231. ql_wait_reg_rdy(qdev,
  232. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  233. if (status)
  234. goto exit;
  235. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  236. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  237. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  238. status =
  239. ql_wait_reg_rdy(qdev,
  240. MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
  241. if (status)
  242. goto exit;
  243. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  244. status =
  245. ql_wait_reg_rdy(qdev,
  246. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  247. if (status)
  248. goto exit;
  249. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  250. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  251. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  252. status =
  253. ql_wait_reg_rdy(qdev,
  254. MAC_ADDR_IDX, MAC_ADDR_MR, MAC_ADDR_E);
  255. if (status)
  256. goto exit;
  257. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  258. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  259. status =
  260. ql_wait_reg_rdy(qdev,
  261. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  262. if (status)
  263. goto exit;
  264. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  265. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  266. MAC_ADDR_ADR | MAC_ADDR_RS | type); /* type */
  267. status =
  268. ql_wait_reg_rdy(qdev, MAC_ADDR_IDX,
  269. MAC_ADDR_MR, MAC_ADDR_E);
  270. if (status)
  271. goto exit;
  272. *value++ = ql_read32(qdev, MAC_ADDR_DATA);
  273. }
  274. break;
  275. }
  276. case MAC_ADDR_TYPE_VLAN:
  277. case MAC_ADDR_TYPE_MULTI_FLTR:
  278. default:
  279. QPRINTK(qdev, IFUP, CRIT,
  280. "Address type %d not yet supported.\n", type);
  281. status = -EPERM;
  282. }
  283. exit:
  284. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  285. return status;
  286. }
  287. /* Set up a MAC, multicast or VLAN address for the
  288. * inbound frame matching.
  289. */
  290. static int ql_set_mac_addr_reg(struct ql_adapter *qdev, u8 *addr, u32 type,
  291. u16 index)
  292. {
  293. u32 offset = 0;
  294. int status = 0;
  295. status = ql_sem_spinlock(qdev, SEM_MAC_ADDR_MASK);
  296. if (status)
  297. return status;
  298. switch (type) {
  299. case MAC_ADDR_TYPE_MULTI_MAC:
  300. case MAC_ADDR_TYPE_CAM_MAC:
  301. {
  302. u32 cam_output;
  303. u32 upper = (addr[0] << 8) | addr[1];
  304. u32 lower =
  305. (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) |
  306. (addr[5]);
  307. QPRINTK(qdev, IFUP, INFO,
  308. "Adding %s address %02x:%02x:%02x:%02x:%02x:%02x"
  309. " at index %d in the CAM.\n",
  310. ((type ==
  311. MAC_ADDR_TYPE_MULTI_MAC) ? "MULTICAST" :
  312. "UNICAST"), addr[0], addr[1], addr[2], addr[3],
  313. addr[4], addr[5], index);
  314. status =
  315. ql_wait_reg_rdy(qdev,
  316. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  317. if (status)
  318. goto exit;
  319. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  320. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  321. type); /* type */
  322. ql_write32(qdev, MAC_ADDR_DATA, lower);
  323. status =
  324. ql_wait_reg_rdy(qdev,
  325. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  326. if (status)
  327. goto exit;
  328. ql_write32(qdev, MAC_ADDR_IDX, (offset++) | /* offset */
  329. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  330. type); /* type */
  331. ql_write32(qdev, MAC_ADDR_DATA, upper);
  332. status =
  333. ql_wait_reg_rdy(qdev,
  334. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  335. if (status)
  336. goto exit;
  337. ql_write32(qdev, MAC_ADDR_IDX, (offset) | /* offset */
  338. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  339. type); /* type */
  340. /* This field should also include the queue id
  341. and possibly the function id. Right now we hardcode
  342. the route field to NIC core.
  343. */
  344. if (type == MAC_ADDR_TYPE_CAM_MAC) {
  345. cam_output = (CAM_OUT_ROUTE_NIC |
  346. (qdev->
  347. func << CAM_OUT_FUNC_SHIFT) |
  348. (qdev->
  349. rss_ring_first_cq_id <<
  350. CAM_OUT_CQ_ID_SHIFT));
  351. if (qdev->vlgrp)
  352. cam_output |= CAM_OUT_RV;
  353. /* route to NIC core */
  354. ql_write32(qdev, MAC_ADDR_DATA, cam_output);
  355. }
  356. break;
  357. }
  358. case MAC_ADDR_TYPE_VLAN:
  359. {
  360. u32 enable_bit = *((u32 *) &addr[0]);
  361. /* For VLAN, the addr actually holds a bit that
  362. * either enables or disables the vlan id we are
  363. * addressing. It's either MAC_ADDR_E on or off.
  364. * That's bit-27 we're talking about.
  365. */
  366. QPRINTK(qdev, IFUP, INFO, "%s VLAN ID %d %s the CAM.\n",
  367. (enable_bit ? "Adding" : "Removing"),
  368. index, (enable_bit ? "to" : "from"));
  369. status =
  370. ql_wait_reg_rdy(qdev,
  371. MAC_ADDR_IDX, MAC_ADDR_MW, MAC_ADDR_E);
  372. if (status)
  373. goto exit;
  374. ql_write32(qdev, MAC_ADDR_IDX, offset | /* offset */
  375. (index << MAC_ADDR_IDX_SHIFT) | /* index */
  376. type | /* type */
  377. enable_bit); /* enable/disable */
  378. break;
  379. }
  380. case MAC_ADDR_TYPE_MULTI_FLTR:
  381. default:
  382. QPRINTK(qdev, IFUP, CRIT,
  383. "Address type %d not yet supported.\n", type);
  384. status = -EPERM;
  385. }
  386. exit:
  387. ql_sem_unlock(qdev, SEM_MAC_ADDR_MASK);
  388. return status;
  389. }
  390. /* Get a specific frame routing value from the CAM.
  391. * Used for debug and reg dump.
  392. */
  393. int ql_get_routing_reg(struct ql_adapter *qdev, u32 index, u32 *value)
  394. {
  395. int status = 0;
  396. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  397. if (status)
  398. goto exit;
  399. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, RT_IDX_E);
  400. if (status)
  401. goto exit;
  402. ql_write32(qdev, RT_IDX,
  403. RT_IDX_TYPE_NICQ | RT_IDX_RS | (index << RT_IDX_IDX_SHIFT));
  404. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MR, RT_IDX_E);
  405. if (status)
  406. goto exit;
  407. *value = ql_read32(qdev, RT_DATA);
  408. exit:
  409. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  410. return status;
  411. }
  412. /* The NIC function for this chip has 16 routing indexes. Each one can be used
  413. * to route different frame types to various inbound queues. We send broadcast/
  414. * multicast/error frames to the default queue for slow handling,
  415. * and CAM hit/RSS frames to the fast handling queues.
  416. */
  417. static int ql_set_routing_reg(struct ql_adapter *qdev, u32 index, u32 mask,
  418. int enable)
  419. {
  420. int status;
  421. u32 value = 0;
  422. status = ql_sem_spinlock(qdev, SEM_RT_IDX_MASK);
  423. if (status)
  424. return status;
  425. QPRINTK(qdev, IFUP, DEBUG,
  426. "%s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s mask %s the routing reg.\n",
  427. (enable ? "Adding" : "Removing"),
  428. ((index == RT_IDX_ALL_ERR_SLOT) ? "MAC ERROR/ALL ERROR" : ""),
  429. ((index == RT_IDX_IP_CSUM_ERR_SLOT) ? "IP CSUM ERROR" : ""),
  430. ((index ==
  431. RT_IDX_TCP_UDP_CSUM_ERR_SLOT) ? "TCP/UDP CSUM ERROR" : ""),
  432. ((index == RT_IDX_BCAST_SLOT) ? "BROADCAST" : ""),
  433. ((index == RT_IDX_MCAST_MATCH_SLOT) ? "MULTICAST MATCH" : ""),
  434. ((index == RT_IDX_ALLMULTI_SLOT) ? "ALL MULTICAST MATCH" : ""),
  435. ((index == RT_IDX_UNUSED6_SLOT) ? "UNUSED6" : ""),
  436. ((index == RT_IDX_UNUSED7_SLOT) ? "UNUSED7" : ""),
  437. ((index == RT_IDX_RSS_MATCH_SLOT) ? "RSS ALL/IPV4 MATCH" : ""),
  438. ((index == RT_IDX_RSS_IPV6_SLOT) ? "RSS IPV6" : ""),
  439. ((index == RT_IDX_RSS_TCP4_SLOT) ? "RSS TCP4" : ""),
  440. ((index == RT_IDX_RSS_TCP6_SLOT) ? "RSS TCP6" : ""),
  441. ((index == RT_IDX_CAM_HIT_SLOT) ? "CAM HIT" : ""),
  442. ((index == RT_IDX_UNUSED013) ? "UNUSED13" : ""),
  443. ((index == RT_IDX_UNUSED014) ? "UNUSED14" : ""),
  444. ((index == RT_IDX_PROMISCUOUS_SLOT) ? "PROMISCUOUS" : ""),
  445. (enable ? "to" : "from"));
  446. switch (mask) {
  447. case RT_IDX_CAM_HIT:
  448. {
  449. value = RT_IDX_DST_CAM_Q | /* dest */
  450. RT_IDX_TYPE_NICQ | /* type */
  451. (RT_IDX_CAM_HIT_SLOT << RT_IDX_IDX_SHIFT);/* index */
  452. break;
  453. }
  454. case RT_IDX_VALID: /* Promiscuous Mode frames. */
  455. {
  456. value = RT_IDX_DST_DFLT_Q | /* dest */
  457. RT_IDX_TYPE_NICQ | /* type */
  458. (RT_IDX_PROMISCUOUS_SLOT << RT_IDX_IDX_SHIFT);/* index */
  459. break;
  460. }
  461. case RT_IDX_ERR: /* Pass up MAC,IP,TCP/UDP error frames. */
  462. {
  463. value = RT_IDX_DST_DFLT_Q | /* dest */
  464. RT_IDX_TYPE_NICQ | /* type */
  465. (RT_IDX_ALL_ERR_SLOT << RT_IDX_IDX_SHIFT);/* index */
  466. break;
  467. }
  468. case RT_IDX_BCAST: /* Pass up Broadcast frames to default Q. */
  469. {
  470. value = RT_IDX_DST_DFLT_Q | /* dest */
  471. RT_IDX_TYPE_NICQ | /* type */
  472. (RT_IDX_BCAST_SLOT << RT_IDX_IDX_SHIFT);/* index */
  473. break;
  474. }
  475. case RT_IDX_MCAST: /* Pass up All Multicast frames. */
  476. {
  477. value = RT_IDX_DST_CAM_Q | /* dest */
  478. RT_IDX_TYPE_NICQ | /* type */
  479. (RT_IDX_ALLMULTI_SLOT << RT_IDX_IDX_SHIFT);/* index */
  480. break;
  481. }
  482. case RT_IDX_MCAST_MATCH: /* Pass up matched Multicast frames. */
  483. {
  484. value = RT_IDX_DST_CAM_Q | /* dest */
  485. RT_IDX_TYPE_NICQ | /* type */
  486. (RT_IDX_MCAST_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  487. break;
  488. }
  489. case RT_IDX_RSS_MATCH: /* Pass up matched RSS frames. */
  490. {
  491. value = RT_IDX_DST_RSS | /* dest */
  492. RT_IDX_TYPE_NICQ | /* type */
  493. (RT_IDX_RSS_MATCH_SLOT << RT_IDX_IDX_SHIFT);/* index */
  494. break;
  495. }
  496. case 0: /* Clear the E-bit on an entry. */
  497. {
  498. value = RT_IDX_DST_DFLT_Q | /* dest */
  499. RT_IDX_TYPE_NICQ | /* type */
  500. (index << RT_IDX_IDX_SHIFT);/* index */
  501. break;
  502. }
  503. default:
  504. QPRINTK(qdev, IFUP, ERR, "Mask type %d not yet supported.\n",
  505. mask);
  506. status = -EPERM;
  507. goto exit;
  508. }
  509. if (value) {
  510. status = ql_wait_reg_rdy(qdev, RT_IDX, RT_IDX_MW, 0);
  511. if (status)
  512. goto exit;
  513. value |= (enable ? RT_IDX_E : 0);
  514. ql_write32(qdev, RT_IDX, value);
  515. ql_write32(qdev, RT_DATA, enable ? mask : 0);
  516. }
  517. exit:
  518. ql_sem_unlock(qdev, SEM_RT_IDX_MASK);
  519. return status;
  520. }
  521. static void ql_enable_interrupts(struct ql_adapter *qdev)
  522. {
  523. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16) | INTR_EN_EI);
  524. }
  525. static void ql_disable_interrupts(struct ql_adapter *qdev)
  526. {
  527. ql_write32(qdev, INTR_EN, (INTR_EN_EI << 16));
  528. }
  529. /* If we're running with multiple MSI-X vectors then we enable on the fly.
  530. * Otherwise, we may have multiple outstanding workers and don't want to
  531. * enable until the last one finishes. In this case, the irq_cnt gets
  532. * incremented everytime we queue a worker and decremented everytime
  533. * a worker finishes. Once it hits zero we enable the interrupt.
  534. */
  535. void ql_enable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  536. {
  537. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
  538. ql_write32(qdev, INTR_EN,
  539. qdev->intr_context[intr].intr_en_mask);
  540. else {
  541. if (qdev->legacy_check)
  542. spin_lock(&qdev->legacy_lock);
  543. if (atomic_dec_and_test(&qdev->intr_context[intr].irq_cnt)) {
  544. QPRINTK(qdev, INTR, ERR, "Enabling interrupt %d.\n",
  545. intr);
  546. ql_write32(qdev, INTR_EN,
  547. qdev->intr_context[intr].intr_en_mask);
  548. } else {
  549. QPRINTK(qdev, INTR, ERR,
  550. "Skip enable, other queue(s) are active.\n");
  551. }
  552. if (qdev->legacy_check)
  553. spin_unlock(&qdev->legacy_lock);
  554. }
  555. }
  556. static u32 ql_disable_completion_interrupt(struct ql_adapter *qdev, u32 intr)
  557. {
  558. u32 var = 0;
  559. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags)))
  560. goto exit;
  561. else if (!atomic_read(&qdev->intr_context[intr].irq_cnt)) {
  562. ql_write32(qdev, INTR_EN,
  563. qdev->intr_context[intr].intr_dis_mask);
  564. var = ql_read32(qdev, STS);
  565. }
  566. atomic_inc(&qdev->intr_context[intr].irq_cnt);
  567. exit:
  568. return var;
  569. }
  570. static void ql_enable_all_completion_interrupts(struct ql_adapter *qdev)
  571. {
  572. int i;
  573. for (i = 0; i < qdev->intr_count; i++) {
  574. /* The enable call does a atomic_dec_and_test
  575. * and enables only if the result is zero.
  576. * So we precharge it here.
  577. */
  578. atomic_set(&qdev->intr_context[i].irq_cnt, 1);
  579. ql_enable_completion_interrupt(qdev, i);
  580. }
  581. }
  582. int ql_read_flash_word(struct ql_adapter *qdev, int offset, u32 *data)
  583. {
  584. int status = 0;
  585. /* wait for reg to come ready */
  586. status = ql_wait_reg_rdy(qdev,
  587. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  588. if (status)
  589. goto exit;
  590. /* set up for reg read */
  591. ql_write32(qdev, FLASH_ADDR, FLASH_ADDR_R | offset);
  592. /* wait for reg to come ready */
  593. status = ql_wait_reg_rdy(qdev,
  594. FLASH_ADDR, FLASH_ADDR_RDY, FLASH_ADDR_ERR);
  595. if (status)
  596. goto exit;
  597. /* get the data */
  598. *data = ql_read32(qdev, FLASH_DATA);
  599. exit:
  600. return status;
  601. }
  602. static int ql_get_flash_params(struct ql_adapter *qdev)
  603. {
  604. int i;
  605. int status;
  606. u32 *p = (u32 *)&qdev->flash;
  607. if (ql_sem_spinlock(qdev, SEM_FLASH_MASK))
  608. return -ETIMEDOUT;
  609. for (i = 0; i < sizeof(qdev->flash) / sizeof(u32); i++, p++) {
  610. status = ql_read_flash_word(qdev, i, p);
  611. if (status) {
  612. QPRINTK(qdev, IFUP, ERR, "Error reading flash.\n");
  613. goto exit;
  614. }
  615. }
  616. exit:
  617. ql_sem_unlock(qdev, SEM_FLASH_MASK);
  618. return status;
  619. }
  620. /* xgmac register are located behind the xgmac_addr and xgmac_data
  621. * register pair. Each read/write requires us to wait for the ready
  622. * bit before reading/writing the data.
  623. */
  624. static int ql_write_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 data)
  625. {
  626. int status;
  627. /* wait for reg to come ready */
  628. status = ql_wait_reg_rdy(qdev,
  629. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  630. if (status)
  631. return status;
  632. /* write the data to the data reg */
  633. ql_write32(qdev, XGMAC_DATA, data);
  634. /* trigger the write */
  635. ql_write32(qdev, XGMAC_ADDR, reg);
  636. return status;
  637. }
  638. /* xgmac register are located behind the xgmac_addr and xgmac_data
  639. * register pair. Each read/write requires us to wait for the ready
  640. * bit before reading/writing the data.
  641. */
  642. int ql_read_xgmac_reg(struct ql_adapter *qdev, u32 reg, u32 *data)
  643. {
  644. int status = 0;
  645. /* wait for reg to come ready */
  646. status = ql_wait_reg_rdy(qdev,
  647. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  648. if (status)
  649. goto exit;
  650. /* set up for reg read */
  651. ql_write32(qdev, XGMAC_ADDR, reg | XGMAC_ADDR_R);
  652. /* wait for reg to come ready */
  653. status = ql_wait_reg_rdy(qdev,
  654. XGMAC_ADDR, XGMAC_ADDR_RDY, XGMAC_ADDR_XME);
  655. if (status)
  656. goto exit;
  657. /* get the data */
  658. *data = ql_read32(qdev, XGMAC_DATA);
  659. exit:
  660. return status;
  661. }
  662. /* This is used for reading the 64-bit statistics regs. */
  663. int ql_read_xgmac_reg64(struct ql_adapter *qdev, u32 reg, u64 *data)
  664. {
  665. int status = 0;
  666. u32 hi = 0;
  667. u32 lo = 0;
  668. status = ql_read_xgmac_reg(qdev, reg, &lo);
  669. if (status)
  670. goto exit;
  671. status = ql_read_xgmac_reg(qdev, reg + 4, &hi);
  672. if (status)
  673. goto exit;
  674. *data = (u64) lo | ((u64) hi << 32);
  675. exit:
  676. return status;
  677. }
  678. /* Take the MAC Core out of reset.
  679. * Enable statistics counting.
  680. * Take the transmitter/receiver out of reset.
  681. * This functionality may be done in the MPI firmware at a
  682. * later date.
  683. */
  684. static int ql_port_initialize(struct ql_adapter *qdev)
  685. {
  686. int status = 0;
  687. u32 data;
  688. if (ql_sem_trylock(qdev, qdev->xg_sem_mask)) {
  689. /* Another function has the semaphore, so
  690. * wait for the port init bit to come ready.
