diskonchip.c 49 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776
  1. /*
  2. * drivers/mtd/nand/diskonchip.c
  3. *
  4. * (C) 2003 Red Hat, Inc.
  5. * (C) 2004 Dan Brown <dan_brown@ieee.org>
  6. * (C) 2004 Kalev Lember <kalev@smartlink.ee>
  7. *
  8. * Author: David Woodhouse <dwmw2@infradead.org>
  9. * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
  10. * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
  11. *
  12. * Error correction code lifted from the old docecc code
  13. * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
  14. * Copyright (C) 2000 Netgem S.A.
  15. * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
  16. *
  17. * Interface to generic NAND code for M-Systems DiskOnChip devices
  18. */
  19. #include <linux/kernel.h>
  20. #include <linux/init.h>
  21. #include <linux/sched.h>
  22. #include <linux/delay.h>
  23. #include <linux/rslib.h>
  24. #include <linux/moduleparam.h>
  25. #include <asm/io.h>
  26. #include <linux/mtd/mtd.h>
  27. #include <linux/mtd/nand.h>
  28. #include <linux/mtd/doc2000.h>
  29. #include <linux/mtd/compatmac.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/mtd/inftl.h>
  32. /* Where to look for the devices? */
  33. #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
  34. #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
  35. #endif
  36. static unsigned long __initdata doc_locations[] = {
  37. #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
  38. #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
  39. 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
  40. 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
  41. 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
  42. 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
  43. 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
  44. #else /* CONFIG_MTD_DOCPROBE_HIGH */
  45. 0xc8000, 0xca000, 0xcc000, 0xce000,
  46. 0xd0000, 0xd2000, 0xd4000, 0xd6000,
  47. 0xd8000, 0xda000, 0xdc000, 0xde000,
  48. 0xe0000, 0xe2000, 0xe4000, 0xe6000,
  49. 0xe8000, 0xea000, 0xec000, 0xee000,
  50. #endif /* CONFIG_MTD_DOCPROBE_HIGH */
  51. #else
  52. #warning Unknown architecture for DiskOnChip. No default probe locations defined
  53. #endif
  54. 0xffffffff };
  55. static struct mtd_info *doclist = NULL;
  56. struct doc_priv {
  57. void __iomem *virtadr;
  58. unsigned long physadr;
  59. u_char ChipID;
  60. u_char CDSNControl;
  61. int chips_per_floor; /* The number of chips detected on each floor */
  62. int curfloor;
  63. int curchip;
  64. int mh0_page;
  65. int mh1_page;
  66. struct mtd_info *nextdoc;
  67. };
  68. /* This is the syndrome computed by the HW ecc generator upon reading an empty
  69. page, one with all 0xff for data and stored ecc code. */
  70. static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
  71. /* This is the ecc value computed by the HW ecc generator upon writing an empty
  72. page, one with all 0xff for data. */
  73. static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
  74. #define INFTL_BBT_RESERVED_BLOCKS 4
  75. #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
  76. #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
  77. #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
  78. static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
  79. unsigned int bitmask);
  80. static void doc200x_select_chip(struct mtd_info *mtd, int chip);
  81. static int debug = 0;
  82. module_param(debug, int, 0);
  83. static int try_dword = 1;
  84. module_param(try_dword, int, 0);
  85. static int no_ecc_failures = 0;
  86. module_param(no_ecc_failures, int, 0);
  87. static int no_autopart = 0;
  88. module_param(no_autopart, int, 0);
  89. static int show_firmware_partition = 0;
  90. module_param(show_firmware_partition, int, 0);
  91. #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
  92. static int inftl_bbt_write = 1;
  93. #else
  94. static int inftl_bbt_write = 0;
  95. #endif
  96. module_param(inftl_bbt_write, int, 0);
  97. static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
  98. module_param(doc_config_location, ulong, 0);
  99. MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
  100. /* Sector size for HW ECC */
  101. #define SECTOR_SIZE 512
  102. /* The sector bytes are packed into NB_DATA 10 bit words */
  103. #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
  104. /* Number of roots */
  105. #define NROOTS 4
  106. /* First consective root */
  107. #define FCR 510
  108. /* Number of symbols */
  109. #define NN 1023
  110. /* the Reed Solomon control structure */
  111. static struct rs_control *rs_decoder;
  112. /*
  113. * The HW decoder in the DoC ASIC's provides us a error syndrome,
  114. * which we must convert to a standard syndrom usable by the generic
  115. * Reed-Solomon library code.
  116. *
  117. * Fabrice Bellard figured this out in the old docecc code. I added
  118. * some comments, improved a minor bit and converted it to make use
  119. * of the generic Reed-Solomon libary. tglx
  120. */
  121. static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
  122. {
  123. int i, j, nerr, errpos[8];
  124. uint8_t parity;
  125. uint16_t ds[4], s[5], tmp, errval[8], syn[4];
  126. /* Convert the ecc bytes into words */
  127. ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
  128. ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
  129. ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
  130. ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
  131. parity = ecc[1];
  132. /* Initialize the syndrom buffer */
  133. for (i = 0; i < NROOTS; i++)
  134. s[i] = ds[0];
  135. /*
  136. * Evaluate
  137. * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
  138. * where x = alpha^(FCR + i)
  139. */
  140. for (j = 1; j < NROOTS; j++) {
  141. if (ds[j] == 0)
  142. continue;
  143. tmp = rs->index_of[ds[j]];
  144. for (i = 0; i < NROOTS; i++)
  145. s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
  146. }
  147. /* Calc s[i] = s[i] / alpha^(v + i) */
  148. for (i = 0; i < NROOTS; i++) {
  149. if (syn[i])
  150. syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
  151. }
  152. /* Call the decoder library */
  153. nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
  154. /* Incorrectable errors ? */
  155. if (nerr < 0)
  156. return nerr;
  157. /*
  158. * Correct the errors. The bitpositions are a bit of magic,
  159. * but they are given by the design of the de/encoder circuit
  160. * in the DoC ASIC's.