  691. */
  692. QPRINTK(qdev, LINK, INFO,
  693. "Another function has the semaphore, so wait for the port init bit to come ready.\n");
  694. status = ql_wait_reg_rdy(qdev, STS, qdev->port_init, 0);
  695. if (status) {
  696. QPRINTK(qdev, LINK, CRIT,
  697. "Port initialize timed out.\n");
  698. }
  699. return status;
  700. }
  701. QPRINTK(qdev, LINK, INFO, "Got xgmac semaphore!.\n");
  702. /* Set the core reset. */
  703. status = ql_read_xgmac_reg(qdev, GLOBAL_CFG, &data);
  704. if (status)
  705. goto end;
  706. data |= GLOBAL_CFG_RESET;
  707. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  708. if (status)
  709. goto end;
  710. /* Clear the core reset and turn on jumbo for receiver. */
  711. data &= ~GLOBAL_CFG_RESET; /* Clear core reset. */
  712. data |= GLOBAL_CFG_JUMBO; /* Turn on jumbo. */
  713. data |= GLOBAL_CFG_TX_STAT_EN;
  714. data |= GLOBAL_CFG_RX_STAT_EN;
  715. status = ql_write_xgmac_reg(qdev, GLOBAL_CFG, data);
  716. if (status)
  717. goto end;
  718. /* Enable transmitter, and clear it's reset. */
  719. status = ql_read_xgmac_reg(qdev, TX_CFG, &data);
  720. if (status)
  721. goto end;
  722. data &= ~TX_CFG_RESET; /* Clear the TX MAC reset. */
  723. data |= TX_CFG_EN; /* Enable the transmitter. */
  724. status = ql_write_xgmac_reg(qdev, TX_CFG, data);
  725. if (status)
  726. goto end;
  727. /* Enable receiver and clear it's reset. */
  728. status = ql_read_xgmac_reg(qdev, RX_CFG, &data);
  729. if (status)
  730. goto end;
  731. data &= ~RX_CFG_RESET; /* Clear the RX MAC reset. */
  732. data |= RX_CFG_EN; /* Enable the receiver. */
  733. status = ql_write_xgmac_reg(qdev, RX_CFG, data);
  734. if (status)
  735. goto end;
  736. /* Turn on jumbo. */
  737. status =
  738. ql_write_xgmac_reg(qdev, MAC_TX_PARAMS, MAC_TX_PARAMS_JUMBO | (0x2580 << 16));
  739. if (status)
  740. goto end;
  741. status =
  742. ql_write_xgmac_reg(qdev, MAC_RX_PARAMS, 0x2580);
  743. if (status)
  744. goto end;
  745. /* Signal to the world that the port is enabled. */
  746. ql_write32(qdev, STS, ((qdev->port_init << 16) | qdev->port_init));
  747. end:
  748. ql_sem_unlock(qdev, qdev->xg_sem_mask);
  749. return status;
  750. }
  751. /* Get the next large buffer. */
  752. struct bq_desc *ql_get_curr_lbuf(struct rx_ring *rx_ring)
  753. {
  754. struct bq_desc *lbq_desc = &rx_ring->lbq[rx_ring->lbq_curr_idx];
  755. rx_ring->lbq_curr_idx++;
  756. if (rx_ring->lbq_curr_idx == rx_ring->lbq_len)
  757. rx_ring->lbq_curr_idx = 0;
  758. rx_ring->lbq_free_cnt++;
  759. return lbq_desc;
  760. }
  761. /* Get the next small buffer. */
  762. struct bq_desc *ql_get_curr_sbuf(struct rx_ring *rx_ring)
  763. {
  764. struct bq_desc *sbq_desc = &rx_ring->sbq[rx_ring->sbq_curr_idx];
  765. rx_ring->sbq_curr_idx++;
  766. if (rx_ring->sbq_curr_idx == rx_ring->sbq_len)
  767. rx_ring->sbq_curr_idx = 0;
  768. rx_ring->sbq_free_cnt++;
  769. return sbq_desc;
  770. }
  771. /* Update an rx ring index. */
  772. static void ql_update_cq(struct rx_ring *rx_ring)
  773. {
  774. rx_ring->cnsmr_idx++;
  775. rx_ring->curr_entry++;
  776. if (unlikely(rx_ring->cnsmr_idx == rx_ring->cq_len)) {
  777. rx_ring->cnsmr_idx = 0;
  778. rx_ring->curr_entry = rx_ring->cq_base;
  779. }
  780. }
  781. static void ql_write_cq_idx(struct rx_ring *rx_ring)
  782. {
  783. ql_write_db_reg(rx_ring->cnsmr_idx, rx_ring->cnsmr_idx_db_reg);
  784. }
  785. /* Process (refill) a large buffer queue. */
  786. static void ql_update_lbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  787. {
  788. int clean_idx = rx_ring->lbq_clean_idx;
  789. struct bq_desc *lbq_desc;
  790. struct bq_element *bq;
  791. u64 map;
  792. int i;
  793. while (rx_ring->lbq_free_cnt > 16) {
  794. for (i = 0; i < 16; i++) {
  795. QPRINTK(qdev, RX_STATUS, DEBUG,
  796. "lbq: try cleaning clean_idx = %d.\n",
  797. clean_idx);
  798. lbq_desc = &rx_ring->lbq[clean_idx];
  799. bq = lbq_desc->bq;
  800. if (lbq_desc->p.lbq_page == NULL) {
  801. QPRINTK(qdev, RX_STATUS, DEBUG,
  802. "lbq: getting new page for index %d.\n",
  803. lbq_desc->index);
  804. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  805. if (lbq_desc->p.lbq_page == NULL) {
  806. QPRINTK(qdev, RX_STATUS, ERR,
  807. "Couldn't get a page.\n");
  808. return;
  809. }
  810. map = pci_map_page(qdev->pdev,
  811. lbq_desc->p.lbq_page,
  812. 0, PAGE_SIZE,
  813. PCI_DMA_FROMDEVICE);
  814. if (pci_dma_mapping_error(qdev->pdev, map)) {
  815. QPRINTK(qdev, RX_STATUS, ERR,
  816. "PCI mapping failed.\n");
  817. return;
  818. }
  819. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  820. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  821. bq->addr_lo = /*lbq_desc->addr_lo = */
  822. cpu_to_le32(map);
  823. bq->addr_hi = /*lbq_desc->addr_hi = */
  824. cpu_to_le32(map >> 32);
  825. }
  826. clean_idx++;
  827. if (clean_idx == rx_ring->lbq_len)
  828. clean_idx = 0;
  829. }
  830. rx_ring->lbq_clean_idx = clean_idx;
  831. rx_ring->lbq_prod_idx += 16;
  832. if (rx_ring->lbq_prod_idx == rx_ring->lbq_len)
  833. rx_ring->lbq_prod_idx = 0;
  834. QPRINTK(qdev, RX_STATUS, DEBUG,
  835. "lbq: updating prod idx = %d.\n",
  836. rx_ring->lbq_prod_idx);
  837. ql_write_db_reg(rx_ring->lbq_prod_idx,
  838. rx_ring->lbq_prod_idx_db_reg);
  839. rx_ring->lbq_free_cnt -= 16;
  840. }
  841. }
  842. /* Process (refill) a small buffer queue. */
  843. static void ql_update_sbq(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  844. {
  845. int clean_idx = rx_ring->sbq_clean_idx;
  846. struct bq_desc *sbq_desc;
  847. struct bq_element *bq;
  848. u64 map;
  849. int i;
  850. while (rx_ring->sbq_free_cnt > 16) {
  851. for (i = 0; i < 16; i++) {
  852. sbq_desc = &rx_ring->sbq[clean_idx];
  853. QPRINTK(qdev, RX_STATUS, DEBUG,
  854. "sbq: try cleaning clean_idx = %d.\n",
  855. clean_idx);
  856. bq = sbq_desc->bq;
  857. if (sbq_desc->p.skb == NULL) {
  858. QPRINTK(qdev, RX_STATUS, DEBUG,
  859. "sbq: getting new skb for index %d.\n",
  860. sbq_desc->index);
  861. sbq_desc->p.skb =
  862. netdev_alloc_skb(qdev->ndev,
  863. rx_ring->sbq_buf_size);
  864. if (sbq_desc->p.skb == NULL) {
  865. QPRINTK(qdev, PROBE, ERR,
  866. "Couldn't get an skb.\n");
  867. rx_ring->sbq_clean_idx = clean_idx;
  868. return;
  869. }
  870. skb_reserve(sbq_desc->p.skb, QLGE_SB_PAD);
  871. map = pci_map_single(qdev->pdev,
  872. sbq_desc->p.skb->data,
  873. rx_ring->sbq_buf_size /
  874. 2, PCI_DMA_FROMDEVICE);
  875. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  876. pci_unmap_len_set(sbq_desc, maplen,
  877. rx_ring->sbq_buf_size / 2);
  878. bq->addr_lo = cpu_to_le32(map);
  879. bq->addr_hi = cpu_to_le32(map >> 32);
  880. }
  881. clean_idx++;
  882. if (clean_idx == rx_ring->sbq_len)
  883. clean_idx = 0;
  884. }
  885. rx_ring->sbq_clean_idx = clean_idx;
  886. rx_ring->sbq_prod_idx += 16;
  887. if (rx_ring->sbq_prod_idx == rx_ring->sbq_len)
  888. rx_ring->sbq_prod_idx = 0;
  889. QPRINTK(qdev, RX_STATUS, DEBUG,
  890. "sbq: updating prod idx = %d.\n",
  891. rx_ring->sbq_prod_idx);
  892. ql_write_db_reg(rx_ring->sbq_prod_idx,
  893. rx_ring->sbq_prod_idx_db_reg);
  894. rx_ring->sbq_free_cnt -= 16;
  895. }
  896. }
  897. static void ql_update_buffer_queues(struct ql_adapter *qdev,
  898. struct rx_ring *rx_ring)
  899. {
  900. ql_update_sbq(qdev, rx_ring);
  901. ql_update_lbq(qdev, rx_ring);
  902. }
  903. /* Unmaps tx buffers. Can be called from send() if a pci mapping
  904. * fails at some stage, or from the interrupt when a tx completes.
  905. */
  906. static void ql_unmap_send(struct ql_adapter *qdev,
  907. struct tx_ring_desc *tx_ring_desc, int mapped)
  908. {
  909. int i;
  910. for (i = 0; i < mapped; i++) {
  911. if (i == 0 || (i == 7 && mapped > 7)) {
  912. /*
  913. * Unmap the skb->data area, or the
  914. * external sglist (AKA the Outbound
  915. * Address List (OAL)).
  916. * If its the zeroeth element, then it's
  917. * the skb->data area. If it's the 7th
  918. * element and there is more than 6 frags,
  919. * then its an OAL.
  920. */
  921. if (i == 7) {
  922. QPRINTK(qdev, TX_DONE, DEBUG,
  923. "unmapping OAL area.\n");
  924. }
  925. pci_unmap_single(qdev->pdev,
  926. pci_unmap_addr(&tx_ring_desc->map[i],
  927. mapaddr),
  928. pci_unmap_len(&tx_ring_desc->map[i],
  929. maplen),
  930. PCI_DMA_TODEVICE);
  931. } else {
  932. QPRINTK(qdev, TX_DONE, DEBUG, "unmapping frag %d.\n",
  933. i);
  934. pci_unmap_page(qdev->pdev,
  935. pci_unmap_addr(&tx_ring_desc->map[i],
  936. mapaddr),
  937. pci_unmap_len(&tx_ring_desc->map[i],
  938. maplen), PCI_DMA_TODEVICE);
  939. }
  940. }
  941. }
  942. /* Map the buffers for this transmit. This will return
  943. * NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
  944. */
  945. static int ql_map_send(struct ql_adapter *qdev,
  946. struct ob_mac_iocb_req *mac_iocb_ptr,
  947. struct sk_buff *skb, struct tx_ring_desc *tx_ring_desc)
  948. {
  949. int len = skb_headlen(skb);
  950. dma_addr_t map;
  951. int frag_idx, err, map_idx = 0;
  952. struct tx_buf_desc *tbd = mac_iocb_ptr->tbd;
  953. int frag_cnt = skb_shinfo(skb)->nr_frags;
  954. if (frag_cnt) {
  955. QPRINTK(qdev, TX_QUEUED, DEBUG, "frag_cnt = %d.\n", frag_cnt);
  956. }
  957. /*
  958. * Map the skb buffer first.
  959. */
  960. map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
  961. err = pci_dma_mapping_error(qdev->pdev, map);
  962. if (err) {
  963. QPRINTK(qdev, TX_QUEUED, ERR,
  964. "PCI mapping failed with error: %d\n", err);
  965. return NETDEV_TX_BUSY;
  966. }
  967. tbd->len = cpu_to_le32(len);
  968. tbd->addr = cpu_to_le64(map);
  969. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  970. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen, len);
  971. map_idx++;
  972. /*
  973. * This loop fills the remainder of the 8 address descriptors
  974. * in the IOCB. If there are more than 7 fragments, then the
  975. * eighth address desc will point to an external list (OAL).
  976. * When this happens, the remainder of the frags will be stored
  977. * in this list.
  978. */
  979. for (frag_idx = 0; frag_idx < frag_cnt; frag_idx++, map_idx++) {
  980. skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_idx];
  981. tbd++;
  982. if (frag_idx == 6 && frag_cnt > 7) {
  983. /* Let's tack on an sglist.
  984. * Our control block will now
  985. * look like this:
  986. * iocb->seg[0] = skb->data
  987. * iocb->seg[1] = frag[0]
  988. * iocb->seg[2] = frag[1]
  989. * iocb->seg[3] = frag[2]
  990. * iocb->seg[4] = frag[3]
  991. * iocb->seg[5] = frag[4]
  992. * iocb->seg[6] = frag[5]
  993. * iocb->seg[7] = ptr to OAL (external sglist)
  994. * oal->seg[0] = frag[6]
  995. * oal->seg[1] = frag[7]
  996. * oal->seg[2] = frag[8]
  997. * oal->seg[3] = frag[9]
  998. * oal->seg[4] = frag[10]
  999. * etc...
  1000. */
  1001. /* Tack on the OAL in the eighth segment of IOCB. */
  1002. map = pci_map_single(qdev->pdev, &tx_ring_desc->oal,
  1003. sizeof(struct oal),
  1004. PCI_DMA_TODEVICE);
  1005. err = pci_dma_mapping_error(qdev->pdev, map);
  1006. if (err) {
  1007. QPRINTK(qdev, TX_QUEUED, ERR,
  1008. "PCI mapping outbound address list with error: %d\n",
  1009. err);
  1010. goto map_error;
  1011. }
  1012. tbd->addr = cpu_to_le64(map);
  1013. /*
  1014. * The length is the number of fragments
  1015. * that remain to be mapped times the length
  1016. * of our sglist (OAL).
  1017. */
  1018. tbd->len =
  1019. cpu_to_le32((sizeof(struct tx_buf_desc) *
  1020. (frag_cnt - frag_idx)) | TX_DESC_C);
  1021. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr,
  1022. map);
  1023. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1024. sizeof(struct oal));
  1025. tbd = (struct tx_buf_desc *)&tx_ring_desc->oal;
  1026. map_idx++;
  1027. }
  1028. map =
  1029. pci_map_page(qdev->pdev, frag->page,
  1030. frag->page_offset, frag->size,
  1031. PCI_DMA_TODEVICE);
  1032. err = pci_dma_mapping_error(qdev->pdev, map);
  1033. if (err) {
  1034. QPRINTK(qdev, TX_QUEUED, ERR,
  1035. "PCI mapping frags failed with error: %d.\n",
  1036. err);
  1037. goto map_error;
  1038. }
  1039. tbd->addr = cpu_to_le64(map);
  1040. tbd->len = cpu_to_le32(frag->size);
  1041. pci_unmap_addr_set(&tx_ring_desc->map[map_idx], mapaddr, map);
  1042. pci_unmap_len_set(&tx_ring_desc->map[map_idx], maplen,
  1043. frag->size);
  1044. }
  1045. /* Save the number of segments we've mapped. */
  1046. tx_ring_desc->map_cnt = map_idx;
  1047. /* Terminate the last segment. */
  1048. tbd->len = cpu_to_le32(le32_to_cpu(tbd->len) | TX_DESC_E);
  1049. return NETDEV_TX_OK;
  1050. map_error:
  1051. /*
  1052. * If the first frag mapping failed, then i will be zero.
  1053. * This causes the unmap of the skb->data area. Otherwise
  1054. * we pass in the number of frags that mapped successfully
  1055. * so they can be umapped.
  1056. */
  1057. ql_unmap_send(qdev, tx_ring_desc, map_idx);
  1058. return NETDEV_TX_BUSY;
  1059. }
  1060. void ql_realign_skb(struct sk_buff *skb, int len)
  1061. {
  1062. void *temp_addr = skb->data;
  1063. /* Undo the skb_reserve(skb,32) we did before
  1064. * giving to hardware, and realign data on
  1065. * a 2-byte boundary.
  1066. */
  1067. skb->data -= QLGE_SB_PAD - NET_IP_ALIGN;
  1068. skb->tail -= QLGE_SB_PAD - NET_IP_ALIGN;
  1069. skb_copy_to_linear_data(skb, temp_addr,
  1070. (unsigned int)len);
  1071. }
  1072. /*
  1073. * This function builds an skb for the given inbound
  1074. * completion. It will be rewritten for readability in the near
  1075. * future, but for not it works well.
  1076. */
  1077. static struct sk_buff *ql_build_rx_skb(struct ql_adapter *qdev,
  1078. struct rx_ring *rx_ring,
  1079. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1080. {
  1081. struct bq_desc *lbq_desc;
  1082. struct bq_desc *sbq_desc;
  1083. struct sk_buff *skb = NULL;
  1084. u32 length = le32_to_cpu(ib_mac_rsp->data_len);
  1085. u32 hdr_len = le32_to_cpu(ib_mac_rsp->hdr_len);
  1086. /*
  1087. * Handle the header buffer if present.
  1088. */
  1089. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HV &&
  1090. ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1091. QPRINTK(qdev, RX_STATUS, DEBUG, "Header of %d bytes in small buffer.\n", hdr_len);
  1092. /*
  1093. * Headers fit nicely into a small buffer.
  1094. */
  1095. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1096. pci_unmap_single(qdev->pdev,
  1097. pci_unmap_addr(sbq_desc, mapaddr),
  1098. pci_unmap_len(sbq_desc, maplen),
  1099. PCI_DMA_FROMDEVICE);
  1100. skb = sbq_desc->p.skb;
  1101. ql_realign_skb(skb, hdr_len);
  1102. skb_put(skb, hdr_len);
  1103. sbq_desc->p.skb = NULL;
  1104. }
  1105. /*
  1106. * Handle the data buffer(s).
  1107. */
  1108. if (unlikely(!length)) { /* Is there data too? */
  1109. QPRINTK(qdev, RX_STATUS, DEBUG,
  1110. "No Data buffer in this packet.\n");
  1111. return skb;
  1112. }
  1113. if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DS) {
  1114. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1115. QPRINTK(qdev, RX_STATUS, DEBUG,
  1116. "Headers in small, data of %d bytes in small, combine them.\n", length);
  1117. /*
  1118. * Data is less than small buffer size so it's
  1119. * stuffed in a small buffer.
  1120. * For this case we append the data
  1121. * from the "data" small buffer to the "header" small
  1122. * buffer.
  1123. */
  1124. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1125. pci_dma_sync_single_for_cpu(qdev->pdev,
  1126. pci_unmap_addr
  1127. (sbq_desc, mapaddr),
  1128. pci_unmap_len
  1129. (sbq_desc, maplen),
  1130. PCI_DMA_FROMDEVICE);
  1131. memcpy(skb_put(skb, length),
  1132. sbq_desc->p.skb->data, length);
  1133. pci_dma_sync_single_for_device(qdev->pdev,
  1134. pci_unmap_addr
  1135. (sbq_desc,
  1136. mapaddr),
  1137. pci_unmap_len
  1138. (sbq_desc,
  1139. maplen),
  1140. PCI_DMA_FROMDEVICE);
  1141. } else {
  1142. QPRINTK(qdev, RX_STATUS, DEBUG,
  1143. "%d bytes in a single small buffer.\n", length);
  1144. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1145. skb = sbq_desc->p.skb;
  1146. ql_realign_skb(skb, length);
  1147. skb_put(skb, length);
  1148. pci_unmap_single(qdev->pdev,
  1149. pci_unmap_addr(sbq_desc,
  1150. mapaddr),
  1151. pci_unmap_len(sbq_desc,
  1152. maplen),
  1153. PCI_DMA_FROMDEVICE);
  1154. sbq_desc->p.skb = NULL;
  1155. }
  1156. } else if (ib_mac_rsp->flags3 & IB_MAC_IOCB_RSP_DL) {
  1157. if (ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS) {
  1158. QPRINTK(qdev, RX_STATUS, DEBUG,
  1159. "Header in small, %d bytes in large. Chain large to small!\n", length);
  1160. /*
  1161. * The data is in a single large buffer. We
  1162. * chain it to the header buffer's skb and let
  1163. * it rip.
  1164. */
  1165. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1166. pci_unmap_page(qdev->pdev,
  1167. pci_unmap_addr(lbq_desc,
  1168. mapaddr),
  1169. pci_unmap_len(lbq_desc, maplen),
  1170. PCI_DMA_FROMDEVICE);
  1171. QPRINTK(qdev, RX_STATUS, DEBUG,
  1172. "Chaining page to skb.\n");
  1173. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1174. 0, length);
  1175. skb->len += length;
  1176. skb->data_len += length;
  1177. skb->truesize += length;
  1178. lbq_desc->p.lbq_page = NULL;
  1179. } else {
  1180. /*
  1181. * The headers and data are in a single large buffer. We
  1182. * copy it to a new skb and let it go. This can happen with
  1183. * jumbo mtu on a non-TCP/UDP frame.
  1184. */
  1185. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1186. skb = netdev_alloc_skb(qdev->ndev, length);
  1187. if (skb == NULL) {
  1188. QPRINTK(qdev, PROBE, DEBUG,
  1189. "No skb available, drop the packet.\n");
  1190. return NULL;
  1191. }
  1192. skb_reserve(skb, NET_IP_ALIGN);
  1193. QPRINTK(qdev, RX_STATUS, DEBUG,
  1194. "%d bytes of headers and data in large. Chain page to new skb and pull tail.\n", length);
  1195. skb_fill_page_desc(skb, 0, lbq_desc->p.lbq_page,
  1196. 0, length);
  1197. skb->len += length;
  1198. skb->data_len += length;
  1199. skb->truesize += length;
  1200. length -= length;
  1201. lbq_desc->p.lbq_page = NULL;
  1202. __pskb_pull_tail(skb,
  1203. (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1204. VLAN_ETH_HLEN : ETH_HLEN);
  1205. }
  1206. } else {
  1207. /*
  1208. * The data is in a chain of large buffers
  1209. * pointed to by a small buffer. We loop
  1210. * thru and chain them to the our small header
  1211. * buffer's skb.
  1212. * frags: There are 18 max frags and our small
  1213. * buffer will hold 32 of them. The thing is,
  1214. * we'll use 3 max for our 9000 byte jumbo
  1215. * frames. If the MTU goes up we could
  1216. * eventually be in trouble.
  1217. */
  1218. int size, offset, i = 0;
  1219. struct bq_element *bq, bq_array[8];
  1220. sbq_desc = ql_get_curr_sbuf(rx_ring);
  1221. pci_unmap_single(qdev->pdev,
  1222. pci_unmap_addr(sbq_desc, mapaddr),
  1223. pci_unmap_len(sbq_desc, maplen),
  1224. PCI_DMA_FROMDEVICE);
  1225. if (!(ib_mac_rsp->flags4 & IB_MAC_IOCB_RSP_HS)) {
  1226. /*
  1227. * This is an non TCP/UDP IP frame, so
  1228. * the headers aren't split into a small
  1229. * buffer. We have to use the small buffer
  1230. * that contains our sg list as our skb to
  1231. * send upstairs. Copy the sg list here to
  1232. * a local buffer and use it to find the
  1233. * pages to chain.
  1234. */
  1235. QPRINTK(qdev, RX_STATUS, DEBUG,
  1236. "%d bytes of headers & data in chain of large.\n", length);
  1237. skb = sbq_desc->p.skb;
  1238. bq = &bq_array[0];
  1239. memcpy(bq, skb->data, sizeof(bq_array));
  1240. sbq_desc->p.skb = NULL;
  1241. skb_reserve(skb, NET_IP_ALIGN);
  1242. } else {
  1243. QPRINTK(qdev, RX_STATUS, DEBUG,
  1244. "Headers in small, %d bytes of data in chain of large.\n", length);
  1245. bq = (struct bq_element *)sbq_desc->p.skb->data;
  1246. }
  1247. while (length > 0) {
  1248. lbq_desc = ql_get_curr_lbuf(rx_ring);
  1249. if ((bq->addr_lo & ~BQ_MASK) != lbq_desc->bq->addr_lo) {
  1250. QPRINTK(qdev, RX_STATUS, ERR,
  1251. "Panic!!! bad large buffer address, expected 0x%.08x, got 0x%.08x.\n",
  1252. lbq_desc->bq->addr_lo, bq->addr_lo);
  1253. return NULL;
  1254. }
  1255. pci_unmap_page(qdev->pdev,
  1256. pci_unmap_addr(lbq_desc,
  1257. mapaddr),
  1258. pci_unmap_len(lbq_desc,
  1259. maplen),
  1260. PCI_DMA_FROMDEVICE);
  1261. size = (length < PAGE_SIZE) ? length : PAGE_SIZE;
  1262. offset = 0;
  1263. QPRINTK(qdev, RX_STATUS, DEBUG,
  1264. "Adding page %d to skb for %d bytes.\n",
  1265. i, size);
  1266. skb_fill_page_desc(skb, i, lbq_desc->p.lbq_page,
  1267. offset, size);
  1268. skb->len += size;
  1269. skb->data_len += size;
  1270. skb->truesize += size;
  1271. length -= size;
  1272. lbq_desc->p.lbq_page = NULL;
  1273. bq++;
  1274. i++;
  1275. }
  1276. __pskb_pull_tail(skb, (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V) ?
  1277. VLAN_ETH_HLEN : ETH_HLEN);
  1278. }
  1279. return skb;
  1280. }
  1281. /* Process an inbound completion from an rx ring. */
  1282. static void ql_process_mac_rx_intr(struct ql_adapter *qdev,
  1283. struct rx_ring *rx_ring,
  1284. struct ib_mac_iocb_rsp *ib_mac_rsp)
  1285. {
  1286. struct net_device *ndev = qdev->ndev;
  1287. struct sk_buff *skb = NULL;
  1288. QL_DUMP_IB_MAC_RSP(ib_mac_rsp);
  1289. skb = ql_build_rx_skb(qdev, rx_ring, ib_mac_rsp);
  1290. if (unlikely(!skb)) {
  1291. QPRINTK(qdev, RX_STATUS, DEBUG,
  1292. "No skb available, drop packet.\n");
  1293. return;
  1294. }
  1295. prefetch(skb->data);
  1296. skb->dev = ndev;
  1297. if (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) {
  1298. QPRINTK(qdev, RX_STATUS, DEBUG, "%s%s%s Multicast.\n",
  1299. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1300. IB_MAC_IOCB_RSP_M_HASH ? "Hash" : "",
  1301. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1302. IB_MAC_IOCB_RSP_M_REG ? "Registered" : "",
  1303. (ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_M_MASK) ==
  1304. IB_MAC_IOCB_RSP_M_PROM ? "Promiscuous" : "");
  1305. }
  1306. if (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_P) {
  1307. QPRINTK(qdev, RX_STATUS, DEBUG, "Promiscuous Packet.\n");
  1308. }
  1309. if (ib_mac_rsp->flags1 & (IB_MAC_IOCB_RSP_IE | IB_MAC_IOCB_RSP_TE)) {
  1310. QPRINTK(qdev, RX_STATUS, ERR,
  1311. "Bad checksum for this %s packet.\n",
  1312. ((ib_mac_rsp->
  1313. flags2 & IB_MAC_IOCB_RSP_T) ? "TCP" : "UDP"));
  1314. skb->ip_summed = CHECKSUM_NONE;
  1315. } else if (qdev->rx_csum &&
  1316. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_T) ||
  1317. ((ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_U) &&
  1318. !(ib_mac_rsp->flags1 & IB_MAC_IOCB_RSP_NU)))) {
  1319. QPRINTK(qdev, RX_STATUS, DEBUG, "RX checksum done!\n");
  1320. skb->ip_summed = CHECKSUM_UNNECESSARY;
  1321. }
  1322. qdev->stats.rx_packets++;
  1323. qdev->stats.rx_bytes += skb->len;
  1324. skb->protocol = eth_type_trans(skb, ndev);
  1325. if (qdev->vlgrp && (ib_mac_rsp->flags2 & IB_MAC_IOCB_RSP_V)) {
  1326. QPRINTK(qdev, RX_STATUS, DEBUG,
  1327. "Passing a VLAN packet upstream.\n");
  1328. vlan_hwaccel_rx(skb, qdev->vlgrp,
  1329. le16_to_cpu(ib_mac_rsp->vlan_id));
  1330. } else {
  1331. QPRINTK(qdev, RX_STATUS, DEBUG,
  1332. "Passing a normal packet upstream.\n");
  1333. netif_rx(skb);
  1334. }
  1335. ndev->last_rx = jiffies;
  1336. }
  1337. /* Process an outbound completion from an rx ring. */
  1338. static void ql_process_mac_tx_intr(struct ql_adapter *qdev,
  1339. struct ob_mac_iocb_rsp *mac_rsp)
  1340. {
  1341. struct tx_ring *tx_ring;
  1342. struct tx_ring_desc *tx_ring_desc;
  1343. QL_DUMP_OB_MAC_RSP(mac_rsp);
  1344. tx_ring = &qdev->tx_ring[mac_rsp->txq_idx];
  1345. tx_ring_desc = &tx_ring->q[mac_rsp->tid];
  1346. ql_unmap_send(qdev, tx_ring_desc, tx_ring_desc->map_cnt);
  1347. qdev->stats.tx_bytes += tx_ring_desc->map_cnt;
  1348. qdev->stats.tx_packets++;
  1349. dev_kfree_skb(tx_ring_desc->skb);
  1350. tx_ring_desc->skb = NULL;
  1351. if (unlikely(mac_rsp->flags1 & (OB_MAC_IOCB_RSP_E |
  1352. OB_MAC_IOCB_RSP_S |
  1353. OB_MAC_IOCB_RSP_L |
  1354. OB_MAC_IOCB_RSP_P | OB_MAC_IOCB_RSP_B))) {
  1355. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_E) {
  1356. QPRINTK(qdev, TX_DONE, WARNING,
  1357. "Total descriptor length did not match transfer length.\n");
  1358. }
  1359. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_S) {
  1360. QPRINTK(qdev, TX_DONE, WARNING,
  1361. "Frame too short to be legal, not sent.\n");
  1362. }
  1363. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_L) {
  1364. QPRINTK(qdev, TX_DONE, WARNING,
  1365. "Frame too long, but sent anyway.\n");
  1366. }
  1367. if (mac_rsp->flags1 & OB_MAC_IOCB_RSP_B) {
  1368. QPRINTK(qdev, TX_DONE, WARNING,
  1369. "PCI backplane error. Frame not sent.\n");
  1370. }
  1371. }
  1372. atomic_inc(&tx_ring->tx_count);
  1373. }
  1374. /* Fire up a handler to reset the MPI processor. */
  1375. void ql_queue_fw_error(struct ql_adapter *qdev)
  1376. {
  1377. netif_stop_queue(qdev->ndev);
  1378. netif_carrier_off(qdev->ndev);
  1379. queue_delayed_work(qdev->workqueue, &qdev->mpi_reset_work, 0);
  1380. }
  1381. void ql_queue_asic_error(struct ql_adapter *qdev)
  1382. {
  1383. netif_stop_queue(qdev->ndev);
  1384. netif_carrier_off(qdev->ndev);
  1385. ql_disable_interrupts(qdev);
  1386. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  1387. }
  1388. static void ql_process_chip_ae_intr(struct ql_adapter *qdev,
  1389. struct ib_ae_iocb_rsp *ib_ae_rsp)
  1390. {
  1391. switch (ib_ae_rsp->event) {
  1392. case MGMT_ERR_EVENT:
  1393. QPRINTK(qdev, RX_ERR, ERR,
  1394. "Management Processor Fatal Error.\n");
  1395. ql_queue_fw_error(qdev);
  1396. return;
  1397. case CAM_LOOKUP_ERR_EVENT:
  1398. QPRINTK(qdev, LINK, ERR,
  1399. "Multiple CAM hits lookup occurred.\n");
  1400. QPRINTK(qdev, DRV, ERR, "This event shouldn't occur.\n");
  1401. ql_queue_asic_error(qdev);
  1402. return;
  1403. case SOFT_ECC_ERROR_EVENT:
  1404. QPRINTK(qdev, RX_ERR, ERR, "Soft ECC error detected.\n");
  1405. ql_queue_asic_error(qdev);
  1406. break;
  1407. case PCI_ERR_ANON_BUF_RD:
  1408. QPRINTK(qdev, RX_ERR, ERR,
  1409. "PCI error occurred when reading anonymous buffers from rx_ring %d.\n",
  1410. ib_ae_rsp->q_id);
  1411. ql_queue_asic_error(qdev);
  1412. break;
  1413. default:
  1414. QPRINTK(qdev, DRV, ERR, "Unexpected event %d.\n",
  1415. ib_ae_rsp->event);
  1416. ql_queue_asic_error(qdev);
  1417. break;
  1418. }
  1419. }
  1420. static int ql_clean_outbound_rx_ring(struct rx_ring *rx_ring)
  1421. {
  1422. struct ql_adapter *qdev = rx_ring->qdev;
  1423. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1424. struct ob_mac_iocb_rsp *net_rsp = NULL;
  1425. int count = 0;
  1426. /* While there are entries in the completion queue. */
  1427. while (prod != rx_ring->cnsmr_idx) {
  1428. QPRINTK(qdev, RX_STATUS, DEBUG,
  1429. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1430. prod, rx_ring->cnsmr_idx);
  1431. net_rsp = (struct ob_mac_iocb_rsp *)rx_ring->curr_entry;
  1432. rmb();
  1433. switch (net_rsp->opcode) {
  1434. case OPCODE_OB_MAC_TSO_IOCB:
  1435. case OPCODE_OB_MAC_IOCB:
  1436. ql_process_mac_tx_intr(qdev, net_rsp);
  1437. break;
  1438. default:
  1439. QPRINTK(qdev, RX_STATUS, DEBUG,
  1440. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1441. net_rsp->opcode);
  1442. }
  1443. count++;
  1444. ql_update_cq(rx_ring);
  1445. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1446. }
  1447. ql_write_cq_idx(rx_ring);
  1448. if (netif_queue_stopped(qdev->ndev) && net_rsp != NULL) {
  1449. struct tx_ring *tx_ring = &qdev->tx_ring[net_rsp->txq_idx];
  1450. if (atomic_read(&tx_ring->queue_stopped) &&
  1451. (atomic_read(&tx_ring->tx_count) > (tx_ring->wq_len / 4)))
  1452. /*
  1453. * The queue got stopped because the tx_ring was full.
  1454. * Wake it up, because it's now at least 25% empty.
  1455. */
  1456. netif_wake_queue(qdev->ndev);
  1457. }
  1458. return count;
  1459. }
  1460. static int ql_clean_inbound_rx_ring(struct rx_ring *rx_ring, int budget)
  1461. {
  1462. struct ql_adapter *qdev = rx_ring->qdev;
  1463. u32 prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1464. struct ql_net_rsp_iocb *net_rsp;
  1465. int count = 0;
  1466. /* While there are entries in the completion queue. */
  1467. while (prod != rx_ring->cnsmr_idx) {
  1468. QPRINTK(qdev, RX_STATUS, DEBUG,
  1469. "cq_id = %d, prod = %d, cnsmr = %d.\n.", rx_ring->cq_id,
  1470. prod, rx_ring->cnsmr_idx);
  1471. net_rsp = rx_ring->curr_entry;
  1472. rmb();
  1473. switch (net_rsp->opcode) {
  1474. case OPCODE_IB_MAC_IOCB:
  1475. ql_process_mac_rx_intr(qdev, rx_ring,
  1476. (struct ib_mac_iocb_rsp *)
  1477. net_rsp);
  1478. break;
  1479. case OPCODE_IB_AE_IOCB:
  1480. ql_process_chip_ae_intr(qdev, (struct ib_ae_iocb_rsp *)
  1481. net_rsp);
  1482. break;
  1483. default:
  1484. {
  1485. QPRINTK(qdev, RX_STATUS, DEBUG,
  1486. "Hit default case, not handled! dropping the packet, opcode = %x.\n",
  1487. net_rsp->opcode);
  1488. }
  1489. }
  1490. count++;
  1491. ql_update_cq(rx_ring);
  1492. prod = ql_read_sh_reg(rx_ring->prod_idx_sh_reg);
  1493. if (count == budget)
  1494. break;
  1495. }
  1496. ql_update_buffer_queues(qdev, rx_ring);
  1497. ql_write_cq_idx(rx_ring);
  1498. return count;
  1499. }
  1500. static int ql_napi_poll_msix(struct napi_struct *napi, int budget)
  1501. {
  1502. struct rx_ring *rx_ring = container_of(napi, struct rx_ring, napi);
  1503. struct ql_adapter *qdev = rx_ring->qdev;
  1504. int work_done = ql_clean_inbound_rx_ring(rx_ring, budget);
  1505. QPRINTK(qdev, RX_STATUS, DEBUG, "Enter, NAPI POLL cq_id = %d.\n",
  1506. rx_ring->cq_id);
  1507. if (work_done < budget) {
  1508. __netif_rx_complete(qdev->ndev, napi);
  1509. ql_enable_completion_interrupt(qdev, rx_ring->irq);
  1510. }
  1511. return work_done;
  1512. }
  1513. static void ql_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
  1514. {
  1515. struct ql_adapter *qdev = netdev_priv(ndev);
  1516. qdev->vlgrp = grp;
  1517. if (grp) {
  1518. QPRINTK(qdev, IFUP, DEBUG, "Turning on VLAN in NIC_RCV_CFG.\n");
  1519. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK |
  1520. NIC_RCV_CFG_VLAN_MATCH_AND_NON);
  1521. } else {
  1522. QPRINTK(qdev, IFUP, DEBUG,
  1523. "Turning off VLAN in NIC_RCV_CFG.\n");
  1524. ql_write32(qdev, NIC_RCV_CFG, NIC_RCV_CFG_VLAN_MASK);
  1525. }
  1526. }
  1527. static void ql_vlan_rx_add_vid(struct net_device *ndev, u16 vid)
  1528. {
  1529. struct ql_adapter *qdev = netdev_priv(ndev);
  1530. u32 enable_bit = MAC_ADDR_E;
  1531. spin_lock(&qdev->hw_lock);
  1532. if (ql_set_mac_addr_reg
  1533. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1534. QPRINTK(qdev, IFUP, ERR, "Failed to init vlan address.\n");
  1535. }
  1536. spin_unlock(&qdev->hw_lock);
  1537. }
  1538. static void ql_vlan_rx_kill_vid(struct net_device *ndev, u16 vid)
  1539. {
  1540. struct ql_adapter *qdev = netdev_priv(ndev);
  1541. u32 enable_bit = 0;
  1542. spin_lock(&qdev->hw_lock);
  1543. if (ql_set_mac_addr_reg
  1544. (qdev, (u8 *) &enable_bit, MAC_ADDR_TYPE_VLAN, vid)) {
  1545. QPRINTK(qdev, IFUP, ERR, "Failed to clear vlan address.\n");
  1546. }
  1547. spin_unlock(&qdev->hw_lock);
  1548. }
  1549. /* Worker thread to process a given rx_ring that is dedicated
  1550. * to outbound completions.