  161. */
  162. for (i = 0; i < nerr; i++) {
  163. int index, bitpos, pos = 1015 - errpos[i];
  164. uint8_t val;
  165. if (pos >= NB_DATA && pos < 1019)
  166. continue;
  167. if (pos < NB_DATA) {
  168. /* extract bit position (MSB first) */
  169. pos = 10 * (NB_DATA - 1 - pos) - 6;
  170. /* now correct the following 10 bits. At most two bytes
  171. can be modified since pos is even */
  172. index = (pos >> 3) ^ 1;
  173. bitpos = pos & 7;
  174. if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
  175. val = (uint8_t) (errval[i] >> (2 + bitpos));
  176. parity ^= val;
  177. if (index < SECTOR_SIZE)
  178. data[index] ^= val;
  179. }
  180. index = ((pos >> 3) + 1) ^ 1;
  181. bitpos = (bitpos + 10) & 7;
  182. if (bitpos == 0)
  183. bitpos = 8;
  184. if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
  185. val = (uint8_t) (errval[i] << (8 - bitpos));
  186. parity ^= val;
  187. if (index < SECTOR_SIZE)
  188. data[index] ^= val;
  189. }
  190. }
  191. }
  192. /* If the parity is wrong, no rescue possible */
  193. return parity ? -EBADMSG : nerr;
  194. }
  195. static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
  196. {
  197. volatile char dummy;
  198. int i;
  199. for (i = 0; i < cycles; i++) {
  200. if (DoC_is_Millennium(doc))
  201. dummy = ReadDOC(doc->virtadr, NOP);
  202. else if (DoC_is_MillenniumPlus(doc))
  203. dummy = ReadDOC(doc->virtadr, Mplus_NOP);
  204. else
  205. dummy = ReadDOC(doc->virtadr, DOCStatus);
  206. }
  207. }
  208. #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
  209. /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
  210. static int _DoC_WaitReady(struct doc_priv *doc)
  211. {
  212. void __iomem *docptr = doc->virtadr;
  213. unsigned long timeo = jiffies + (HZ * 10);
  214. if (debug)
  215. printk("_DoC_WaitReady...\n");
  216. /* Out-of-line routine to wait for chip response */
  217. if (DoC_is_MillenniumPlus(doc)) {
  218. while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
  219. if (time_after(jiffies, timeo)) {
  220. printk("_DoC_WaitReady timed out.\n");
  221. return -EIO;
  222. }
  223. udelay(1);
  224. cond_resched();
  225. }
  226. } else {
  227. while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
  228. if (time_after(jiffies, timeo)) {
  229. printk("_DoC_WaitReady timed out.\n");
  230. return -EIO;
  231. }
  232. udelay(1);
  233. cond_resched();
  234. }
  235. }
  236. return 0;
  237. }
  238. static inline int DoC_WaitReady(struct doc_priv *doc)
  239. {
  240. void __iomem *docptr = doc->virtadr;
  241. int ret = 0;
  242. if (DoC_is_MillenniumPlus(doc)) {
  243. DoC_Delay(doc, 4);
  244. if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
  245. /* Call the out-of-line routine to wait */
  246. ret = _DoC_WaitReady(doc);
  247. } else {
  248. DoC_Delay(doc, 4);
  249. if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
  250. /* Call the out-of-line routine to wait */
  251. ret = _DoC_WaitReady(doc);
  252. DoC_Delay(doc, 2);
  253. }
  254. if (debug)
  255. printk("DoC_WaitReady OK\n");
  256. return ret;
  257. }
  258. static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
  259. {
  260. struct nand_chip *this = mtd->priv;
  261. struct doc_priv *doc = this->priv;
  262. void __iomem *docptr = doc->virtadr;
  263. if (debug)
  264. printk("write_byte %02x\n", datum);
  265. WriteDOC(datum, docptr, CDSNSlowIO);
  266. WriteDOC(datum, docptr, 2k_CDSN_IO);
  267. }
  268. static u_char doc2000_read_byte(struct mtd_info *mtd)
  269. {
  270. struct nand_chip *this = mtd->priv;
  271. struct doc_priv *doc = this->priv;
  272. void __iomem *docptr = doc->virtadr;
  273. u_char ret;
  274. ReadDOC(docptr, CDSNSlowIO);
  275. DoC_Delay(doc, 2);
  276. ret = ReadDOC(docptr, 2k_CDSN_IO);
  277. if (debug)
  278. printk("read_byte returns %02x\n", ret);
  279. return ret;
  280. }
  281. static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
  282. {
  283. struct nand_chip *this = mtd->priv;
  284. struct doc_priv *doc = this->priv;
  285. void __iomem *docptr = doc->virtadr;
  286. int i;
  287. if (debug)
  288. printk("writebuf of %d bytes: ", len);
  289. for (i = 0; i < len; i++) {
  290. WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
  291. if (debug && i < 16)
  292. printk("%02x ", buf[i]);
  293. }
  294. if (debug)
  295. printk("\n");
  296. }
  297. static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
  298. {
  299. struct nand_chip *this = mtd->priv;
  300. struct doc_priv *doc = this->priv;
  301. void __iomem *docptr = doc->virtadr;
  302. int i;
  303. if (debug)
  304. printk("readbuf of %d bytes: ", len);
  305. for (i = 0; i < len; i++) {
  306. buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
  307. }
  308. }
  309. static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
  310. {
  311. struct nand_chip *this = mtd->priv;
  312. struct doc_priv *doc = this->priv;
  313. void __iomem *docptr = doc->virtadr;
  314. int i;
  315. if (debug)
  316. printk("readbuf_dword of %d bytes: ", len);
  317. if (unlikely((((unsigned long)buf) | len) & 3)) {
  318. for (i = 0; i < len; i++) {
  319. *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
  320. }
  321. } else {
  322. for (i = 0; i < len; i += 4) {
  323. *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
  324. }
  325. }
  326. }
  327. static int doc2000_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
  328. {
  329. struct nand_chip *this = mtd->priv;
  330. struct doc_priv *doc = this->priv;
  331. void __iomem *docptr = doc->virtadr;
  332. int i;
  333. for (i = 0; i < len; i++)
  334. if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
  335. return -EFAULT;