  1551. */
  1552. static void ql_tx_clean(struct work_struct *work)
  1553. {
  1554. struct rx_ring *rx_ring =
  1555. container_of(work, struct rx_ring, rx_work.work);
  1556. ql_clean_outbound_rx_ring(rx_ring);
  1557. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1558. }
  1559. /* Worker thread to process a given rx_ring that is dedicated
  1560. * to inbound completions.
  1561. */
  1562. static void ql_rx_clean(struct work_struct *work)
  1563. {
  1564. struct rx_ring *rx_ring =
  1565. container_of(work, struct rx_ring, rx_work.work);
  1566. ql_clean_inbound_rx_ring(rx_ring, 64);
  1567. ql_enable_completion_interrupt(rx_ring->qdev, rx_ring->irq);
  1568. }
  1569. /* MSI-X Multiple Vector Interrupt Handler for outbound completions. */
  1570. static irqreturn_t qlge_msix_tx_isr(int irq, void *dev_id)
  1571. {
  1572. struct rx_ring *rx_ring = dev_id;
  1573. queue_delayed_work_on(rx_ring->cpu, rx_ring->qdev->q_workqueue,
  1574. &rx_ring->rx_work, 0);
  1575. return IRQ_HANDLED;
  1576. }
  1577. /* MSI-X Multiple Vector Interrupt Handler for inbound completions. */
  1578. static irqreturn_t qlge_msix_rx_isr(int irq, void *dev_id)
  1579. {
  1580. struct rx_ring *rx_ring = dev_id;
  1581. struct ql_adapter *qdev = rx_ring->qdev;
  1582. netif_rx_schedule(qdev->ndev, &rx_ring->napi);
  1583. return IRQ_HANDLED;
  1584. }
  1585. /* We check here to see if we're already handling a legacy
  1586. * interrupt. If we are, then it must belong to another
  1587. * chip with which we're sharing the interrupt line.
  1588. */
  1589. int ql_legacy_check(struct ql_adapter *qdev)
  1590. {
  1591. int err;
  1592. spin_lock(&qdev->legacy_lock);
  1593. err = atomic_read(&qdev->intr_context[0].irq_cnt);
  1594. spin_unlock(&qdev->legacy_lock);
  1595. return err;
  1596. }
  1597. /* This handles a fatal error, MPI activity, and the default
  1598. * rx_ring in an MSI-X multiple vector environment.
  1599. * In MSI/Legacy environment it also process the rest of
  1600. * the rx_rings.
  1601. */
  1602. static irqreturn_t qlge_isr(int irq, void *dev_id)
  1603. {
  1604. struct rx_ring *rx_ring = dev_id;
  1605. struct ql_adapter *qdev = rx_ring->qdev;
  1606. struct intr_context *intr_context = &qdev->intr_context[0];
  1607. u32 var;
  1608. int i;
  1609. int work_done = 0;
  1610. if (qdev->legacy_check && qdev->legacy_check(qdev)) {
  1611. QPRINTK(qdev, INTR, INFO, "Already busy, not our interrupt.\n");
  1612. return IRQ_NONE; /* Not our interrupt */
  1613. }
  1614. var = ql_read32(qdev, STS);
  1615. /*
  1616. * Check for fatal error.
  1617. */
  1618. if (var & STS_FE) {
  1619. ql_queue_asic_error(qdev);
  1620. QPRINTK(qdev, INTR, ERR, "Got fatal error, STS = %x.\n", var);
  1621. var = ql_read32(qdev, ERR_STS);
  1622. QPRINTK(qdev, INTR, ERR,
  1623. "Resetting chip. Error Status Register = 0x%x\n", var);
  1624. return IRQ_HANDLED;
  1625. }
  1626. /*
  1627. * Check MPI processor activity.
  1628. */
  1629. if (var & STS_PI) {
  1630. /*
  1631. * We've got an async event or mailbox completion.
  1632. * Handle it and clear the source of the interrupt.
  1633. */
  1634. QPRINTK(qdev, INTR, ERR, "Got MPI processor interrupt.\n");
  1635. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1636. queue_delayed_work_on(smp_processor_id(), qdev->workqueue,
  1637. &qdev->mpi_work, 0);
  1638. work_done++;
  1639. }
  1640. /*
  1641. * Check the default queue and wake handler if active.
  1642. */
  1643. rx_ring = &qdev->rx_ring[0];
  1644. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) != rx_ring->cnsmr_idx) {
  1645. QPRINTK(qdev, INTR, INFO, "Waking handler for rx_ring[0].\n");
  1646. ql_disable_completion_interrupt(qdev, intr_context->intr);
  1647. queue_delayed_work_on(smp_processor_id(), qdev->q_workqueue,
  1648. &rx_ring->rx_work, 0);
  1649. work_done++;
  1650. }
  1651. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  1652. /*
  1653. * Start the DPC for each active queue.
  1654. */
  1655. for (i = 1; i < qdev->rx_ring_count; i++) {
  1656. rx_ring = &qdev->rx_ring[i];
  1657. if (ql_read_sh_reg(rx_ring->prod_idx_sh_reg) !=
  1658. rx_ring->cnsmr_idx) {
  1659. QPRINTK(qdev, INTR, INFO,
  1660. "Waking handler for rx_ring[%d].\n", i);
  1661. ql_disable_completion_interrupt(qdev,
  1662. intr_context->
  1663. intr);
  1664. if (i < qdev->rss_ring_first_cq_id)
  1665. queue_delayed_work_on(rx_ring->cpu,
  1666. qdev->q_workqueue,
  1667. &rx_ring->rx_work,
  1668. 0);
  1669. else
  1670. netif_rx_schedule(qdev->ndev,
  1671. &rx_ring->napi);
  1672. work_done++;
  1673. }
  1674. }
  1675. }
  1676. return work_done ? IRQ_HANDLED : IRQ_NONE;
  1677. }
  1678. static int ql_tso(struct sk_buff *skb, struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1679. {
  1680. if (skb_is_gso(skb)) {
  1681. int err;
  1682. if (skb_header_cloned(skb)) {
  1683. err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
  1684. if (err)
  1685. return err;
  1686. }
  1687. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1688. mac_iocb_ptr->flags3 |= OB_MAC_TSO_IOCB_IC;
  1689. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1690. mac_iocb_ptr->total_hdrs_len =
  1691. cpu_to_le16(skb_transport_offset(skb) + tcp_hdrlen(skb));
  1692. mac_iocb_ptr->net_trans_offset =
  1693. cpu_to_le16(skb_network_offset(skb) |
  1694. skb_transport_offset(skb)
  1695. << OB_MAC_TRANSPORT_HDR_SHIFT);
  1696. mac_iocb_ptr->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
  1697. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_LSO;
  1698. if (likely(skb->protocol == htons(ETH_P_IP))) {
  1699. struct iphdr *iph = ip_hdr(skb);
  1700. iph->check = 0;
  1701. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1702. tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
  1703. iph->daddr, 0,
  1704. IPPROTO_TCP,
  1705. 0);
  1706. } else if (skb->protocol == htons(ETH_P_IPV6)) {
  1707. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP6;
  1708. tcp_hdr(skb)->check =
  1709. ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
  1710. &ipv6_hdr(skb)->daddr,
  1711. 0, IPPROTO_TCP, 0);
  1712. }
  1713. return 1;
  1714. }
  1715. return 0;
  1716. }
  1717. static void ql_hw_csum_setup(struct sk_buff *skb,
  1718. struct ob_mac_tso_iocb_req *mac_iocb_ptr)
  1719. {
  1720. int len;
  1721. struct iphdr *iph = ip_hdr(skb);
  1722. u16 *check;
  1723. mac_iocb_ptr->opcode = OPCODE_OB_MAC_TSO_IOCB;
  1724. mac_iocb_ptr->frame_len = cpu_to_le32((u32) skb->len);
  1725. mac_iocb_ptr->net_trans_offset =
  1726. cpu_to_le16(skb_network_offset(skb) |
  1727. skb_transport_offset(skb) << OB_MAC_TRANSPORT_HDR_SHIFT);
  1728. mac_iocb_ptr->flags1 |= OB_MAC_TSO_IOCB_IP4;
  1729. len = (ntohs(iph->tot_len) - (iph->ihl << 2));
  1730. if (likely(iph->protocol == IPPROTO_TCP)) {
  1731. check = &(tcp_hdr(skb)->check);
  1732. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_TC;
  1733. mac_iocb_ptr->total_hdrs_len =
  1734. cpu_to_le16(skb_transport_offset(skb) +
  1735. (tcp_hdr(skb)->doff << 2));
  1736. } else {
  1737. check = &(udp_hdr(skb)->check);
  1738. mac_iocb_ptr->flags2 |= OB_MAC_TSO_IOCB_UC;
  1739. mac_iocb_ptr->total_hdrs_len =
  1740. cpu_to_le16(skb_transport_offset(skb) +
  1741. sizeof(struct udphdr));
  1742. }
  1743. *check = ~csum_tcpudp_magic(iph->saddr,
  1744. iph->daddr, len, iph->protocol, 0);
  1745. }
  1746. static int qlge_send(struct sk_buff *skb, struct net_device *ndev)
  1747. {
  1748. struct tx_ring_desc *tx_ring_desc;
  1749. struct ob_mac_iocb_req *mac_iocb_ptr;
  1750. struct ql_adapter *qdev = netdev_priv(ndev);
  1751. int tso;
  1752. struct tx_ring *tx_ring;
  1753. u32 tx_ring_idx = (u32) QL_TXQ_IDX(qdev, skb);
  1754. tx_ring = &qdev->tx_ring[tx_ring_idx];
  1755. if (unlikely(atomic_read(&tx_ring->tx_count) < 2)) {
  1756. QPRINTK(qdev, TX_QUEUED, INFO,
  1757. "%s: shutting down tx queue %d du to lack of resources.\n",
  1758. __func__, tx_ring_idx);
  1759. netif_stop_queue(ndev);
  1760. atomic_inc(&tx_ring->queue_stopped);
  1761. return NETDEV_TX_BUSY;
  1762. }
  1763. tx_ring_desc = &tx_ring->q[tx_ring->prod_idx];
  1764. mac_iocb_ptr = tx_ring_desc->queue_entry;
  1765. memset((void *)mac_iocb_ptr, 0, sizeof(mac_iocb_ptr));
  1766. if (ql_map_send(qdev, mac_iocb_ptr, skb, tx_ring_desc) != NETDEV_TX_OK) {
  1767. QPRINTK(qdev, TX_QUEUED, ERR, "Could not map the segments.\n");
  1768. return NETDEV_TX_BUSY;
  1769. }
  1770. mac_iocb_ptr->opcode = OPCODE_OB_MAC_IOCB;
  1771. mac_iocb_ptr->tid = tx_ring_desc->index;
  1772. /* We use the upper 32-bits to store the tx queue for this IO.
  1773. * When we get the completion we can use it to establish the context.
  1774. */
  1775. mac_iocb_ptr->txq_idx = tx_ring_idx;
  1776. tx_ring_desc->skb = skb;
  1777. mac_iocb_ptr->frame_len = cpu_to_le16((u16) skb->len);
  1778. if (qdev->vlgrp && vlan_tx_tag_present(skb)) {
  1779. QPRINTK(qdev, TX_QUEUED, DEBUG, "Adding a vlan tag %d.\n",
  1780. vlan_tx_tag_get(skb));
  1781. mac_iocb_ptr->flags3 |= OB_MAC_IOCB_V;
  1782. mac_iocb_ptr->vlan_tci = cpu_to_le16(vlan_tx_tag_get(skb));
  1783. }
  1784. tso = ql_tso(skb, (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1785. if (tso < 0) {
  1786. dev_kfree_skb_any(skb);
  1787. return NETDEV_TX_OK;
  1788. } else if (unlikely(!tso) && (skb->ip_summed == CHECKSUM_PARTIAL)) {
  1789. ql_hw_csum_setup(skb,
  1790. (struct ob_mac_tso_iocb_req *)mac_iocb_ptr);
  1791. }
  1792. QL_DUMP_OB_MAC_IOCB(mac_iocb_ptr);
  1793. tx_ring->prod_idx++;
  1794. if (tx_ring->prod_idx == tx_ring->wq_len)
  1795. tx_ring->prod_idx = 0;
  1796. wmb();
  1797. ql_write_db_reg(tx_ring->prod_idx, tx_ring->prod_idx_db_reg);
  1798. ndev->trans_start = jiffies;
  1799. QPRINTK(qdev, TX_QUEUED, DEBUG, "tx queued, slot %d, len %d\n",
  1800. tx_ring->prod_idx, skb->len);
  1801. atomic_dec(&tx_ring->tx_count);
  1802. return NETDEV_TX_OK;
  1803. }
  1804. static void ql_free_shadow_space(struct ql_adapter *qdev)
  1805. {
  1806. if (qdev->rx_ring_shadow_reg_area) {
  1807. pci_free_consistent(qdev->pdev,
  1808. PAGE_SIZE,
  1809. qdev->rx_ring_shadow_reg_area,
  1810. qdev->rx_ring_shadow_reg_dma);
  1811. qdev->rx_ring_shadow_reg_area = NULL;
  1812. }
  1813. if (qdev->tx_ring_shadow_reg_area) {
  1814. pci_free_consistent(qdev->pdev,
  1815. PAGE_SIZE,
  1816. qdev->tx_ring_shadow_reg_area,
  1817. qdev->tx_ring_shadow_reg_dma);
  1818. qdev->tx_ring_shadow_reg_area = NULL;
  1819. }
  1820. }
  1821. static int ql_alloc_shadow_space(struct ql_adapter *qdev)
  1822. {
  1823. qdev->rx_ring_shadow_reg_area =
  1824. pci_alloc_consistent(qdev->pdev,
  1825. PAGE_SIZE, &qdev->rx_ring_shadow_reg_dma);
  1826. if (qdev->rx_ring_shadow_reg_area == NULL) {
  1827. QPRINTK(qdev, IFUP, ERR,
  1828. "Allocation of RX shadow space failed.\n");
  1829. return -ENOMEM;
  1830. }
  1831. qdev->tx_ring_shadow_reg_area =
  1832. pci_alloc_consistent(qdev->pdev, PAGE_SIZE,
  1833. &qdev->tx_ring_shadow_reg_dma);
  1834. if (qdev->tx_ring_shadow_reg_area == NULL) {
  1835. QPRINTK(qdev, IFUP, ERR,
  1836. "Allocation of TX shadow space failed.\n");
  1837. goto err_wqp_sh_area;
  1838. }
  1839. return 0;
  1840. err_wqp_sh_area:
  1841. pci_free_consistent(qdev->pdev,
  1842. PAGE_SIZE,
  1843. qdev->rx_ring_shadow_reg_area,
  1844. qdev->rx_ring_shadow_reg_dma);
  1845. return -ENOMEM;
  1846. }
  1847. static void ql_init_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  1848. {
  1849. struct tx_ring_desc *tx_ring_desc;
  1850. int i;
  1851. struct ob_mac_iocb_req *mac_iocb_ptr;
  1852. mac_iocb_ptr = tx_ring->wq_base;
  1853. tx_ring_desc = tx_ring->q;
  1854. for (i = 0; i < tx_ring->wq_len; i++) {
  1855. tx_ring_desc->index = i;
  1856. tx_ring_desc->skb = NULL;
  1857. tx_ring_desc->queue_entry = mac_iocb_ptr;
  1858. mac_iocb_ptr++;
  1859. tx_ring_desc++;
  1860. }
  1861. atomic_set(&tx_ring->tx_count, tx_ring->wq_len);
  1862. atomic_set(&tx_ring->queue_stopped, 0);
  1863. }
  1864. static void ql_free_tx_resources(struct ql_adapter *qdev,
  1865. struct tx_ring *tx_ring)
  1866. {
  1867. if (tx_ring->wq_base) {
  1868. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1869. tx_ring->wq_base, tx_ring->wq_base_dma);
  1870. tx_ring->wq_base = NULL;
  1871. }
  1872. kfree(tx_ring->q);
  1873. tx_ring->q = NULL;
  1874. }
  1875. static int ql_alloc_tx_resources(struct ql_adapter *qdev,
  1876. struct tx_ring *tx_ring)
  1877. {
  1878. tx_ring->wq_base =
  1879. pci_alloc_consistent(qdev->pdev, tx_ring->wq_size,
  1880. &tx_ring->wq_base_dma);
  1881. if ((tx_ring->wq_base == NULL)
  1882. || tx_ring->wq_base_dma & (tx_ring->wq_size - 1)) {
  1883. QPRINTK(qdev, IFUP, ERR, "tx_ring alloc failed.\n");
  1884. return -ENOMEM;
  1885. }
  1886. tx_ring->q =
  1887. kmalloc(tx_ring->wq_len * sizeof(struct tx_ring_desc), GFP_KERNEL);
  1888. if (tx_ring->q == NULL)
  1889. goto err;
  1890. return 0;
  1891. err:
  1892. pci_free_consistent(qdev->pdev, tx_ring->wq_size,
  1893. tx_ring->wq_base, tx_ring->wq_base_dma);
  1894. return -ENOMEM;
  1895. }
  1896. void ql_free_lbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1897. {
  1898. int i;
  1899. struct bq_desc *lbq_desc;
  1900. for (i = 0; i < rx_ring->lbq_len; i++) {
  1901. lbq_desc = &rx_ring->lbq[i];
  1902. if (lbq_desc->p.lbq_page) {
  1903. pci_unmap_page(qdev->pdev,
  1904. pci_unmap_addr(lbq_desc, mapaddr),
  1905. pci_unmap_len(lbq_desc, maplen),
  1906. PCI_DMA_FROMDEVICE);
  1907. put_page(lbq_desc->p.lbq_page);
  1908. lbq_desc->p.lbq_page = NULL;
  1909. }
  1910. lbq_desc->bq->addr_lo = 0;
  1911. lbq_desc->bq->addr_hi = 0;
  1912. }
  1913. }
  1914. /*
  1915. * Allocate and map a page for each element of the lbq.
  1916. */
  1917. static int ql_alloc_lbq_buffers(struct ql_adapter *qdev,
  1918. struct rx_ring *rx_ring)
  1919. {
  1920. int i;
  1921. struct bq_desc *lbq_desc;
  1922. u64 map;
  1923. struct bq_element *bq = rx_ring->lbq_base;
  1924. for (i = 0; i < rx_ring->lbq_len; i++) {
  1925. lbq_desc = &rx_ring->lbq[i];
  1926. memset(lbq_desc, 0, sizeof(lbq_desc));
  1927. lbq_desc->bq = bq;
  1928. lbq_desc->index = i;
  1929. lbq_desc->p.lbq_page = alloc_page(GFP_ATOMIC);
  1930. if (unlikely(!lbq_desc->p.lbq_page)) {
  1931. QPRINTK(qdev, IFUP, ERR, "failed alloc_page().\n");
  1932. goto mem_error;
  1933. } else {
  1934. map = pci_map_page(qdev->pdev,
  1935. lbq_desc->p.lbq_page,
  1936. 0, PAGE_SIZE, PCI_DMA_FROMDEVICE);
  1937. if (pci_dma_mapping_error(qdev->pdev, map)) {
  1938. QPRINTK(qdev, IFUP, ERR,
  1939. "PCI mapping failed.\n");
  1940. goto mem_error;
  1941. }
  1942. pci_unmap_addr_set(lbq_desc, mapaddr, map);
  1943. pci_unmap_len_set(lbq_desc, maplen, PAGE_SIZE);
  1944. bq->addr_lo = cpu_to_le32(map);
  1945. bq->addr_hi = cpu_to_le32(map >> 32);
  1946. }
  1947. bq++;
  1948. }
  1949. return 0;
  1950. mem_error:
  1951. ql_free_lbq_buffers(qdev, rx_ring);
  1952. return -ENOMEM;
  1953. }
  1954. void ql_free_sbq_buffers(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  1955. {
  1956. int i;
  1957. struct bq_desc *sbq_desc;
  1958. for (i = 0; i < rx_ring->sbq_len; i++) {
  1959. sbq_desc = &rx_ring->sbq[i];
  1960. if (sbq_desc == NULL) {
  1961. QPRINTK(qdev, IFUP, ERR, "sbq_desc %d is NULL.\n", i);
  1962. return;
  1963. }
  1964. if (sbq_desc->p.skb) {
  1965. pci_unmap_single(qdev->pdev,
  1966. pci_unmap_addr(sbq_desc, mapaddr),
  1967. pci_unmap_len(sbq_desc, maplen),
  1968. PCI_DMA_FROMDEVICE);
  1969. dev_kfree_skb(sbq_desc->p.skb);
  1970. sbq_desc->p.skb = NULL;
  1971. }
  1972. if (sbq_desc->bq == NULL) {
  1973. QPRINTK(qdev, IFUP, ERR, "sbq_desc->bq %d is NULL.\n",
  1974. i);
  1975. return;
  1976. }
  1977. sbq_desc->bq->addr_lo = 0;
  1978. sbq_desc->bq->addr_hi = 0;
  1979. }
  1980. }
  1981. /* Allocate and map an skb for each element of the sbq. */
  1982. static int ql_alloc_sbq_buffers(struct ql_adapter *qdev,
  1983. struct rx_ring *rx_ring)
  1984. {
  1985. int i;
  1986. struct bq_desc *sbq_desc;
  1987. struct sk_buff *skb;
  1988. u64 map;
  1989. struct bq_element *bq = rx_ring->sbq_base;
  1990. for (i = 0; i < rx_ring->sbq_len; i++) {
  1991. sbq_desc = &rx_ring->sbq[i];
  1992. memset(sbq_desc, 0, sizeof(sbq_desc));
  1993. sbq_desc->index = i;
  1994. sbq_desc->bq = bq;
  1995. skb = netdev_alloc_skb(qdev->ndev, rx_ring->sbq_buf_size);
  1996. if (unlikely(!skb)) {
  1997. /* Better luck next round */
  1998. QPRINTK(qdev, IFUP, ERR,
  1999. "small buff alloc failed for %d bytes at index %d.\n",
  2000. rx_ring->sbq_buf_size, i);
  2001. goto mem_err;
  2002. }
  2003. skb_reserve(skb, QLGE_SB_PAD);
  2004. sbq_desc->p.skb = skb;
  2005. /*
  2006. * Map only half the buffer. Because the
  2007. * other half may get some data copied to it
  2008. * when the completion arrives.
  2009. */
  2010. map = pci_map_single(qdev->pdev,
  2011. skb->data,
  2012. rx_ring->sbq_buf_size / 2,
  2013. PCI_DMA_FROMDEVICE);
  2014. if (pci_dma_mapping_error(qdev->pdev, map)) {
  2015. QPRINTK(qdev, IFUP, ERR, "PCI mapping failed.\n");
  2016. goto mem_err;
  2017. }
  2018. pci_unmap_addr_set(sbq_desc, mapaddr, map);
  2019. pci_unmap_len_set(sbq_desc, maplen, rx_ring->sbq_buf_size / 2);
  2020. bq->addr_lo = /*sbq_desc->addr_lo = */
  2021. cpu_to_le32(map);
  2022. bq->addr_hi = /*sbq_desc->addr_hi = */
  2023. cpu_to_le32(map >> 32);
  2024. bq++;
  2025. }
  2026. return 0;
  2027. mem_err:
  2028. ql_free_sbq_buffers(qdev, rx_ring);
  2029. return -ENOMEM;
  2030. }
  2031. static void ql_free_rx_resources(struct ql_adapter *qdev,
  2032. struct rx_ring *rx_ring)
  2033. {
  2034. if (rx_ring->sbq_len)
  2035. ql_free_sbq_buffers(qdev, rx_ring);
  2036. if (rx_ring->lbq_len)
  2037. ql_free_lbq_buffers(qdev, rx_ring);
  2038. /* Free the small buffer queue. */
  2039. if (rx_ring->sbq_base) {
  2040. pci_free_consistent(qdev->pdev,
  2041. rx_ring->sbq_size,
  2042. rx_ring->sbq_base, rx_ring->sbq_base_dma);
  2043. rx_ring->sbq_base = NULL;
  2044. }
  2045. /* Free the small buffer queue control blocks. */
  2046. kfree(rx_ring->sbq);
  2047. rx_ring->sbq = NULL;
  2048. /* Free the large buffer queue. */
  2049. if (rx_ring->lbq_base) {
  2050. pci_free_consistent(qdev->pdev,
  2051. rx_ring->lbq_size,
  2052. rx_ring->lbq_base, rx_ring->lbq_base_dma);
  2053. rx_ring->lbq_base = NULL;
  2054. }
  2055. /* Free the large buffer queue control blocks. */
  2056. kfree(rx_ring->lbq);
  2057. rx_ring->lbq = NULL;
  2058. /* Free the rx queue. */
  2059. if (rx_ring->cq_base) {
  2060. pci_free_consistent(qdev->pdev,
  2061. rx_ring->cq_size,
  2062. rx_ring->cq_base, rx_ring->cq_base_dma);
  2063. rx_ring->cq_base = NULL;
  2064. }
  2065. }
  2066. /* Allocate queues and buffers for this completions queue based
  2067. * on the values in the parameter structure. */
  2068. static int ql_alloc_rx_resources(struct ql_adapter *qdev,
  2069. struct rx_ring *rx_ring)
  2070. {
  2071. /*
  2072. * Allocate the completion queue for this rx_ring.
  2073. */
  2074. rx_ring->cq_base =
  2075. pci_alloc_consistent(qdev->pdev, rx_ring->cq_size,
  2076. &rx_ring->cq_base_dma);
  2077. if (rx_ring->cq_base == NULL) {
  2078. QPRINTK(qdev, IFUP, ERR, "rx_ring alloc failed.\n");
  2079. return -ENOMEM;
  2080. }
  2081. if (rx_ring->sbq_len) {
  2082. /*
  2083. * Allocate small buffer queue.
  2084. */
  2085. rx_ring->sbq_base =
  2086. pci_alloc_consistent(qdev->pdev, rx_ring->sbq_size,
  2087. &rx_ring->sbq_base_dma);
  2088. if (rx_ring->sbq_base == NULL) {
  2089. QPRINTK(qdev, IFUP, ERR,
  2090. "Small buffer queue allocation failed.\n");
  2091. goto err_mem;
  2092. }
  2093. /*
  2094. * Allocate small buffer queue control blocks.
  2095. */
  2096. rx_ring->sbq =
  2097. kmalloc(rx_ring->sbq_len * sizeof(struct bq_desc),
  2098. GFP_KERNEL);
  2099. if (rx_ring->sbq == NULL) {
  2100. QPRINTK(qdev, IFUP, ERR,
  2101. "Small buffer queue control block allocation failed.\n");
  2102. goto err_mem;
  2103. }
  2104. if (ql_alloc_sbq_buffers(qdev, rx_ring)) {
  2105. QPRINTK(qdev, IFUP, ERR,
  2106. "Small buffer allocation failed.\n");
  2107. goto err_mem;
  2108. }
  2109. }
  2110. if (rx_ring->lbq_len) {
  2111. /*
  2112. * Allocate large buffer queue.
  2113. */
  2114. rx_ring->lbq_base =
  2115. pci_alloc_consistent(qdev->pdev, rx_ring->lbq_size,
  2116. &rx_ring->lbq_base_dma);
  2117. if (rx_ring->lbq_base == NULL) {
  2118. QPRINTK(qdev, IFUP, ERR,
  2119. "Large buffer queue allocation failed.\n");
  2120. goto err_mem;
  2121. }
  2122. /*
  2123. * Allocate large buffer queue control blocks.
  2124. */
  2125. rx_ring->lbq =
  2126. kmalloc(rx_ring->lbq_len * sizeof(struct bq_desc),
  2127. GFP_KERNEL);
  2128. if (rx_ring->lbq == NULL) {
  2129. QPRINTK(qdev, IFUP, ERR,
  2130. "Large buffer queue control block allocation failed.\n");
  2131. goto err_mem;
  2132. }
  2133. /*
  2134. * Allocate the buffers.
  2135. */
  2136. if (ql_alloc_lbq_buffers(qdev, rx_ring)) {
  2137. QPRINTK(qdev, IFUP, ERR,
  2138. "Large buffer allocation failed.\n");
  2139. goto err_mem;
  2140. }
  2141. }
  2142. return 0;
  2143. err_mem:
  2144. ql_free_rx_resources(qdev, rx_ring);
  2145. return -ENOMEM;
  2146. }
  2147. static void ql_tx_ring_clean(struct ql_adapter *qdev)
  2148. {
  2149. struct tx_ring *tx_ring;
  2150. struct tx_ring_desc *tx_ring_desc;
  2151. int i, j;
  2152. /*
  2153. * Loop through all queues and free
  2154. * any resources.
  2155. */
  2156. for (j = 0; j < qdev->tx_ring_count; j++) {
  2157. tx_ring = &qdev->tx_ring[j];
  2158. for (i = 0; i < tx_ring->wq_len; i++) {
  2159. tx_ring_desc = &tx_ring->q[i];
  2160. if (tx_ring_desc && tx_ring_desc->skb) {
  2161. QPRINTK(qdev, IFDOWN, ERR,
  2162. "Freeing lost SKB %p, from queue %d, index %d.\n",
  2163. tx_ring_desc->skb, j,
  2164. tx_ring_desc->index);
  2165. ql_unmap_send(qdev, tx_ring_desc,
  2166. tx_ring_desc->map_cnt);
  2167. dev_kfree_skb(tx_ring_desc->skb);
  2168. tx_ring_desc->skb = NULL;
  2169. }
  2170. }
  2171. }
  2172. }
  2173. static void ql_free_ring_cb(struct ql_adapter *qdev)
  2174. {
  2175. kfree(qdev->ring_mem);
  2176. }
  2177. static int ql_alloc_ring_cb(struct ql_adapter *qdev)
  2178. {
  2179. /* Allocate space for tx/rx ring control blocks. */
  2180. qdev->ring_mem_size =
  2181. (qdev->tx_ring_count * sizeof(struct tx_ring)) +
  2182. (qdev->rx_ring_count * sizeof(struct rx_ring));
  2183. qdev->ring_mem = kmalloc(qdev->ring_mem_size, GFP_KERNEL);
  2184. if (qdev->ring_mem == NULL) {
  2185. return -ENOMEM;
  2186. } else {
  2187. qdev->rx_ring = qdev->ring_mem;
  2188. qdev->tx_ring = qdev->ring_mem +
  2189. (qdev->rx_ring_count * sizeof(struct rx_ring));
  2190. }
  2191. return 0;
  2192. }
  2193. static void ql_free_mem_resources(struct ql_adapter *qdev)
  2194. {
  2195. int i;
  2196. for (i = 0; i < qdev->tx_ring_count; i++)
  2197. ql_free_tx_resources(qdev, &qdev->tx_ring[i]);
  2198. for (i = 0; i < qdev->rx_ring_count; i++)
  2199. ql_free_rx_resources(qdev, &qdev->rx_ring[i]);
  2200. ql_free_shadow_space(qdev);
  2201. }
  2202. static int ql_alloc_mem_resources(struct ql_adapter *qdev)
  2203. {
  2204. int i;
  2205. /* Allocate space for our shadow registers and such. */
  2206. if (ql_alloc_shadow_space(qdev))
  2207. return -ENOMEM;
  2208. for (i = 0; i < qdev->rx_ring_count; i++) {
  2209. if (ql_alloc_rx_resources(qdev, &qdev->rx_ring[i]) != 0) {
  2210. QPRINTK(qdev, IFUP, ERR,
  2211. "RX resource allocation failed.\n");
  2212. goto err_mem;
  2213. }
  2214. }
  2215. /* Allocate tx queue resources */
  2216. for (i = 0; i < qdev->tx_ring_count; i++) {
  2217. if (ql_alloc_tx_resources(qdev, &qdev->tx_ring[i]) != 0) {
  2218. QPRINTK(qdev, IFUP, ERR,
  2219. "TX resource allocation failed.\n");
  2220. goto err_mem;
  2221. }
  2222. }
  2223. return 0;
  2224. err_mem:
  2225. ql_free_mem_resources(qdev);
  2226. return -ENOMEM;
  2227. }
  2228. /* Set up the rx ring control block and pass it to the chip.
  2229. * The control block is defined as
  2230. * "Completion Queue Initialization Control Block", or cqicb.
  2231. */
  2232. static int ql_start_rx_ring(struct ql_adapter *qdev, struct rx_ring *rx_ring)
  2233. {
  2234. struct cqicb *cqicb = &rx_ring->cqicb;
  2235. void *shadow_reg = qdev->rx_ring_shadow_reg_area +
  2236. (rx_ring->cq_id * sizeof(u64) * 4);
  2237. u64 shadow_reg_dma = qdev->rx_ring_shadow_reg_dma +
  2238. (rx_ring->cq_id * sizeof(u64) * 4);
  2239. void __iomem *doorbell_area =
  2240. qdev->doorbell_area + (DB_PAGE_SIZE * (128 + rx_ring->cq_id));
  2241. int err = 0;
  2242. u16 bq_len;
  2243. /* Set up the shadow registers for this ring. */
  2244. rx_ring->prod_idx_sh_reg = shadow_reg;
  2245. rx_ring->prod_idx_sh_reg_dma = shadow_reg_dma;
  2246. shadow_reg += sizeof(u64);
  2247. shadow_reg_dma += sizeof(u64);
  2248. rx_ring->lbq_base_indirect = shadow_reg;
  2249. rx_ring->lbq_base_indirect_dma = shadow_reg_dma;
  2250. shadow_reg += sizeof(u64);
  2251. shadow_reg_dma += sizeof(u64);
  2252. rx_ring->sbq_base_indirect = shadow_reg;
  2253. rx_ring->sbq_base_indirect_dma = shadow_reg_dma;
  2254. /* PCI doorbell mem area + 0x00 for consumer index register */
  2255. rx_ring->cnsmr_idx_db_reg = (u32 *) doorbell_area;
  2256. rx_ring->cnsmr_idx = 0;
  2257. rx_ring->curr_entry = rx_ring->cq_base;
  2258. /* PCI doorbell mem area + 0x04 for valid register */
  2259. rx_ring->valid_db_reg = doorbell_area + 0x04;
  2260. /* PCI doorbell mem area + 0x18 for large buffer consumer */
  2261. rx_ring->lbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x18);
  2262. /* PCI doorbell mem area + 0x1c */
  2263. rx_ring->sbq_prod_idx_db_reg = (u32 *) (doorbell_area + 0x1c);
  2264. memset((void *)cqicb, 0, sizeof(struct cqicb));
  2265. cqicb->msix_vect = rx_ring->irq;
  2266. cqicb->len = cpu_to_le16(rx_ring->cq_len | LEN_V | LEN_CPP_CONT);
  2267. cqicb->addr_lo = cpu_to_le32(rx_ring->cq_base_dma);
  2268. cqicb->addr_hi = cpu_to_le32((u64) rx_ring->cq_base_dma >> 32);
  2269. cqicb->prod_idx_addr_lo = cpu_to_le32(rx_ring->prod_idx_sh_reg_dma);
  2270. cqicb->prod_idx_addr_hi =
  2271. cpu_to_le32((u64) rx_ring->prod_idx_sh_reg_dma >> 32);
  2272. /*
  2273. * Set up the control block load flags.
  2274. */
  2275. cqicb->flags = FLAGS_LC | /* Load queue base address */
  2276. FLAGS_LV | /* Load MSI-X vector */
  2277. FLAGS_LI; /* Load irq delay values */
  2278. if (rx_ring->lbq_len) {
  2279. cqicb->flags |= FLAGS_LL; /* Load lbq values */
  2280. *((u64 *) rx_ring->lbq_base_indirect) = rx_ring->lbq_base_dma;
  2281. cqicb->lbq_addr_lo =
  2282. cpu_to_le32(rx_ring->lbq_base_indirect_dma);
  2283. cqicb->lbq_addr_hi =
  2284. cpu_to_le32((u64) rx_ring->lbq_base_indirect_dma >> 32);
  2285. cqicb->lbq_buf_size = cpu_to_le32(rx_ring->lbq_buf_size);
  2286. bq_len = (u16) rx_ring->lbq_len;
  2287. cqicb->lbq_len = cpu_to_le16(bq_len);
  2288. rx_ring->lbq_prod_idx = rx_ring->lbq_len - 16;
  2289. rx_ring->lbq_curr_idx = 0;
  2290. rx_ring->lbq_clean_idx = rx_ring->lbq_prod_idx;
  2291. rx_ring->lbq_free_cnt = 16;
  2292. }
  2293. if (rx_ring->sbq_len) {
  2294. cqicb->flags |= FLAGS_LS; /* Load sbq values */
  2295. *((u64 *) rx_ring->sbq_base_indirect) = rx_ring->sbq_base_dma;
  2296. cqicb->sbq_addr_lo =
  2297. cpu_to_le32(rx_ring->sbq_base_indirect_dma);
  2298. cqicb->sbq_addr_hi =
  2299. cpu_to_le32((u64) rx_ring->sbq_base_indirect_dma >> 32);
  2300. cqicb->sbq_buf_size =
  2301. cpu_to_le16(((rx_ring->sbq_buf_size / 2) + 8) & 0xfffffff8);
  2302. bq_len = (u16) rx_ring->sbq_len;
  2303. cqicb->sbq_len = cpu_to_le16(bq_len);
  2304. rx_ring->sbq_prod_idx = rx_ring->sbq_len - 16;
  2305. rx_ring->sbq_curr_idx = 0;
  2306. rx_ring->sbq_clean_idx = rx_ring->sbq_prod_idx;
  2307. rx_ring->sbq_free_cnt = 16;
  2308. }
  2309. switch (rx_ring->type) {
  2310. case TX_Q:
  2311. /* If there's only one interrupt, then we use
  2312. * worker threads to process the outbound
  2313. * completion handling rx_rings. We do this so
  2314. * they can be run on multiple CPUs. There is
  2315. * room to play with this more where we would only
  2316. * run in a worker if there are more than x number
  2317. * of outbound completions on the queue and more
  2318. * than one queue active. Some threshold that
  2319. * would indicate a benefit in spite of the cost
  2320. * of a context switch.