  336. return 0;
  337. }
  338. static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
  339. {
  340. struct nand_chip *this = mtd->priv;
  341. struct doc_priv *doc = this->priv;
  342. uint16_t ret;
  343. doc200x_select_chip(mtd, nr);
  344. doc200x_hwcontrol(mtd, NAND_CMD_READID,
  345. NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  346. doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
  347. doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
  348. /* We cant' use dev_ready here, but at least we wait for the
  349. * command to complete
  350. */
  351. udelay(50);
  352. ret = this->read_byte(mtd) << 8;
  353. ret |= this->read_byte(mtd);
  354. if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
  355. /* First chip probe. See if we get same results by 32-bit access */
  356. union {
  357. uint32_t dword;
  358. uint8_t byte[4];
  359. } ident;
  360. void __iomem *docptr = doc->virtadr;
  361. doc200x_hwcontrol(mtd, NAND_CMD_READID,
  362. NAND_CTRL_CLE | NAND_CTRL_CHANGE);
  363. doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
  364. doc200x_hwcontrol(mtd, NAND_CMD_NONE,
  365. NAND_NCE | NAND_CTRL_CHANGE);
  366. udelay(50);
  367. ident.dword = readl(docptr + DoC_2k_CDSN_IO);
  368. if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
  369. printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
  370. this->read_buf = &doc2000_readbuf_dword;
  371. }
  372. }
  373. return ret;
  374. }
  375. static void __init doc2000_count_chips(struct mtd_info *mtd)
  376. {
  377. struct nand_chip *this = mtd->priv;
  378. struct doc_priv *doc = this->priv;
  379. uint16_t mfrid;
  380. int i;
  381. /* Max 4 chips per floor on DiskOnChip 2000 */
  382. doc->chips_per_floor = 4;
  383. /* Find out what the first chip is */
  384. mfrid = doc200x_ident_chip(mtd, 0);
  385. /* Find how many chips in each floor. */
  386. for (i = 1; i < 4; i++) {
  387. if (doc200x_ident_chip(mtd, i) != mfrid)
  388. break;
  389. }
  390. doc->chips_per_floor = i;
  391. printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
  392. }
  393. static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
  394. {
  395. struct doc_priv *doc = this->priv;
  396. int status;
  397. DoC_WaitReady(doc);
  398. this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
  399. DoC_WaitReady(doc);
  400. status = (int)this->read_byte(mtd);
  401. return status;
  402. }
  403. static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
  404. {
  405. struct nand_chip *this = mtd->priv;
  406. struct doc_priv *doc = this->priv;
  407. void __iomem *docptr = doc->virtadr;
  408. WriteDOC(datum, docptr, CDSNSlowIO);
  409. WriteDOC(datum, docptr, Mil_CDSN_IO);
  410. WriteDOC(datum, docptr, WritePipeTerm);
  411. }
  412. static u_char doc2001_read_byte(struct mtd_info *mtd)
  413. {
  414. struct nand_chip *this = mtd->priv;
  415. struct doc_priv *doc = this->priv;
  416. void __iomem *docptr = doc->virtadr;
  417. //ReadDOC(docptr, CDSNSlowIO);
  418. /* 11.4.5 -- delay twice to allow extended length cycle */
  419. DoC_Delay(doc, 2);
  420. ReadDOC(docptr, ReadPipeInit);
  421. //return ReadDOC(docptr, Mil_CDSN_IO);
  422. return ReadDOC(docptr, LastDataRead);
  423. }
  424. static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
  425. {
  426. struct nand_chip *this = mtd->priv;
  427. struct doc_priv *doc = this->priv;
  428. void __iomem *docptr = doc->virtadr;
  429. int i;
  430. for (i = 0; i < len; i++)
  431. WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
  432. /* Terminate write pipeline */
  433. WriteDOC(0x00, docptr, WritePipeTerm);
  434. }
  435. static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
  436. {
  437. struct nand_chip *this = mtd->priv;
  438. struct doc_priv *doc = this->priv;
  439. void __iomem *docptr = doc->virtadr;
  440. int i;
  441. /* Start read pipeline */
  442. ReadDOC(docptr, ReadPipeInit);
  443. for (i = 0; i < len - 1; i++)
  444. buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
  445. /* Terminate read pipeline */
  446. buf[i] = ReadDOC(docptr, LastDataRead);
  447. }
  448. static int doc2001_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
  449. {
  450. struct nand_chip *this = mtd->priv;
  451. struct doc_priv *doc = this->priv;
  452. void __iomem *docptr = doc->virtadr;
  453. int i;
  454. /* Start read pipeline */
  455. ReadDOC(docptr, ReadPipeInit);
  456. for (i = 0; i < len - 1; i++)
  457. if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
  458. ReadDOC(docptr, LastDataRead);
  459. return i;
  460. }
  461. if (buf[i] != ReadDOC(docptr, LastDataRead))
  462. return i;
  463. return 0;
  464. }
  465. static u_char doc2001plus_read_byte(struct mtd_info *mtd)
  466. {
  467. struct nand_chip *this = mtd->priv;
  468. struct doc_priv *doc = this->priv;
  469. void __iomem *docptr = doc->virtadr;
  470. u_char ret;
  471. ReadDOC(docptr, Mplus_ReadPipeInit);
  472. ReadDOC(docptr, Mplus_ReadPipeInit);
  473. ret = ReadDOC(docptr, Mplus_LastDataRead);
  474. if (debug)
  475. printk("read_byte returns %02x\n", ret);
  476. return ret;
  477. }
  478. static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
  479. {
  480. struct nand_chip *this = mtd->priv;
  481. struct doc_priv *doc = this->priv;
  482. void __iomem *docptr = doc->virtadr;
  483. int i;
  484. if (debug)
  485. printk("writebuf of %d bytes: ", len);
  486. for (i = 0; i < len; i++) {
  487. WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
  488. if (debug && i < 16)
  489. printk("%02x ", buf[i]);
  490. }
  491. if (debug)
  492. printk("\n");
  493. }
  494. static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
  495. {
  496. struct nand_chip *this = mtd->priv;
  497. struct doc_priv *doc = this->priv;
  498. void __iomem *docptr = doc->virtadr;
  499. int i;
  500. if (debug)
  501. printk("readbuf of %d bytes: ", len);
  502. /* Start read pipeline */
  503. ReadDOC(docptr, Mplus_ReadPipeInit);
  504. ReadDOC(docptr, Mplus_ReadPipeInit);
  505. for (i = 0; i < len - 2; i++) {
  506. buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
  507. if (debug && i < 16)
  508. printk("%02x ", buf[i]);
  509. }
  510. /* Terminate read pipeline */
  511. buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
  512. if (debug && i < 16)
  513. printk("%02x ", buf[len - 2]);
  514. buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
  515. if (debug && i < 16)
  516. printk("%02x ", buf[len - 1]);
  517. if (debug)
  518. printk("\n");
  519. }
  520. static int doc2001plus_verifybuf(struct mtd_info *mtd, const u_char *buf, int len)
  521. {
  522. struct nand_chip *this = mtd->priv;
  523. struct doc_priv *doc = this->priv;
  524. void __iomem *docptr = doc->virtadr;
  525. int i;
  526. if (debug)
  527. printk("verifybuf of %d bytes: ", len);
  528. /* Start read pipeline */
  529. ReadDOC(docptr, Mplus_ReadPipeInit);
  530. ReadDOC(docptr, Mplus_ReadPipeInit);
  531. for (i = 0; i < len - 2; i++)
  532. if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
  533. ReadDOC(docptr, Mplus_LastDataRead);
  534. ReadDOC(docptr, Mplus_LastDataRead);
  535. return i;
  536. }
  537. if (buf[len - 2] != ReadDOC(docptr, Mplus_LastDataRead))
  538. return len - 2;
  539. if (buf[len - 1] != ReadDOC(docptr, Mplus_LastDataRead))
  540. return len - 1;
  541. return 0;
  542. }
  543. static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
  544. {
  545. struct nand_chip *this = mtd->priv;
  546. struct doc_priv *doc = this->priv;
  547. void __iomem *docptr = doc->virtadr;
  548. int floor = 0;
  549. if (debug)
  550. printk("select chip (%d)\n", chip);
  551. if (chip == -1) {
  552. /* Disable flash internally */
  553. WriteDOC(0, docptr, Mplus_FlashSelect);
  554. return;
  555. }
  556. floor = chip / doc->chips_per_floor;
  557. chip -= (floor * doc->chips_per_floor);
  558. /* Assert ChipEnable and deassert WriteProtect */
  559. WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
  560. this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
  561. doc->curchip = chip;
  562. doc->curfloor = floor;
  563. }
  564. static void doc200x_select_chip(struct mtd_info *mtd, int chip)
  565. {
  566. struct nand_chip *this = mtd->priv;
  567. struct doc_priv *doc = this->priv;
  568. void __iomem *docptr = doc->virtadr;
  569. int floor = 0;
  570. if (debug)
  571. printk("select chip (%d)\n", chip);
  572. if (chip == -1)
  573. return;
  574. floor = chip / doc->chips_per_floor;
  575. chip -= (floor * doc->chips_per_floor);
  576. /* 11.4.4 -- deassert CE before changing chip */
  577. doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
  578. WriteDOC(floor, docptr, FloorSelect);
  579. WriteDOC(chip, docptr, CDSNDeviceSelect);
  580. doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
  581. doc->curchip = chip;
  582. doc->curfloor = floor;
  583. }
  584. #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
  585. static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
  586. unsigned int ctrl)
  587. {
  588. struct nand_chip *this = mtd->priv;
  589. struct doc_priv *doc = this->priv;
  590. void __iomem *docptr = doc->virtadr;
  591. if (ctrl & NAND_CTRL_CHANGE) {
  592. doc->CDSNControl &= ~CDSN_CTRL_MSK;
  593. doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
  594. if (debug)
  595. printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
  596. WriteDOC(doc->CDSNControl, docptr, CDSNControl);
  597. /* 11.4.3 -- 4 NOPs after CSDNControl write */
  598. DoC_Delay(doc, 4);
  599. }
  600. if (cmd != NAND_CMD_NONE) {
  601. if (DoC_is_2000(doc))
  602. doc2000_write_byte(mtd, cmd);
  603. else
  604. doc2001_write_byte(mtd, cmd);
  605. }
  606. }
  607. static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
  608. {
  609. struct nand_chip *this = mtd->priv;
  610. struct doc_priv *doc = this->priv;
  611. void __iomem *docptr = doc->virtadr;
  612. /*
  613. * Must terminate write pipeline before sending any commands
  614. * to the device.
  615. */
  616. if (command == NAND_CMD_PAGEPROG) {
  617. WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
  618. WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
  619. }
  620. /*
  621. * Write out the command to the device.
  622. */
  623. if (command == NAND_CMD_SEQIN) {
  624. int readcmd;
  625. if (column >= mtd->writesize) {
  626. /* OOB area */
  627. column -= mtd->writesize;
  628. readcmd = NAND_CMD_READOOB;
  629. } else if (column < 256) {
  630. /* First 256 bytes --> READ0 */
  631. readcmd = NAND_CMD_READ0;
  632. } else {
  633. column -= 256;
  634. readcmd = NAND_CMD_READ1;
  635. }
  636. WriteDOC(readcmd, docptr, Mplus_FlashCmd);
  637. }
  638. WriteDOC(command, docptr, Mplus_FlashCmd);
  639. WriteDOC(0, docptr, Mplus_WritePipeTerm);
  640. WriteDOC(0, docptr, Mplus_WritePipeTerm);
  641. if (column != -1 || page_addr != -1) {
  642. /* Serially input address */
  643. if (column != -1) {
  644. /* Adjust columns for 16 bit buswidth */
  645. if (this->options & NAND_BUSWIDTH_16)
  646. column >>= 1;
  647. WriteDOC(column, docptr, Mplus_FlashAddress);
  648. }
  649. if (page_addr != -1) {
  650. WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
  651. WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
  652. /* One more address cycle for higher density devices */
  653. if (this->chipsize & 0x0c000000) {