  2321. * If there's more than one interrupt, then the
  2322. * outbound completions are processed in the ISR.
  2323. */
  2324. if (!test_bit(QL_MSIX_ENABLED, &qdev->flags))
  2325. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2326. else {
  2327. /* With all debug warnings on we see a WARN_ON message
  2328. * when we free the skb in the interrupt context.
  2329. */
  2330. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_tx_clean);
  2331. }
  2332. cqicb->irq_delay = cpu_to_le16(qdev->tx_coalesce_usecs);
  2333. cqicb->pkt_delay = cpu_to_le16(qdev->tx_max_coalesced_frames);
  2334. break;
  2335. case DEFAULT_Q:
  2336. INIT_DELAYED_WORK(&rx_ring->rx_work, ql_rx_clean);
  2337. cqicb->irq_delay = 0;
  2338. cqicb->pkt_delay = 0;
  2339. break;
  2340. case RX_Q:
  2341. /* Inbound completion handling rx_rings run in
  2342. * separate NAPI contexts.
  2343. */
  2344. netif_napi_add(qdev->ndev, &rx_ring->napi, ql_napi_poll_msix,
  2345. 64);
  2346. cqicb->irq_delay = cpu_to_le16(qdev->rx_coalesce_usecs);
  2347. cqicb->pkt_delay = cpu_to_le16(qdev->rx_max_coalesced_frames);
  2348. break;
  2349. default:
  2350. QPRINTK(qdev, IFUP, DEBUG, "Invalid rx_ring->type = %d.\n",
  2351. rx_ring->type);
  2352. }
  2353. QPRINTK(qdev, IFUP, INFO, "Initializing rx work queue.\n");
  2354. err = ql_write_cfg(qdev, cqicb, sizeof(struct cqicb),
  2355. CFG_LCQ, rx_ring->cq_id);
  2356. if (err) {
  2357. QPRINTK(qdev, IFUP, ERR, "Failed to load CQICB.\n");
  2358. return err;
  2359. }
  2360. QPRINTK(qdev, IFUP, INFO, "Successfully loaded CQICB.\n");
  2361. /*
  2362. * Advance the producer index for the buffer queues.
  2363. */
  2364. wmb();
  2365. if (rx_ring->lbq_len)
  2366. ql_write_db_reg(rx_ring->lbq_prod_idx,
  2367. rx_ring->lbq_prod_idx_db_reg);
  2368. if (rx_ring->sbq_len)
  2369. ql_write_db_reg(rx_ring->sbq_prod_idx,
  2370. rx_ring->sbq_prod_idx_db_reg);
  2371. return err;
  2372. }
  2373. static int ql_start_tx_ring(struct ql_adapter *qdev, struct tx_ring *tx_ring)
  2374. {
  2375. struct wqicb *wqicb = (struct wqicb *)tx_ring;
  2376. void __iomem *doorbell_area =
  2377. qdev->doorbell_area + (DB_PAGE_SIZE * tx_ring->wq_id);
  2378. void *shadow_reg = qdev->tx_ring_shadow_reg_area +
  2379. (tx_ring->wq_id * sizeof(u64));
  2380. u64 shadow_reg_dma = qdev->tx_ring_shadow_reg_dma +
  2381. (tx_ring->wq_id * sizeof(u64));
  2382. int err = 0;
  2383. /*
  2384. * Assign doorbell registers for this tx_ring.
  2385. */
  2386. /* TX PCI doorbell mem area for tx producer index */
  2387. tx_ring->prod_idx_db_reg = (u32 *) doorbell_area;
  2388. tx_ring->prod_idx = 0;
  2389. /* TX PCI doorbell mem area + 0x04 */
  2390. tx_ring->valid_db_reg = doorbell_area + 0x04;
  2391. /*
  2392. * Assign shadow registers for this tx_ring.
  2393. */
  2394. tx_ring->cnsmr_idx_sh_reg = shadow_reg;
  2395. tx_ring->cnsmr_idx_sh_reg_dma = shadow_reg_dma;
  2396. wqicb->len = cpu_to_le16(tx_ring->wq_len | Q_LEN_V | Q_LEN_CPP_CONT);
  2397. wqicb->flags = cpu_to_le16(Q_FLAGS_LC |
  2398. Q_FLAGS_LB | Q_FLAGS_LI | Q_FLAGS_LO);
  2399. wqicb->cq_id_rss = cpu_to_le16(tx_ring->cq_id);
  2400. wqicb->rid = 0;
  2401. wqicb->addr_lo = cpu_to_le32(tx_ring->wq_base_dma);
  2402. wqicb->addr_hi = cpu_to_le32((u64) tx_ring->wq_base_dma >> 32);
  2403. wqicb->cnsmr_idx_addr_lo = cpu_to_le32(tx_ring->cnsmr_idx_sh_reg_dma);
  2404. wqicb->cnsmr_idx_addr_hi =
  2405. cpu_to_le32((u64) tx_ring->cnsmr_idx_sh_reg_dma >> 32);
  2406. ql_init_tx_ring(qdev, tx_ring);
  2407. err = ql_write_cfg(qdev, wqicb, sizeof(wqicb), CFG_LRQ,
  2408. (u16) tx_ring->wq_id);
  2409. if (err) {
  2410. QPRINTK(qdev, IFUP, ERR, "Failed to load tx_ring.\n");
  2411. return err;
  2412. }
  2413. QPRINTK(qdev, IFUP, INFO, "Successfully loaded WQICB.\n");
  2414. return err;
  2415. }
  2416. static void ql_disable_msix(struct ql_adapter *qdev)
  2417. {
  2418. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2419. pci_disable_msix(qdev->pdev);
  2420. clear_bit(QL_MSIX_ENABLED, &qdev->flags);
  2421. kfree(qdev->msi_x_entry);
  2422. qdev->msi_x_entry = NULL;
  2423. } else if (test_bit(QL_MSI_ENABLED, &qdev->flags)) {
  2424. pci_disable_msi(qdev->pdev);
  2425. clear_bit(QL_MSI_ENABLED, &qdev->flags);
  2426. }
  2427. }
  2428. static void ql_enable_msix(struct ql_adapter *qdev)
  2429. {
  2430. int i;
  2431. qdev->intr_count = 1;
  2432. /* Get the MSIX vectors. */
  2433. if (irq_type == MSIX_IRQ) {
  2434. /* Try to alloc space for the msix struct,
  2435. * if it fails then go to MSI/legacy.
  2436. */
  2437. qdev->msi_x_entry = kcalloc(qdev->rx_ring_count,
  2438. sizeof(struct msix_entry),
  2439. GFP_KERNEL);
  2440. if (!qdev->msi_x_entry) {
  2441. irq_type = MSI_IRQ;
  2442. goto msi;
  2443. }
  2444. for (i = 0; i < qdev->rx_ring_count; i++)
  2445. qdev->msi_x_entry[i].entry = i;
  2446. if (!pci_enable_msix
  2447. (qdev->pdev, qdev->msi_x_entry, qdev->rx_ring_count)) {
  2448. set_bit(QL_MSIX_ENABLED, &qdev->flags);
  2449. qdev->intr_count = qdev->rx_ring_count;
  2450. QPRINTK(qdev, IFUP, INFO,
  2451. "MSI-X Enabled, got %d vectors.\n",
  2452. qdev->intr_count);
  2453. return;
  2454. } else {
  2455. kfree(qdev->msi_x_entry);
  2456. qdev->msi_x_entry = NULL;
  2457. QPRINTK(qdev, IFUP, WARNING,
  2458. "MSI-X Enable failed, trying MSI.\n");
  2459. irq_type = MSI_IRQ;
  2460. }
  2461. }
  2462. msi:
  2463. if (irq_type == MSI_IRQ) {
  2464. if (!pci_enable_msi(qdev->pdev)) {
  2465. set_bit(QL_MSI_ENABLED, &qdev->flags);
  2466. QPRINTK(qdev, IFUP, INFO,
  2467. "Running with MSI interrupts.\n");
  2468. return;
  2469. }
  2470. }
  2471. irq_type = LEG_IRQ;
  2472. spin_lock_init(&qdev->legacy_lock);
  2473. qdev->legacy_check = ql_legacy_check;
  2474. QPRINTK(qdev, IFUP, DEBUG, "Running with legacy interrupts.\n");
  2475. }
  2476. /*
  2477. * Here we build the intr_context structures based on
  2478. * our rx_ring count and intr vector count.
  2479. * The intr_context structure is used to hook each vector
  2480. * to possibly different handlers.
  2481. */
  2482. static void ql_resolve_queues_to_irqs(struct ql_adapter *qdev)
  2483. {
  2484. int i = 0;
  2485. struct intr_context *intr_context = &qdev->intr_context[0];
  2486. ql_enable_msix(qdev);
  2487. if (likely(test_bit(QL_MSIX_ENABLED, &qdev->flags))) {
  2488. /* Each rx_ring has it's
  2489. * own intr_context since we have separate
  2490. * vectors for each queue.
  2491. * This only true when MSI-X is enabled.
  2492. */
  2493. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2494. qdev->rx_ring[i].irq = i;
  2495. intr_context->intr = i;
  2496. intr_context->qdev = qdev;
  2497. /*
  2498. * We set up each vectors enable/disable/read bits so
  2499. * there's no bit/mask calculations in the critical path.
  2500. */
  2501. intr_context->intr_en_mask =
  2502. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2503. INTR_EN_TYPE_ENABLE | INTR_EN_IHD_MASK | INTR_EN_IHD
  2504. | i;
  2505. intr_context->intr_dis_mask =
  2506. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2507. INTR_EN_TYPE_DISABLE | INTR_EN_IHD_MASK |
  2508. INTR_EN_IHD | i;
  2509. intr_context->intr_read_mask =
  2510. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2511. INTR_EN_TYPE_READ | INTR_EN_IHD_MASK | INTR_EN_IHD |
  2512. i;
  2513. if (i == 0) {
  2514. /*
  2515. * Default queue handles bcast/mcast plus
  2516. * async events. Needs buffers.
  2517. */
  2518. intr_context->handler = qlge_isr;
  2519. sprintf(intr_context->name, "%s-default-queue",
  2520. qdev->ndev->name);
  2521. } else if (i < qdev->rss_ring_first_cq_id) {
  2522. /*
  2523. * Outbound queue is for outbound completions only.
  2524. */
  2525. intr_context->handler = qlge_msix_tx_isr;
  2526. sprintf(intr_context->name, "%s-txq-%d",
  2527. qdev->ndev->name, i);
  2528. } else {
  2529. /*
  2530. * Inbound queues handle unicast frames only.
  2531. */
  2532. intr_context->handler = qlge_msix_rx_isr;
  2533. sprintf(intr_context->name, "%s-rxq-%d",
  2534. qdev->ndev->name, i);
  2535. }
  2536. }
  2537. } else {
  2538. /*
  2539. * All rx_rings use the same intr_context since
  2540. * there is only one vector.
  2541. */
  2542. intr_context->intr = 0;
  2543. intr_context->qdev = qdev;
  2544. /*
  2545. * We set up each vectors enable/disable/read bits so
  2546. * there's no bit/mask calculations in the critical path.
  2547. */
  2548. intr_context->intr_en_mask =
  2549. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_ENABLE;
  2550. intr_context->intr_dis_mask =
  2551. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK |
  2552. INTR_EN_TYPE_DISABLE;
  2553. intr_context->intr_read_mask =
  2554. INTR_EN_TYPE_MASK | INTR_EN_INTR_MASK | INTR_EN_TYPE_READ;
  2555. /*
  2556. * Single interrupt means one handler for all rings.
  2557. */
  2558. intr_context->handler = qlge_isr;
  2559. sprintf(intr_context->name, "%s-single_irq", qdev->ndev->name);
  2560. for (i = 0; i < qdev->rx_ring_count; i++)
  2561. qdev->rx_ring[i].irq = 0;
  2562. }
  2563. }
  2564. static void ql_free_irq(struct ql_adapter *qdev)
  2565. {
  2566. int i;
  2567. struct intr_context *intr_context = &qdev->intr_context[0];
  2568. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2569. if (intr_context->hooked) {
  2570. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2571. free_irq(qdev->msi_x_entry[i].vector,
  2572. &qdev->rx_ring[i]);
  2573. QPRINTK(qdev, IFDOWN, ERR,
  2574. "freeing msix interrupt %d.\n", i);
  2575. } else {
  2576. free_irq(qdev->pdev->irq, &qdev->rx_ring[0]);
  2577. QPRINTK(qdev, IFDOWN, ERR,
  2578. "freeing msi interrupt %d.\n", i);
  2579. }
  2580. }
  2581. }
  2582. ql_disable_msix(qdev);
  2583. }
  2584. static int ql_request_irq(struct ql_adapter *qdev)
  2585. {
  2586. int i;
  2587. int status = 0;
  2588. struct pci_dev *pdev = qdev->pdev;
  2589. struct intr_context *intr_context = &qdev->intr_context[0];
  2590. ql_resolve_queues_to_irqs(qdev);
  2591. for (i = 0; i < qdev->intr_count; i++, intr_context++) {
  2592. atomic_set(&intr_context->irq_cnt, 0);
  2593. if (test_bit(QL_MSIX_ENABLED, &qdev->flags)) {
  2594. status = request_irq(qdev->msi_x_entry[i].vector,
  2595. intr_context->handler,
  2596. 0,
  2597. intr_context->name,
  2598. &qdev->rx_ring[i]);
  2599. if (status) {
  2600. QPRINTK(qdev, IFUP, ERR,
  2601. "Failed request for MSIX interrupt %d.\n",
  2602. i);
  2603. goto err_irq;
  2604. } else {
  2605. QPRINTK(qdev, IFUP, INFO,
  2606. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2607. i,
  2608. qdev->rx_ring[i].type ==
  2609. DEFAULT_Q ? "DEFAULT_Q" : "",
  2610. qdev->rx_ring[i].type ==
  2611. TX_Q ? "TX_Q" : "",
  2612. qdev->rx_ring[i].type ==
  2613. RX_Q ? "RX_Q" : "", intr_context->name);
  2614. }
  2615. } else {
  2616. QPRINTK(qdev, IFUP, DEBUG,
  2617. "trying msi or legacy interrupts.\n");
  2618. QPRINTK(qdev, IFUP, DEBUG,
  2619. "%s: irq = %d.\n", __func__, pdev->irq);
  2620. QPRINTK(qdev, IFUP, DEBUG,
  2621. "%s: context->name = %s.\n", __func__,
  2622. intr_context->name);
  2623. QPRINTK(qdev, IFUP, DEBUG,
  2624. "%s: dev_id = 0x%p.\n", __func__,
  2625. &qdev->rx_ring[0]);
  2626. status =
  2627. request_irq(pdev->irq, qlge_isr,
  2628. test_bit(QL_MSI_ENABLED,
  2629. &qdev->
  2630. flags) ? 0 : IRQF_SHARED,
  2631. intr_context->name, &qdev->rx_ring[0]);
  2632. if (status)
  2633. goto err_irq;
  2634. QPRINTK(qdev, IFUP, ERR,
  2635. "Hooked intr %d, queue type %s%s%s, with name %s.\n",
  2636. i,
  2637. qdev->rx_ring[0].type ==
  2638. DEFAULT_Q ? "DEFAULT_Q" : "",
  2639. qdev->rx_ring[0].type == TX_Q ? "TX_Q" : "",
  2640. qdev->rx_ring[0].type == RX_Q ? "RX_Q" : "",
  2641. intr_context->name);
  2642. }
  2643. intr_context->hooked = 1;
  2644. }
  2645. return status;
  2646. err_irq:
  2647. QPRINTK(qdev, IFUP, ERR, "Failed to get the interrupts!!!/n");
  2648. ql_free_irq(qdev);
  2649. return status;
  2650. }
  2651. static int ql_start_rss(struct ql_adapter *qdev)
  2652. {
  2653. struct ricb *ricb = &qdev->ricb;
  2654. int status = 0;
  2655. int i;
  2656. u8 *hash_id = (u8 *) ricb->hash_cq_id;
  2657. memset((void *)ricb, 0, sizeof(ricb));
  2658. ricb->base_cq = qdev->rss_ring_first_cq_id | RSS_L4K;
  2659. ricb->flags =
  2660. (RSS_L6K | RSS_LI | RSS_LB | RSS_LM | RSS_RI4 | RSS_RI6 | RSS_RT4 |
  2661. RSS_RT6);
  2662. ricb->mask = cpu_to_le16(qdev->rss_ring_count - 1);
  2663. /*
  2664. * Fill out the Indirection Table.
  2665. */
  2666. for (i = 0; i < 32; i++)
  2667. hash_id[i] = i & 1;
  2668. /*
  2669. * Random values for the IPv6 and IPv4 Hash Keys.
  2670. */
  2671. get_random_bytes((void *)&ricb->ipv6_hash_key[0], 40);
  2672. get_random_bytes((void *)&ricb->ipv4_hash_key[0], 16);
  2673. QPRINTK(qdev, IFUP, INFO, "Initializing RSS.\n");
  2674. status = ql_write_cfg(qdev, ricb, sizeof(ricb), CFG_LR, 0);
  2675. if (status) {
  2676. QPRINTK(qdev, IFUP, ERR, "Failed to load RICB.\n");
  2677. return status;
  2678. }
  2679. QPRINTK(qdev, IFUP, INFO, "Successfully loaded RICB.\n");
  2680. return status;
  2681. }
  2682. /* Initialize the frame-to-queue routing. */
  2683. static int ql_route_initialize(struct ql_adapter *qdev)
  2684. {
  2685. int status = 0;
  2686. int i;
  2687. /* Clear all the entries in the routing table. */
  2688. for (i = 0; i < 16; i++) {
  2689. status = ql_set_routing_reg(qdev, i, 0, 0);
  2690. if (status) {
  2691. QPRINTK(qdev, IFUP, ERR,
  2692. "Failed to init routing register for CAM packets.\n");
  2693. return status;
  2694. }
  2695. }
  2696. status = ql_set_routing_reg(qdev, RT_IDX_ALL_ERR_SLOT, RT_IDX_ERR, 1);
  2697. if (status) {
  2698. QPRINTK(qdev, IFUP, ERR,
  2699. "Failed to init routing register for error packets.\n");
  2700. return status;
  2701. }
  2702. status = ql_set_routing_reg(qdev, RT_IDX_BCAST_SLOT, RT_IDX_BCAST, 1);
  2703. if (status) {
  2704. QPRINTK(qdev, IFUP, ERR,
  2705. "Failed to init routing register for broadcast packets.\n");
  2706. return status;
  2707. }
  2708. /* If we have more than one inbound queue, then turn on RSS in the
  2709. * routing block.