  654. WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
  655. printk("high density\n");
  656. }
  657. }
  658. WriteDOC(0, docptr, Mplus_WritePipeTerm);
  659. WriteDOC(0, docptr, Mplus_WritePipeTerm);
  660. /* deassert ALE */
  661. if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
  662. command == NAND_CMD_READOOB || command == NAND_CMD_READID)
  663. WriteDOC(0, docptr, Mplus_FlashControl);
  664. }
  665. /*
  666. * program and erase have their own busy handlers
  667. * status and sequential in needs no delay
  668. */
  669. switch (command) {
  670. case NAND_CMD_PAGEPROG:
  671. case NAND_CMD_ERASE1:
  672. case NAND_CMD_ERASE2:
  673. case NAND_CMD_SEQIN:
  674. case NAND_CMD_STATUS:
  675. return;
  676. case NAND_CMD_RESET:
  677. if (this->dev_ready)
  678. break;
  679. udelay(this->chip_delay);
  680. WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
  681. WriteDOC(0, docptr, Mplus_WritePipeTerm);
  682. WriteDOC(0, docptr, Mplus_WritePipeTerm);
  683. while (!(this->read_byte(mtd) & 0x40)) ;
  684. return;
  685. /* This applies to read commands */
  686. default:
  687. /*
  688. * If we don't have access to the busy pin, we apply the given
  689. * command delay
  690. */
  691. if (!this->dev_ready) {
  692. udelay(this->chip_delay);
  693. return;
  694. }
  695. }
  696. /* Apply this short delay always to ensure that we do wait tWB in
  697. * any case on any machine. */
  698. ndelay(100);
  699. /* wait until command is processed */
  700. while (!this->dev_ready(mtd)) ;
  701. }
  702. static int doc200x_dev_ready(struct mtd_info *mtd)
  703. {
  704. struct nand_chip *this = mtd->priv;
  705. struct doc_priv *doc = this->priv;
  706. void __iomem *docptr = doc->virtadr;
  707. if (DoC_is_MillenniumPlus(doc)) {
  708. /* 11.4.2 -- must NOP four times before checking FR/B# */
  709. DoC_Delay(doc, 4);
  710. if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
  711. if (debug)
  712. printk("not ready\n");
  713. return 0;
  714. }
  715. if (debug)
  716. printk("was ready\n");
  717. return 1;
  718. } else {
  719. /* 11.4.2 -- must NOP four times before checking FR/B# */
  720. DoC_Delay(doc, 4);
  721. if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
  722. if (debug)
  723. printk("not ready\n");
  724. return 0;
  725. }
  726. /* 11.4.2 -- Must NOP twice if it's ready */
  727. DoC_Delay(doc, 2);
  728. if (debug)
  729. printk("was ready\n");
  730. return 1;
  731. }
  732. }
  733. static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
  734. {
  735. /* This is our last resort if we couldn't find or create a BBT. Just
  736. pretend all blocks are good. */
  737. return 0;
  738. }
  739. static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
  740. {
  741. struct nand_chip *this = mtd->priv;
  742. struct doc_priv *doc = this->priv;
  743. void __iomem *docptr = doc->virtadr;
  744. /* Prime the ECC engine */
  745. switch (mode) {
  746. case NAND_ECC_READ:
  747. WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
  748. WriteDOC(DOC_ECC_EN, docptr, ECCConf);
  749. break;
  750. case NAND_ECC_WRITE:
  751. WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
  752. WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
  753. break;
  754. }
  755. }
  756. static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
  757. {
  758. struct nand_chip *this = mtd->priv;
  759. struct doc_priv *doc = this->priv;
  760. void __iomem *docptr = doc->virtadr;
  761. /* Prime the ECC engine */
  762. switch (mode) {
  763. case NAND_ECC_READ:
  764. WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
  765. WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
  766. break;
  767. case NAND_ECC_WRITE:
  768. WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
  769. WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
  770. break;
  771. }
  772. }
  773. /* This code is only called on write */
  774. static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
  775. {
  776. struct nand_chip *this = mtd->priv;
  777. struct doc_priv *doc = this->priv;
  778. void __iomem *docptr = doc->virtadr;
  779. int i;
  780. int emptymatch = 1;
  781. /* flush the pipeline */
  782. if (DoC_is_2000(doc)) {
  783. WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
  784. WriteDOC(0, docptr, 2k_CDSN_IO);
  785. WriteDOC(0, docptr, 2k_CDSN_IO);
  786. WriteDOC(0, docptr, 2k_CDSN_IO);
  787. WriteDOC(doc->CDSNControl, docptr, CDSNControl);
  788. } else if (DoC_is_MillenniumPlus(doc)) {
  789. WriteDOC(0, docptr, Mplus_NOP);
  790. WriteDOC(0, docptr, Mplus_NOP);
  791. WriteDOC(0, docptr, Mplus_NOP);
  792. } else {
  793. WriteDOC(0, docptr, NOP);
  794. WriteDOC(0, docptr, NOP);
  795. WriteDOC(0, docptr, NOP);
  796. }
  797. for (i = 0; i < 6; i++) {
  798. if (DoC_is_MillenniumPlus(doc))
  799. ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
  800. else
  801. ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
  802. if (ecc_code[i] != empty_write_ecc[i])
  803. emptymatch = 0;
  804. }
  805. if (DoC_is_MillenniumPlus(doc))
  806. WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
  807. else
  808. WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
  809. #if 0
  810. /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
  811. if (emptymatch) {
  812. /* Note: this somewhat expensive test should not be triggered
  813. often. It could be optimized away by examining the data in
  814. the writebuf routine, and remembering the result. */
  815. for (i = 0; i < 512; i++) {
  816. if (dat[i] == 0xff)
  817. continue;
  818. emptymatch = 0;
  819. break;
  820. }
  821. }
  822. /* If emptymatch still =1, we do have an all-0xff data buffer.