  2710. */
  2711. if (qdev->rss_ring_count > 1) {
  2712. status = ql_set_routing_reg(qdev, RT_IDX_RSS_MATCH_SLOT,
  2713. RT_IDX_RSS_MATCH, 1);
  2714. if (status) {
  2715. QPRINTK(qdev, IFUP, ERR,
  2716. "Failed to init routing register for MATCH RSS packets.\n");
  2717. return status;
  2718. }
  2719. }
  2720. status = ql_set_routing_reg(qdev, RT_IDX_CAM_HIT_SLOT,
  2721. RT_IDX_CAM_HIT, 1);
  2722. if (status) {
  2723. QPRINTK(qdev, IFUP, ERR,
  2724. "Failed to init routing register for CAM packets.\n");
  2725. return status;
  2726. }
  2727. return status;
  2728. }
  2729. static int ql_adapter_initialize(struct ql_adapter *qdev)
  2730. {
  2731. u32 value, mask;
  2732. int i;
  2733. int status = 0;
  2734. /*
  2735. * Set up the System register to halt on errors.
  2736. */
  2737. value = SYS_EFE | SYS_FAE;
  2738. mask = value << 16;
  2739. ql_write32(qdev, SYS, mask | value);
  2740. /* Set the default queue. */
  2741. value = NIC_RCV_CFG_DFQ;
  2742. mask = NIC_RCV_CFG_DFQ_MASK;
  2743. ql_write32(qdev, NIC_RCV_CFG, (mask | value));
  2744. /* Set the MPI interrupt to enabled. */
  2745. ql_write32(qdev, INTR_MASK, (INTR_MASK_PI << 16) | INTR_MASK_PI);
  2746. /* Enable the function, set pagesize, enable error checking. */
  2747. value = FSC_FE | FSC_EPC_INBOUND | FSC_EPC_OUTBOUND |
  2748. FSC_EC | FSC_VM_PAGE_4K | FSC_SH;
  2749. /* Set/clear header splitting. */
  2750. mask = FSC_VM_PAGESIZE_MASK |
  2751. FSC_DBL_MASK | FSC_DBRST_MASK | (value << 16);
  2752. ql_write32(qdev, FSC, mask | value);
  2753. ql_write32(qdev, SPLT_HDR, SPLT_HDR_EP |
  2754. min(SMALL_BUFFER_SIZE, MAX_SPLIT_SIZE));
  2755. /* Start up the rx queues. */
  2756. for (i = 0; i < qdev->rx_ring_count; i++) {
  2757. status = ql_start_rx_ring(qdev, &qdev->rx_ring[i]);
  2758. if (status) {
  2759. QPRINTK(qdev, IFUP, ERR,
  2760. "Failed to start rx ring[%d].\n", i);
  2761. return status;
  2762. }
  2763. }
  2764. /* If there is more than one inbound completion queue
  2765. * then download a RICB to configure RSS.
  2766. */
  2767. if (qdev->rss_ring_count > 1) {
  2768. status = ql_start_rss(qdev);
  2769. if (status) {
  2770. QPRINTK(qdev, IFUP, ERR, "Failed to start RSS.\n");
  2771. return status;
  2772. }
  2773. }
  2774. /* Start up the tx queues. */
  2775. for (i = 0; i < qdev->tx_ring_count; i++) {
  2776. status = ql_start_tx_ring(qdev, &qdev->tx_ring[i]);
  2777. if (status) {
  2778. QPRINTK(qdev, IFUP, ERR,
  2779. "Failed to start tx ring[%d].\n", i);
  2780. return status;
  2781. }
  2782. }
  2783. status = ql_port_initialize(qdev);
  2784. if (status) {
  2785. QPRINTK(qdev, IFUP, ERR, "Failed to start port.\n");
  2786. return status;
  2787. }
  2788. status = ql_set_mac_addr_reg(qdev, (u8 *) qdev->ndev->perm_addr,
  2789. MAC_ADDR_TYPE_CAM_MAC, qdev->func);
  2790. if (status) {
  2791. QPRINTK(qdev, IFUP, ERR, "Failed to init mac address.\n");
  2792. return status;
  2793. }
  2794. status = ql_route_initialize(qdev);
  2795. if (status) {
  2796. QPRINTK(qdev, IFUP, ERR, "Failed to init routing table.\n");
  2797. return status;
  2798. }
  2799. /* Start NAPI for the RSS queues. */
  2800. for (i = qdev->rss_ring_first_cq_id; i < qdev->rx_ring_count; i++) {
  2801. QPRINTK(qdev, IFUP, INFO, "Enabling NAPI for rx_ring[%d].\n",
  2802. i);
  2803. napi_enable(&qdev->rx_ring[i].napi);
  2804. }
  2805. return status;
  2806. }
  2807. /* Issue soft reset to chip. */
  2808. static int ql_adapter_reset(struct ql_adapter *qdev)
  2809. {
  2810. u32 value;
  2811. int max_wait_time;
  2812. int status = 0;
  2813. int resetCnt = 0;
  2814. #define MAX_RESET_CNT 1
  2815. issueReset:
  2816. resetCnt++;
  2817. QPRINTK(qdev, IFDOWN, DEBUG, "Issue soft reset to chip.\n");
  2818. ql_write32(qdev, RST_FO, (RST_FO_FR << 16) | RST_FO_FR);
  2819. /* Wait for reset to complete. */
  2820. max_wait_time = 3;
  2821. QPRINTK(qdev, IFDOWN, DEBUG, "Wait %d seconds for reset to complete.\n",
  2822. max_wait_time);
  2823. do {
  2824. value = ql_read32(qdev, RST_FO);
  2825. if ((value & RST_FO_FR) == 0)
  2826. break;
  2827. ssleep(1);
  2828. } while ((--max_wait_time));
  2829. if (value & RST_FO_FR) {
  2830. QPRINTK(qdev, IFDOWN, ERR,
  2831. "Stuck in SoftReset: FSC_SR:0x%08x\n", value);
  2832. if (resetCnt < MAX_RESET_CNT)
  2833. goto issueReset;
  2834. }
  2835. if (max_wait_time == 0) {
  2836. status = -ETIMEDOUT;
  2837. QPRINTK(qdev, IFDOWN, ERR,
  2838. "ETIMEOUT!!! errored out of resetting the chip!\n");
  2839. }
  2840. return status;
  2841. }
  2842. static void ql_display_dev_info(struct net_device *ndev)
  2843. {
  2844. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  2845. QPRINTK(qdev, PROBE, INFO,
  2846. "Function #%d, NIC Roll %d, NIC Rev = %d, "
  2847. "XG Roll = %d, XG Rev = %d.\n",
  2848. qdev->func,
  2849. qdev->chip_rev_id & 0x0000000f,
  2850. qdev->chip_rev_id >> 4 & 0x0000000f,
  2851. qdev->chip_rev_id >> 8 & 0x0000000f,
  2852. qdev->chip_rev_id >> 12 & 0x0000000f);
  2853. QPRINTK(qdev, PROBE, INFO,
  2854. "MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
  2855. ndev->dev_addr[0], ndev->dev_addr[1],
  2856. ndev->dev_addr[2], ndev->dev_addr[3], ndev->dev_addr[4],
  2857. ndev->dev_addr[5]);
  2858. }
  2859. static int ql_adapter_down(struct ql_adapter *qdev)
  2860. {
  2861. struct net_device *ndev = qdev->ndev;
  2862. int i, status = 0;
  2863. struct rx_ring *rx_ring;
  2864. netif_stop_queue(ndev);
  2865. netif_carrier_off(ndev);
  2866. cancel_delayed_work_sync(&qdev->asic_reset_work);
  2867. cancel_delayed_work_sync(&qdev->mpi_reset_work);
  2868. cancel_delayed_work_sync(&qdev->mpi_work);
  2869. /* The default queue at index 0 is always processed in
  2870. * a workqueue.
  2871. */
  2872. cancel_delayed_work_sync(&qdev->rx_ring[0].rx_work);
  2873. /* The rest of the rx_rings are processed in
  2874. * a workqueue only if it's a single interrupt
  2875. * environment (MSI/Legacy).
  2876. */
  2877. for (i = 1; i > qdev->rx_ring_count; i++) {
  2878. rx_ring = &qdev->rx_ring[i];
  2879. /* Only the RSS rings use NAPI on multi irq
  2880. * environment. Outbound completion processing
  2881. * is done in interrupt context.
  2882. */
  2883. if (i >= qdev->rss_ring_first_cq_id) {
  2884. napi_disable(&rx_ring->napi);
  2885. } else {
  2886. cancel_delayed_work_sync(&rx_ring->rx_work);
  2887. }
  2888. }
  2889. clear_bit(QL_ADAPTER_UP, &qdev->flags);
  2890. ql_disable_interrupts(qdev);
  2891. ql_tx_ring_clean(qdev);
  2892. spin_lock(&qdev->hw_lock);
  2893. status = ql_adapter_reset(qdev);
  2894. if (status)
  2895. QPRINTK(qdev, IFDOWN, ERR, "reset(func #%d) FAILED!\n",
  2896. qdev->func);
  2897. spin_unlock(&qdev->hw_lock);
  2898. return status;
  2899. }
  2900. static int ql_adapter_up(struct ql_adapter *qdev)
  2901. {
  2902. int err = 0;
  2903. spin_lock(&qdev->hw_lock);
  2904. err = ql_adapter_initialize(qdev);
  2905. if (err) {
  2906. QPRINTK(qdev, IFUP, INFO, "Unable to initialize adapter.\n");
  2907. spin_unlock(&qdev->hw_lock);
  2908. goto err_init;
  2909. }
  2910. spin_unlock(&qdev->hw_lock);
  2911. set_bit(QL_ADAPTER_UP, &qdev->flags);
  2912. ql_enable_interrupts(qdev);
  2913. ql_enable_all_completion_interrupts(qdev);
  2914. if ((ql_read32(qdev, STS) & qdev->port_init)) {
  2915. netif_carrier_on(qdev->ndev);
  2916. netif_start_queue(qdev->ndev);
  2917. }
  2918. return 0;
  2919. err_init:
  2920. ql_adapter_reset(qdev);
  2921. return err;
  2922. }
  2923. static int ql_cycle_adapter(struct ql_adapter *qdev)
  2924. {
  2925. int status;
  2926. status = ql_adapter_down(qdev);
  2927. if (status)
  2928. goto error;
  2929. status = ql_adapter_up(qdev);
  2930. if (status)
  2931. goto error;
  2932. return status;
  2933. error:
  2934. QPRINTK(qdev, IFUP, ALERT,
  2935. "Driver up/down cycle failed, closing device\n");
  2936. rtnl_lock();
  2937. dev_close(qdev->ndev);
  2938. rtnl_unlock();
  2939. return status;
  2940. }
  2941. static void ql_release_adapter_resources(struct ql_adapter *qdev)
  2942. {
  2943. ql_free_mem_resources(qdev);
  2944. ql_free_irq(qdev);
  2945. }
  2946. static int ql_get_adapter_resources(struct ql_adapter *qdev)
  2947. {
  2948. int status = 0;
  2949. if (ql_alloc_mem_resources(qdev)) {
  2950. QPRINTK(qdev, IFUP, ERR, "Unable to allocate memory.\n");
  2951. return -ENOMEM;
  2952. }
  2953. status = ql_request_irq(qdev);
  2954. if (status)
  2955. goto err_irq;
  2956. return status;
  2957. err_irq:
  2958. ql_free_mem_resources(qdev);
  2959. return status;
  2960. }
  2961. static int qlge_close(struct net_device *ndev)
  2962. {
  2963. struct ql_adapter *qdev = netdev_priv(ndev);
  2964. /*
  2965. * Wait for device to recover from a reset.
  2966. * (Rarely happens, but possible.)
  2967. */
  2968. while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
  2969. msleep(1);
  2970. ql_adapter_down(qdev);
  2971. ql_release_adapter_resources(qdev);
  2972. ql_free_ring_cb(qdev);
  2973. return 0;
  2974. }
  2975. static int ql_configure_rings(struct ql_adapter *qdev)
  2976. {
  2977. int i;
  2978. struct rx_ring *rx_ring;
  2979. struct tx_ring *tx_ring;
  2980. int cpu_cnt = num_online_cpus();
  2981. /*
  2982. * For each processor present we allocate one
  2983. * rx_ring for outbound completions, and one
  2984. * rx_ring for inbound completions. Plus there is
  2985. * always the one default queue. For the CPU
  2986. * counts we end up with the following rx_rings:
  2987. * rx_ring count =
  2988. * one default queue +
  2989. * (CPU count * outbound completion rx_ring) +
  2990. * (CPU count * inbound (RSS) completion rx_ring)
  2991. * To keep it simple we limit the total number of
  2992. * queues to < 32, so we truncate CPU to 8.
  2993. * This limitation can be removed when requested.
  2994. */
  2995. if (cpu_cnt > 8)
  2996. cpu_cnt = 8;
  2997. /*
  2998. * rx_ring[0] is always the default queue.
  2999. */
  3000. /* Allocate outbound completion ring for each CPU. */
  3001. qdev->tx_ring_count = cpu_cnt;
  3002. /* Allocate inbound completion (RSS) ring for each CPU. */
  3003. qdev->rss_ring_count = cpu_cnt;
  3004. /* cq_id for the first inbound ring handler. */
  3005. qdev->rss_ring_first_cq_id = cpu_cnt + 1;
  3006. /*
  3007. * qdev->rx_ring_count:
  3008. * Total number of rx_rings. This includes the one
  3009. * default queue, a number of outbound completion
  3010. * handler rx_rings, and the number of inbound
  3011. * completion handler rx_rings.
  3012. */
  3013. qdev->rx_ring_count = qdev->tx_ring_count + qdev->rss_ring_count + 1;
  3014. if (ql_alloc_ring_cb(qdev))
  3015. return -ENOMEM;
  3016. for (i = 0; i < qdev->tx_ring_count; i++) {
  3017. tx_ring = &qdev->tx_ring[i];
  3018. memset((void *)tx_ring, 0, sizeof(tx_ring));
  3019. tx_ring->qdev = qdev;
  3020. tx_ring->wq_id = i;
  3021. tx_ring->wq_len = qdev->tx_ring_size;
  3022. tx_ring->wq_size =
  3023. tx_ring->wq_len * sizeof(struct ob_mac_iocb_req);
  3024. /*
  3025. * The completion queue ID for the tx rings start
  3026. * immediately after the default Q ID, which is zero.
  3027. */
  3028. tx_ring->cq_id = i + 1;
  3029. }
  3030. for (i = 0; i < qdev->rx_ring_count; i++) {
  3031. rx_ring = &qdev->rx_ring[i];
  3032. memset((void *)rx_ring, 0, sizeof(rx_ring));
  3033. rx_ring->qdev = qdev;
  3034. rx_ring->cq_id = i;
  3035. rx_ring->cpu = i % cpu_cnt; /* CPU to run handler on. */
  3036. if (i == 0) { /* Default queue at index 0. */
  3037. /*
  3038. * Default queue handles bcast/mcast plus
  3039. * async events. Needs buffers.
  3040. */
  3041. rx_ring->cq_len = qdev->rx_ring_size;
  3042. rx_ring->cq_size =
  3043. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3044. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3045. rx_ring->lbq_size =
  3046. rx_ring->lbq_len * sizeof(struct bq_element);
  3047. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3048. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3049. rx_ring->sbq_size =
  3050. rx_ring->sbq_len * sizeof(struct bq_element);
  3051. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3052. rx_ring->type = DEFAULT_Q;
  3053. } else if (i < qdev->rss_ring_first_cq_id) {
  3054. /*
  3055. * Outbound queue handles outbound completions only.
  3056. */
  3057. /* outbound cq is same size as tx_ring it services. */
  3058. rx_ring->cq_len = qdev->tx_ring_size;
  3059. rx_ring->cq_size =
  3060. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3061. rx_ring->lbq_len = 0;
  3062. rx_ring->lbq_size = 0;
  3063. rx_ring->lbq_buf_size = 0;
  3064. rx_ring->sbq_len = 0;
  3065. rx_ring->sbq_size = 0;
  3066. rx_ring->sbq_buf_size = 0;
  3067. rx_ring->type = TX_Q;
  3068. } else { /* Inbound completions (RSS) queues */
  3069. /*
  3070. * Inbound queues handle unicast frames only.
  3071. */
  3072. rx_ring->cq_len = qdev->rx_ring_size;
  3073. rx_ring->cq_size =
  3074. rx_ring->cq_len * sizeof(struct ql_net_rsp_iocb);
  3075. rx_ring->lbq_len = NUM_LARGE_BUFFERS;
  3076. rx_ring->lbq_size =
  3077. rx_ring->lbq_len * sizeof(struct bq_element);
  3078. rx_ring->lbq_buf_size = LARGE_BUFFER_SIZE;
  3079. rx_ring->sbq_len = NUM_SMALL_BUFFERS;
  3080. rx_ring->sbq_size =
  3081. rx_ring->sbq_len * sizeof(struct bq_element);
  3082. rx_ring->sbq_buf_size = SMALL_BUFFER_SIZE * 2;
  3083. rx_ring->type = RX_Q;
  3084. }
  3085. }
  3086. return 0;
  3087. }
  3088. static int qlge_open(struct net_device *ndev)
  3089. {
  3090. int err = 0;
  3091. struct ql_adapter *qdev = netdev_priv(ndev);
  3092. err = ql_configure_rings(qdev);
  3093. if (err)
  3094. return err;
  3095. err = ql_get_adapter_resources(qdev);
  3096. if (err)
  3097. goto error_up;
  3098. err = ql_adapter_up(qdev);
  3099. if (err)
  3100. goto error_up;
  3101. return err;
  3102. error_up:
  3103. ql_release_adapter_resources(qdev);
  3104. ql_free_ring_cb(qdev);
  3105. return err;
  3106. }
  3107. static int qlge_change_mtu(struct net_device *ndev, int new_mtu)
  3108. {
  3109. struct ql_adapter *qdev = netdev_priv(ndev);
  3110. if (ndev->mtu == 1500 && new_mtu == 9000) {
  3111. QPRINTK(qdev, IFUP, ERR, "Changing to jumbo MTU.\n");
  3112. } else if (ndev->mtu == 9000 && new_mtu == 1500) {
  3113. QPRINTK(qdev, IFUP, ERR, "Changing to normal MTU.\n");
  3114. } else if ((ndev->mtu == 1500 && new_mtu == 1500) ||
  3115. (ndev->mtu == 9000 && new_mtu == 9000)) {
  3116. return 0;
  3117. } else
  3118. return -EINVAL;
  3119. ndev->mtu = new_mtu;
  3120. return 0;
  3121. }
  3122. static struct net_device_stats *qlge_get_stats(struct net_device
  3123. *ndev)
  3124. {
  3125. struct ql_adapter *qdev = netdev_priv(ndev);
  3126. return &qdev->stats;
  3127. }
  3128. static void qlge_set_multicast_list(struct net_device *ndev)
  3129. {
  3130. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3131. struct dev_mc_list *mc_ptr;
  3132. int i;
  3133. spin_lock(&qdev->hw_lock);
  3134. /*
  3135. * Set or clear promiscuous mode if a
  3136. * transition is taking place.