  823. Return all-0xff ecc value instead of the computed one, so
  824. it'll look just like a freshly-erased page. */
  825. if (emptymatch)
  826. memset(ecc_code, 0xff, 6);
  827. #endif
  828. return 0;
  829. }
  830. static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
  831. u_char *read_ecc, u_char *isnull)
  832. {
  833. int i, ret = 0;
  834. struct nand_chip *this = mtd->priv;
  835. struct doc_priv *doc = this->priv;
  836. void __iomem *docptr = doc->virtadr;
  837. uint8_t calc_ecc[6];
  838. volatile u_char dummy;
  839. int emptymatch = 1;
  840. /* flush the pipeline */
  841. if (DoC_is_2000(doc)) {
  842. dummy = ReadDOC(docptr, 2k_ECCStatus);
  843. dummy = ReadDOC(docptr, 2k_ECCStatus);
  844. dummy = ReadDOC(docptr, 2k_ECCStatus);
  845. } else if (DoC_is_MillenniumPlus(doc)) {
  846. dummy = ReadDOC(docptr, Mplus_ECCConf);
  847. dummy = ReadDOC(docptr, Mplus_ECCConf);
  848. dummy = ReadDOC(docptr, Mplus_ECCConf);
  849. } else {
  850. dummy = ReadDOC(docptr, ECCConf);
  851. dummy = ReadDOC(docptr, ECCConf);
  852. dummy = ReadDOC(docptr, ECCConf);
  853. }
  854. /* Error occured ? */
  855. if (dummy & 0x80) {
  856. for (i = 0; i < 6; i++) {
  857. if (DoC_is_MillenniumPlus(doc))
  858. calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
  859. else
  860. calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
  861. if (calc_ecc[i] != empty_read_syndrome[i])
  862. emptymatch = 0;
  863. }
  864. /* If emptymatch=1, the read syndrome is consistent with an
  865. all-0xff data and stored ecc block. Check the stored ecc. */
  866. if (emptymatch) {
  867. for (i = 0; i < 6; i++) {
  868. if (read_ecc[i] == 0xff)
  869. continue;
  870. emptymatch = 0;
  871. break;
  872. }
  873. }
  874. /* If emptymatch still =1, check the data block. */
  875. if (emptymatch) {
  876. /* Note: this somewhat expensive test should not be triggered
  877. often. It could be optimized away by examining the data in
  878. the readbuf routine, and remembering the result. */
  879. for (i = 0; i < 512; i++) {
  880. if (dat[i] == 0xff)
  881. continue;
  882. emptymatch = 0;
  883. break;
  884. }
  885. }
  886. /* If emptymatch still =1, this is almost certainly a freshly-
  887. erased block, in which case the ECC will not come out right.
  888. We'll suppress the error and tell the caller everything's
  889. OK. Because it is. */
  890. if (!emptymatch)
  891. ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
  892. if (ret > 0)
  893. printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
  894. }
  895. if (DoC_is_MillenniumPlus(doc))
  896. WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
  897. else
  898. WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
  899. if (no_ecc_failures && (ret == -EBADMSG)) {
  900. printk(KERN_ERR "suppressing ECC failure\n");
  901. ret = 0;
  902. }
  903. return ret;
  904. }
  905. //u_char mydatabuf[528];
  906. /* The strange out-of-order .oobfree list below is a (possibly unneeded)
  907. * attempt to retain compatibility. It used to read:
  908. * .oobfree = { {8, 8} }
  909. * Since that leaves two bytes unusable, it was changed. But the following
  910. * scheme might affect existing jffs2 installs by moving the cleanmarker:
  911. * .oobfree = { {6, 10} }
  912. * jffs2 seems to handle the above gracefully, but the current scheme seems
  913. * safer. The only problem with it is that any code that parses oobfree must
  914. * be able to handle out-of-order segments.
  915. */
  916. static struct nand_ecclayout doc200x_oobinfo = {
  917. .eccbytes = 6,
  918. .eccpos = {0, 1, 2, 3, 4, 5},
  919. .oobfree = {{8, 8}, {6, 2}}
  920. };
  921. /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
  922. On sucessful return, buf will contain a copy of the media header for
  923. further processing. id is the string to scan for, and will presumably be
  924. either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
  925. header. The page #s of the found media headers are placed in mh0_page and
  926. mh1_page in the DOC private structure. */
  927. static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
  928. {
  929. struct nand_chip *this = mtd->priv;
  930. struct doc_priv *doc = this->priv;
  931. unsigned offs;
  932. int ret;
  933. size_t retlen;
  934. for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
  935. ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
  936. if (retlen != mtd->writesize)
  937. continue;
  938. if (ret) {
  939. printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
  940. }
  941. if (memcmp(buf, id, 6))
  942. continue;
  943. printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
  944. if (doc->mh0_page == -1) {
  945. doc->mh0_page = offs >> this->page_shift;
  946. if (!findmirror)
  947. return 1;
  948. continue;
  949. }
  950. doc->mh1_page = offs >> this->page_shift;
  951. return 2;
  952. }
  953. if (doc->mh0_page == -1) {
  954. printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
  955. return 0;
  956. }
  957. /* Only one mediaheader was found. We want buf to contain a
  958. mediaheader on return, so we'll have to re-read the one we found. */
  959. offs = doc->mh0_page << this->page_shift;
  960. ret = mtd->read(mtd, offs, mtd->writesize, &retlen, buf);
  961. if (retlen != mtd->writesize) {
  962. /* Insanity. Give up. */
  963. printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
  964. return 0;
  965. }
  966. return 1;
  967. }
  968. static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
  969. {
  970. struct nand_chip *this = mtd->priv;
  971. struct doc_priv *doc = this->priv;
  972. int ret = 0;
  973. u_char *buf;
  974. struct NFTLMediaHeader *mh;
  975. const unsigned psize = 1 << this->page_shift;
  976. int numparts = 0;
  977. unsigned blocks, maxblocks;
  978. int offs, numheaders;
  979. buf = kmalloc(mtd->writesize, GFP_KERNEL);
  980. if (!buf) {
  981. printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
  982. return 0;
  983. }
  984. if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
  985. goto out;
  986. mh = (struct NFTLMediaHeader *)buf;
  987. le16_to_cpus(&mh->NumEraseUnits);
  988. le16_to_cpus(&mh->FirstPhysicalEUN);
  989. le32_to_cpus(&mh->FormattedSize);
  990. printk(KERN_INFO " DataOrgID = %s\n"
  991. " NumEraseUnits = %d\n"
  992. " FirstPhysicalEUN = %d\n"
  993. " FormattedSize = %d\n"
  994. " UnitSizeFactor = %d\n",
  995. mh->DataOrgID, mh->NumEraseUnits,
  996. mh->FirstPhysicalEUN, mh->FormattedSize,
  997. mh->UnitSizeFactor);
  998. blocks = mtd->size >> this->phys_erase_shift;
  999. maxblocks = min(32768U, mtd->erasesize - psize);
  1000. if (mh->UnitSizeFactor == 0x00) {
  1001. /* Auto-determine UnitSizeFactor. The constraints are:
  1002. - There can be at most 32768 virtual blocks.
  1003. - There can be at most (virtual block size - page size)
  1004. virtual blocks (because MediaHeader+BBT must fit in 1).
  1005. */
  1006. mh->UnitSizeFactor = 0xff;
  1007. while (blocks > maxblocks) {
  1008. blocks >>= 1;
  1009. maxblocks = min(32768U, (maxblocks << 1) + psize);
  1010. mh->UnitSizeFactor--;
  1011. }
  1012. printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
  1013. }
  1014. /* NOTE: The lines below modify internal variables of the NAND and MTD
  1015. layers; variables with have already been configured by nand_scan.
  1016. Unfortunately, we didn't know before this point what these values
  1017. should be. Thus, this code is somewhat dependant on the exact
  1018. implementation of the NAND layer. */
  1019. if (mh->UnitSizeFactor != 0xff) {
  1020. this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
  1021. mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
  1022. printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
  1023. blocks = mtd->size >> this->bbt_erase_shift;
  1024. maxblocks = min(32768U, mtd->erasesize - psize);
  1025. }
  1026. if (blocks > maxblocks) {
  1027. printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
  1028. goto out;
  1029. }
  1030. /* Skip past the media headers. */
  1031. offs = max(doc->mh0_page, doc->mh1_page);
  1032. offs <<= this->page_shift;
  1033. offs += mtd->erasesize;
  1034. if (show_firmware_partition == 1) {
  1035. parts[0].name = " DiskOnChip Firmware / Media Header partition";
  1036. parts[0].offset = 0;
  1037. parts[0].size = offs;
  1038. numparts = 1;
  1039. }
  1040. parts[numparts].name = " DiskOnChip BDTL partition";
  1041. parts[numparts].offset = offs;
  1042. parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
  1043. offs += parts[numparts].size;
  1044. numparts++;
  1045. if (offs < mtd->size) {
  1046. parts[numparts].name = " DiskOnChip Remainder partition";
  1047. parts[numparts].offset = offs;
  1048. parts[numparts].size = mtd->size - offs;
  1049. numparts++;
  1050. }
  1051. ret = numparts;
  1052. out:
  1053. kfree(buf);
  1054. return ret;
  1055. }
  1056. /* This is a stripped-down copy of the code in inftlmount.c */
  1057. static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
  1058. {
  1059. struct nand_chip *this = mtd->priv;
  1060. struct doc_priv *doc = this->priv;
  1061. int ret = 0;
  1062. u_char *buf;
  1063. struct INFTLMediaHeader *mh;
  1064. struct INFTLPartition *ip;
  1065. int numparts = 0;
  1066. int blocks;
  1067. int vshift, lastvunit = 0;
  1068. int i;
  1069. int end = mtd->size;
  1070. if (inftl_bbt_write)
  1071. end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
  1072. buf = kmalloc(mtd->writesize, GFP_KERNEL);
  1073. if (!buf) {
  1074. printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
  1075. return 0;
  1076. }
  1077. if (!find_media_headers(mtd, buf, "BNAND", 0))
  1078. goto out;
  1079. doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
  1080. mh = (struct INFTLMediaHeader *)buf;
  1081. le32_to_cpus(&mh->NoOfBootImageBlocks);
  1082. le32_to_cpus(&mh->NoOfBinaryPartitions);
  1083. le32_to_cpus(&mh->NoOfBDTLPartitions);
  1084. le32_to_cpus(&mh->BlockMultiplierBits);
  1085. le32_to_cpus(&mh->FormatFlags);
  1086. le32_to_cpus(&mh->PercentUsed);
  1087. printk(KERN_INFO " bootRecordID = %s\n"
  1088. " NoOfBootImageBlocks = %d\n"
  1089. " NoOfBinaryPartitions = %d\n"
  1090. " NoOfBDTLPartitions = %d\n"
  1091. " BlockMultiplerBits = %d\n"
  1092. " FormatFlgs = %d\n"
  1093. " OsakVersion = %d.%d.%d.%d\n"
  1094. " PercentUsed = %d\n",
  1095. mh->bootRecordID, mh->NoOfBootImageBlocks,
  1096. mh->NoOfBinaryPartitions,
  1097. mh->NoOfBDTLPartitions,
  1098. mh->BlockMultiplierBits, mh->FormatFlags,
  1099. ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
  1100. ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
  1101. ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
  1102. ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
  1103. mh->PercentUsed);
  1104. vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
  1105. blocks = mtd->size >> vshift;
  1106. if (blocks > 32768) {
  1107. printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
  1108. goto out;
  1109. }
  1110. blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
  1111. if (inftl_bbt_write && (blocks > mtd->erasesize)) {
  1112. printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
  1113. goto out;
  1114. }
  1115. /* Scan the partitions */
  1116. for (i = 0; (i < 4); i++) {
  1117. ip = &(mh->Partitions[i]);
  1118. le32_to_cpus(&ip->virtualUnits);
  1119. le32_to_cpus(&ip->firstUnit);
  1120. le32_to_cpus(&ip->lastUnit);
  1121. le32_to_cpus(&ip->flags);
  1122. le32_to_cpus(&ip->spareUnits);
  1123. le32_to_cpus(&ip->Reserved0);
  1124. printk(KERN_INFO " PARTITION[%d] ->\n"
  1125. " virtualUnits = %d\n"
  1126. " firstUnit = %d\n"
  1127. " lastUnit = %d\n"
  1128. " flags = 0x%x\n"
  1129. " spareUnits = %d\n",
  1130. i, ip->virtualUnits, ip->firstUnit,
  1131. ip->lastUnit, ip->flags,
  1132. ip->spareUnits);
  1133. if ((show_firmware_partition == 1) &&
  1134. (i == 0) && (ip->firstUnit > 0)) {
  1135. parts[0].name = " DiskOnChip IPL / Media Header partition";
  1136. parts[0].offset = 0;
  1137. parts[0].size = mtd->erasesize * ip->firstUnit;
  1138. numparts = 1;
  1139. }
  1140. if (ip->flags & INFTL_BINARY)
  1141. parts[numparts].name = " DiskOnChip BDK partition";
  1142. else
  1143. parts[numparts].name = " DiskOnChip BDTL partition";
  1144. parts[numparts].offset = ip->firstUnit << vshift;
  1145. parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
  1146. numparts++;
  1147. if (ip->lastUnit > lastvunit)
  1148. lastvunit = ip->lastUnit;
  1149. if (ip->flags & INFTL_LAST)