  3137. */
  3138. if (ndev->flags & IFF_PROMISC) {
  3139. if (!test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3140. if (ql_set_routing_reg
  3141. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 1)) {
  3142. QPRINTK(qdev, HW, ERR,
  3143. "Failed to set promiscous mode.\n");
  3144. } else {
  3145. set_bit(QL_PROMISCUOUS, &qdev->flags);
  3146. }
  3147. }
  3148. } else {
  3149. if (test_bit(QL_PROMISCUOUS, &qdev->flags)) {
  3150. if (ql_set_routing_reg
  3151. (qdev, RT_IDX_PROMISCUOUS_SLOT, RT_IDX_VALID, 0)) {
  3152. QPRINTK(qdev, HW, ERR,
  3153. "Failed to clear promiscous mode.\n");
  3154. } else {
  3155. clear_bit(QL_PROMISCUOUS, &qdev->flags);
  3156. }
  3157. }
  3158. }
  3159. /*
  3160. * Set or clear all multicast mode if a
  3161. * transition is taking place.
  3162. */
  3163. if ((ndev->flags & IFF_ALLMULTI) ||
  3164. (ndev->mc_count > MAX_MULTICAST_ENTRIES)) {
  3165. if (!test_bit(QL_ALLMULTI, &qdev->flags)) {
  3166. if (ql_set_routing_reg
  3167. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 1)) {
  3168. QPRINTK(qdev, HW, ERR,
  3169. "Failed to set all-multi mode.\n");
  3170. } else {
  3171. set_bit(QL_ALLMULTI, &qdev->flags);
  3172. }
  3173. }
  3174. } else {
  3175. if (test_bit(QL_ALLMULTI, &qdev->flags)) {
  3176. if (ql_set_routing_reg
  3177. (qdev, RT_IDX_ALLMULTI_SLOT, RT_IDX_MCAST, 0)) {
  3178. QPRINTK(qdev, HW, ERR,
  3179. "Failed to clear all-multi mode.\n");
  3180. } else {
  3181. clear_bit(QL_ALLMULTI, &qdev->flags);
  3182. }
  3183. }
  3184. }
  3185. if (ndev->mc_count) {
  3186. for (i = 0, mc_ptr = ndev->mc_list; mc_ptr;
  3187. i++, mc_ptr = mc_ptr->next)
  3188. if (ql_set_mac_addr_reg(qdev, (u8 *) mc_ptr->dmi_addr,
  3189. MAC_ADDR_TYPE_MULTI_MAC, i)) {
  3190. QPRINTK(qdev, HW, ERR,
  3191. "Failed to loadmulticast address.\n");
  3192. goto exit;
  3193. }
  3194. if (ql_set_routing_reg
  3195. (qdev, RT_IDX_MCAST_MATCH_SLOT, RT_IDX_MCAST_MATCH, 1)) {
  3196. QPRINTK(qdev, HW, ERR,
  3197. "Failed to set multicast match mode.\n");
  3198. } else {
  3199. set_bit(QL_ALLMULTI, &qdev->flags);
  3200. }
  3201. }
  3202. exit:
  3203. spin_unlock(&qdev->hw_lock);
  3204. }
  3205. static int qlge_set_mac_address(struct net_device *ndev, void *p)
  3206. {
  3207. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3208. struct sockaddr *addr = p;
  3209. if (netif_running(ndev))
  3210. return -EBUSY;
  3211. if (!is_valid_ether_addr(addr->sa_data))
  3212. return -EADDRNOTAVAIL;
  3213. memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
  3214. spin_lock(&qdev->hw_lock);
  3215. if (ql_set_mac_addr_reg(qdev, (u8 *) ndev->dev_addr,
  3216. MAC_ADDR_TYPE_CAM_MAC, qdev->func)) {/* Unicast */
  3217. QPRINTK(qdev, HW, ERR, "Failed to load MAC address.\n");
  3218. return -1;
  3219. }
  3220. spin_unlock(&qdev->hw_lock);
  3221. return 0;
  3222. }
  3223. static void qlge_tx_timeout(struct net_device *ndev)
  3224. {
  3225. struct ql_adapter *qdev = (struct ql_adapter *)netdev_priv(ndev);
  3226. queue_delayed_work(qdev->workqueue, &qdev->asic_reset_work, 0);
  3227. }
  3228. static void ql_asic_reset_work(struct work_struct *work)
  3229. {
  3230. struct ql_adapter *qdev =
  3231. container_of(work, struct ql_adapter, asic_reset_work.work);
  3232. ql_cycle_adapter(qdev);
  3233. }
  3234. static void ql_get_board_info(struct ql_adapter *qdev)
  3235. {
  3236. qdev->func =
  3237. (ql_read32(qdev, STS) & STS_FUNC_ID_MASK) >> STS_FUNC_ID_SHIFT;
  3238. if (qdev->func) {
  3239. qdev->xg_sem_mask = SEM_XGMAC1_MASK;
  3240. qdev->port_link_up = STS_PL1;
  3241. qdev->port_init = STS_PI1;
  3242. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBI;
  3243. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC2_MBO;
  3244. } else {
  3245. qdev->xg_sem_mask = SEM_XGMAC0_MASK;
  3246. qdev->port_link_up = STS_PL0;
  3247. qdev->port_init = STS_PI0;
  3248. qdev->mailbox_in = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBI;
  3249. qdev->mailbox_out = PROC_ADDR_MPI_RISC | PROC_ADDR_FUNC0_MBO;
  3250. }
  3251. qdev->chip_rev_id = ql_read32(qdev, REV_ID);
  3252. }
  3253. static void ql_release_all(struct pci_dev *pdev)
  3254. {
  3255. struct net_device *ndev = pci_get_drvdata(pdev);
  3256. struct ql_adapter *qdev = netdev_priv(ndev);
  3257. if (qdev->workqueue) {
  3258. destroy_workqueue(qdev->workqueue);
  3259. qdev->workqueue = NULL;
  3260. }
  3261. if (qdev->q_workqueue) {
  3262. destroy_workqueue(qdev->q_workqueue);
  3263. qdev->q_workqueue = NULL;
  3264. }
  3265. if (qdev->reg_base)
  3266. iounmap((void *)qdev->reg_base);
  3267. if (qdev->doorbell_area)
  3268. iounmap(qdev->doorbell_area);
  3269. pci_release_regions(pdev);
  3270. pci_set_drvdata(pdev, NULL);
  3271. }
  3272. static int __devinit ql_init_device(struct pci_dev *pdev,
  3273. struct net_device *ndev, int cards_found)
  3274. {
  3275. struct ql_adapter *qdev = netdev_priv(ndev);
  3276. int pos, err = 0;
  3277. u16 val16;
  3278. memset((void *)qdev, 0, sizeof(qdev));
  3279. err = pci_enable_device(pdev);
  3280. if (err) {
  3281. dev_err(&pdev->dev, "PCI device enable failed.\n");
  3282. return err;
  3283. }
  3284. pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
  3285. if (pos <= 0) {
  3286. dev_err(&pdev->dev, PFX "Cannot find PCI Express capability, "
  3287. "aborting.\n");
  3288. goto err_out;
  3289. } else {
  3290. pci_read_config_word(pdev, pos + PCI_EXP_DEVCTL, &val16);
  3291. val16 &= ~PCI_EXP_DEVCTL_NOSNOOP_EN;
  3292. val16 |= (PCI_EXP_DEVCTL_CERE |
  3293. PCI_EXP_DEVCTL_NFERE |
  3294. PCI_EXP_DEVCTL_FERE | PCI_EXP_DEVCTL_URRE);
  3295. pci_write_config_word(pdev, pos + PCI_EXP_DEVCTL, val16);
  3296. }
  3297. err = pci_request_regions(pdev, DRV_NAME);
  3298. if (err) {
  3299. dev_err(&pdev->dev, "PCI region request failed.\n");
  3300. goto err_out;
  3301. }
  3302. pci_set_master(pdev);
  3303. if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
  3304. set_bit(QL_DMA64, &qdev->flags);
  3305. err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
  3306. } else {
  3307. err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
  3308. if (!err)
  3309. err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
  3310. }
  3311. if (err) {
  3312. dev_err(&pdev->dev, "No usable DMA configuration.\n");
  3313. goto err_out;
  3314. }
  3315. pci_set_drvdata(pdev, ndev);
  3316. qdev->reg_base =
  3317. ioremap_nocache(pci_resource_start(pdev, 1),
  3318. pci_resource_len(pdev, 1));
  3319. if (!qdev->reg_base) {
  3320. dev_err(&pdev->dev, "Register mapping failed.\n");
  3321. err = -ENOMEM;
  3322. goto err_out;
  3323. }
  3324. qdev->doorbell_area_size = pci_resource_len(pdev, 3);
  3325. qdev->doorbell_area =
  3326. ioremap_nocache(pci_resource_start(pdev, 3),
  3327. pci_resource_len(pdev, 3));
  3328. if (!qdev->doorbell_area) {
  3329. dev_err(&pdev->dev, "Doorbell register mapping failed.\n");
  3330. err = -ENOMEM;
  3331. goto err_out;
  3332. }
  3333. ql_get_board_info(qdev);
  3334. qdev->ndev = ndev;
  3335. qdev->pdev = pdev;
  3336. qdev->msg_enable = netif_msg_init(debug, default_msg);
  3337. spin_lock_init(&qdev->hw_lock);
  3338. spin_lock_init(&qdev->stats_lock);
  3339. /* make sure the EEPROM is good */
  3340. err = ql_get_flash_params(qdev);
  3341. if (err) {
  3342. dev_err(&pdev->dev, "Invalid FLASH.\n");
  3343. goto err_out;
  3344. }
  3345. if (!is_valid_ether_addr(qdev->flash.mac_addr))
  3346. goto err_out;
  3347. memcpy(ndev->dev_addr, qdev->flash.mac_addr, ndev->addr_len);
  3348. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3349. /* Set up the default ring sizes. */
  3350. qdev->tx_ring_size = NUM_TX_RING_ENTRIES;
  3351. qdev->rx_ring_size = NUM_RX_RING_ENTRIES;
  3352. /* Set up the coalescing parameters. */
  3353. qdev->rx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3354. qdev->tx_coalesce_usecs = DFLT_COALESCE_WAIT;
  3355. qdev->rx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3356. qdev->tx_max_coalesced_frames = DFLT_INTER_FRAME_WAIT;
  3357. /*
  3358. * Set up the operating parameters.
  3359. */
  3360. qdev->rx_csum = 1;
  3361. qdev->q_workqueue = create_workqueue(ndev->name);
  3362. qdev->workqueue = create_singlethread_workqueue(ndev->name);
  3363. INIT_DELAYED_WORK(&qdev->asic_reset_work, ql_asic_reset_work);
  3364. INIT_DELAYED_WORK(&qdev->mpi_reset_work, ql_mpi_reset_work);
  3365. INIT_DELAYED_WORK(&qdev->mpi_work, ql_mpi_work);
  3366. if (!cards_found) {
  3367. dev_info(&pdev->dev, "%s\n", DRV_STRING);
  3368. dev_info(&pdev->dev, "Driver name: %s, Version: %s.\n",
  3369. DRV_NAME, DRV_VERSION);
  3370. }
  3371. return 0;
  3372. err_out:
  3373. ql_release_all(pdev);
  3374. pci_disable_device(pdev);
  3375. return err;
  3376. }
  3377. static int __devinit qlge_probe(struct pci_dev *pdev,
  3378. const struct pci_device_id *pci_entry)
  3379. {
  3380. struct net_device *ndev = NULL;
  3381. struct ql_adapter *qdev = NULL;
  3382. static int cards_found = 0;
  3383. int err = 0;
  3384. ndev = alloc_etherdev(sizeof(struct ql_adapter));
  3385. if (!ndev)
  3386. return -ENOMEM;
  3387. err = ql_init_device(pdev, ndev, cards_found);
  3388. if (err < 0) {
  3389. free_netdev(ndev);
  3390. return err;
  3391. }
  3392. qdev = netdev_priv(ndev);
  3393. SET_NETDEV_DEV(ndev, &pdev->dev);
  3394. ndev->features = (0
  3395. | NETIF_F_IP_CSUM
  3396. | NETIF_F_SG
  3397. | NETIF_F_TSO
  3398. | NETIF_F_TSO6
  3399. | NETIF_F_TSO_ECN
  3400. | NETIF_F_HW_VLAN_TX
  3401. | NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER);
  3402. if (test_bit(QL_DMA64, &qdev->flags))
  3403. ndev->features |= NETIF_F_HIGHDMA;
  3404. /*
  3405. * Set up net_device structure.
  3406. */
  3407. ndev->tx_queue_len = qdev->tx_ring_size;
  3408. ndev->irq = pdev->irq;
  3409. ndev->open = qlge_open;
  3410. ndev->stop = qlge_close;
  3411. ndev->hard_start_xmit = qlge_send;
  3412. SET_ETHTOOL_OPS(ndev, &qlge_ethtool_ops);
  3413. ndev->change_mtu = qlge_change_mtu;
  3414. ndev->get_stats = qlge_get_stats;
  3415. ndev->set_multicast_list = qlge_set_multicast_list;
  3416. ndev->set_mac_address = qlge_set_mac_address;
  3417. ndev->tx_timeout = qlge_tx_timeout;
  3418. ndev->watchdog_timeo = 10 * HZ;
  3419. ndev->vlan_rx_register = ql_vlan_rx_register;
  3420. ndev->vlan_rx_add_vid = ql_vlan_rx_add_vid;
  3421. ndev->vlan_rx_kill_vid = ql_vlan_rx_kill_vid;
  3422. err = register_netdev(ndev);
  3423. if (err) {
  3424. dev_err(&pdev->dev, "net device registration failed.\n");
  3425. ql_release_all(pdev);
  3426. pci_disable_device(pdev);
  3427. return err;
  3428. }
  3429. netif_carrier_off(ndev);
  3430. netif_stop_queue(ndev);
  3431. ql_display_dev_info(ndev);
  3432. cards_found++;
  3433. return 0;
  3434. }
  3435. static void __devexit qlge_remove(struct pci_dev *pdev)
  3436. {
  3437. struct net_device *ndev = pci_get_drvdata(pdev);
  3438. unregister_netdev(ndev);
  3439. ql_release_all(pdev);
  3440. pci_disable_device(pdev);
  3441. free_netdev(ndev);
  3442. }
  3443. /*
  3444. * This callback is called by the PCI subsystem whenever
  3445. * a PCI bus error is detected.
  3446. */
  3447. static pci_ers_result_t qlge_io_error_detected(struct pci_dev *pdev,
  3448. enum pci_channel_state state)
  3449. {
  3450. struct net_device *ndev = pci_get_drvdata(pdev);
  3451. struct ql_adapter *qdev = netdev_priv(ndev);
  3452. if (netif_running(ndev))
  3453. ql_adapter_down(qdev);
  3454. pci_disable_device(pdev);
  3455. /* Request a slot reset. */
  3456. return PCI_ERS_RESULT_NEED_RESET;
  3457. }
  3458. /*
  3459. * This callback is called after the PCI buss has been reset.
  3460. * Basically, this tries to restart the card from scratch.
  3461. * This is a shortened version of the device probe/discovery code,
  3462. * it resembles the first-half of the () routine.
  3463. */
  3464. static pci_ers_result_t qlge_io_slot_reset(struct pci_dev *pdev)
  3465. {
  3466. struct net_device *ndev = pci_get_drvdata(pdev);
  3467. struct ql_adapter *qdev = netdev_priv(ndev);
  3468. if (pci_enable_device(pdev)) {
  3469. QPRINTK(qdev, IFUP, ERR,
  3470. "Cannot re-enable PCI device after reset.\n");
  3471. return PCI_ERS_RESULT_DISCONNECT;
  3472. }
  3473. pci_set_master(pdev);
  3474. netif_carrier_off(ndev);
  3475. netif_stop_queue(ndev);
  3476. ql_adapter_reset(qdev);
  3477. /* Make sure the EEPROM is good */
  3478. memcpy(ndev->perm_addr, ndev->dev_addr, ndev->addr_len);
  3479. if (!is_valid_ether_addr(ndev->perm_addr)) {
  3480. QPRINTK(qdev, IFUP, ERR, "After reset, invalid MAC address.\n");
  3481. return PCI_ERS_RESULT_DISCONNECT;
  3482. }
  3483. return PCI_ERS_RESULT_RECOVERED;
  3484. }
  3485. static void qlge_io_resume(struct pci_dev *pdev)
  3486. {
  3487. struct net_device *ndev = pci_get_drvdata(pdev);
  3488. struct ql_adapter *qdev = netdev_priv(ndev);
  3489. pci_set_master(pdev);
  3490. if (netif_running(ndev)) {
  3491. if (ql_adapter_up(qdev)) {
  3492. QPRINTK(qdev, IFUP, ERR,
  3493. "Device initialization failed after reset.\n");
  3494. return;
  3495. }
  3496. }
  3497. netif_device_attach(ndev);
  3498. }
  3499. static struct pci_error_handlers qlge_err_handler = {
  3500. .error_detected = qlge_io_error_detected,
  3501. .slot_reset = qlge_io_slot_reset,
  3502. .resume = qlge_io_resume,
  3503. };
  3504. static int qlge_suspend(struct pci_dev *pdev, pm_message_t state)
  3505. {
  3506. struct net_device *ndev = pci_get_drvdata(pdev);
  3507. struct ql_adapter *qdev = netdev_priv(ndev);
  3508. int err;
  3509. netif_device_detach(ndev);
  3510. if (netif_running(ndev)) {
  3511. err = ql_adapter_down(qdev);
  3512. if (!err)
  3513. return err;
  3514. }
  3515. err = pci_save_state(pdev);
  3516. if (err)
  3517. return err;
  3518. pci_disable_device(pdev);
  3519. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  3520. return 0;
  3521. }
  3522. #ifdef CONFIG_PM
  3523. static int qlge_resume(struct pci_dev *pdev)
  3524. {
  3525. struct net_device *ndev = pci_get_drvdata(pdev);
  3526. struct ql_adapter *qdev = netdev_priv(ndev);
  3527. int err;
  3528. pci_set_power_state(pdev, PCI_D0);
  3529. pci_restore_state(pdev);
  3530. err = pci_enable_device(pdev);
  3531. if (err) {
  3532. QPRINTK(qdev, IFUP, ERR, "Cannot enable PCI device from suspend\n");
  3533. return err;
  3534. }
  3535. pci_set_master(pdev);
  3536. pci_enable_wake(pdev, PCI_D3hot, 0);
  3537. pci_enable_wake(pdev, PCI_D3cold, 0);
  3538. if (netif_running(ndev)) {
  3539. err = ql_adapter_up(qdev);
  3540. if (err)
  3541. return err;
  3542. }
  3543. netif_device_attach(ndev);
  3544. return 0;
  3545. }
  3546. #endif /* CONFIG_PM */
  3547. static void qlge_shutdown(struct pci_dev *pdev)
  3548. {
  3549. qlge_suspend(pdev, PMSG_SUSPEND);
  3550. }
  3551. static struct pci_driver qlge_driver = {
  3552. .name = DRV_NAME,
  3553. .id_table = qlge_pci_tbl,
  3554. .probe = qlge_probe,
  3555. .remove = __devexit_p(qlge_remove),
  3556. #ifdef CONFIG_PM
  3557. .suspend = qlge_suspend,
  3558. .resume = qlge_resume,
  3559. #endif
  3560. .shutdown = qlge_shutdown,
  3561. .err_handler = &qlge_err_handler
  3562. };
  3563. static int __init qlge_init_module(void)
  3564. {
  3565. return pci_register_driver(&qlge_driver);
  3566. }
  3567. static void __exit qlge_exit(void)
  3568. {
  3569. pci_unregister_driver(&qlge_driver);
  3570. }
  3571. module_init(qlge_init_module);
  3572. module_exit(qlge_exit);