  1150. break;
  1151. }
  1152. lastvunit++;
  1153. if ((lastvunit << vshift) < end) {
  1154. parts[numparts].name = " DiskOnChip Remainder partition";
  1155. parts[numparts].offset = lastvunit << vshift;
  1156. parts[numparts].size = end - parts[numparts].offset;
  1157. numparts++;
  1158. }
  1159. ret = numparts;
  1160. out:
  1161. kfree(buf);
  1162. return ret;
  1163. }
  1164. static int __init nftl_scan_bbt(struct mtd_info *mtd)
  1165. {
  1166. int ret, numparts;
  1167. struct nand_chip *this = mtd->priv;
  1168. struct doc_priv *doc = this->priv;
  1169. struct mtd_partition parts[2];
  1170. memset((char *)parts, 0, sizeof(parts));
  1171. /* On NFTL, we have to find the media headers before we can read the
  1172. BBTs, since they're stored in the media header eraseblocks. */
  1173. numparts = nftl_partscan(mtd, parts);
  1174. if (!numparts)
  1175. return -EIO;
  1176. this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
  1177. NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
  1178. NAND_BBT_VERSION;
  1179. this->bbt_td->veroffs = 7;
  1180. this->bbt_td->pages[0] = doc->mh0_page + 1;
  1181. if (doc->mh1_page != -1) {
  1182. this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
  1183. NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
  1184. NAND_BBT_VERSION;
  1185. this->bbt_md->veroffs = 7;
  1186. this->bbt_md->pages[0] = doc->mh1_page + 1;
  1187. } else {
  1188. this->bbt_md = NULL;
  1189. }
  1190. /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
  1191. At least as nand_bbt.c is currently written. */
  1192. if ((ret = nand_scan_bbt(mtd, NULL)))
  1193. return ret;
  1194. add_mtd_device(mtd);
  1195. #ifdef CONFIG_MTD_PARTITIONS
  1196. if (!no_autopart)
  1197. add_mtd_partitions(mtd, parts, numparts);
  1198. #endif
  1199. return 0;
  1200. }
  1201. static int __init inftl_scan_bbt(struct mtd_info *mtd)
  1202. {
  1203. int ret, numparts;
  1204. struct nand_chip *this = mtd->priv;
  1205. struct doc_priv *doc = this->priv;
  1206. struct mtd_partition parts[5];
  1207. if (this->numchips > doc->chips_per_floor) {
  1208. printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
  1209. return -EIO;
  1210. }
  1211. if (DoC_is_MillenniumPlus(doc)) {
  1212. this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
  1213. if (inftl_bbt_write)
  1214. this->bbt_td->options |= NAND_BBT_WRITE;
  1215. this->bbt_td->pages[0] = 2;
  1216. this->bbt_md = NULL;
  1217. } else {
  1218. this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
  1219. if (inftl_bbt_write)
  1220. this->bbt_td->options |= NAND_BBT_WRITE;
  1221. this->bbt_td->offs = 8;
  1222. this->bbt_td->len = 8;
  1223. this->bbt_td->veroffs = 7;
  1224. this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
  1225. this->bbt_td->reserved_block_code = 0x01;
  1226. this->bbt_td->pattern = "MSYS_BBT";
  1227. this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
  1228. if (inftl_bbt_write)
  1229. this->bbt_md->options |= NAND_BBT_WRITE;
  1230. this->bbt_md->offs = 8;
  1231. this->bbt_md->len = 8;
  1232. this->bbt_md->veroffs = 7;
  1233. this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
  1234. this->bbt_md->reserved_block_code = 0x01;
  1235. this->bbt_md->pattern = "TBB_SYSM";
  1236. }
  1237. /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
  1238. At least as nand_bbt.c is currently written. */
  1239. if ((ret = nand_scan_bbt(mtd, NULL)))
  1240. return ret;
  1241. memset((char *)parts, 0, sizeof(parts));
  1242. numparts = inftl_partscan(mtd, parts);
  1243. /* At least for now, require the INFTL Media Header. We could probably
  1244. do without it for non-INFTL use, since all it gives us is
  1245. autopartitioning, but I want to give it more thought. */
  1246. if (!numparts)
  1247. return -EIO;
  1248. add_mtd_device(mtd);
  1249. #ifdef CONFIG_MTD_PARTITIONS
  1250. if (!no_autopart)
  1251. add_mtd_partitions(mtd, parts, numparts);
  1252. #endif
  1253. return 0;
  1254. }
  1255. static inline int __init doc2000_init(struct mtd_info *mtd)
  1256. {
  1257. struct nand_chip *this = mtd->priv;
  1258. struct doc_priv *doc = this->priv;
  1259. this->read_byte = doc2000_read_byte;
  1260. this->write_buf = doc2000_writebuf;
  1261. this->read_buf = doc2000_readbuf;
  1262. this->verify_buf = doc2000_verifybuf;
  1263. this->scan_bbt = nftl_scan_bbt;
  1264. doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
  1265. doc2000_count_chips(mtd);
  1266. mtd->name = "DiskOnChip 2000 (NFTL Model)";
  1267. return (4 * doc->chips_per_floor);
  1268. }
  1269. static inline int __init doc2001_init(struct mtd_info *mtd)
  1270. {
  1271. struct nand_chip *this = mtd->priv;
  1272. struct doc_priv *doc = this->priv;
  1273. this->read_byte = doc2001_read_byte;
  1274. this->write_buf = doc2001_writebuf;
  1275. this->read_buf = doc2001_readbuf;
  1276. this->verify_buf = doc2001_verifybuf;
  1277. ReadDOC(doc->virtadr, ChipID);
  1278. ReadDOC(doc->virtadr, ChipID);
  1279. ReadDOC(doc->virtadr, ChipID);
  1280. if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
  1281. /* It's not a Millennium; it's one of the newer
  1282. DiskOnChip 2000 units with a similar ASIC.
  1283. Treat it like a Millennium, except that it
  1284. can have multiple chips. */
  1285. doc2000_count_chips(mtd);
  1286. mtd->name = "DiskOnChip 2000 (INFTL Model)";
  1287. this->scan_bbt = inftl_scan_bbt;
  1288. return (4 * doc->chips_per_floor);
  1289. } else {
  1290. /* Bog-standard Millennium */
  1291. doc->chips_per_floor = 1;
  1292. mtd->name = "DiskOnChip Millennium";
  1293. this->scan_bbt = nftl_scan_bbt;
  1294. return 1;
  1295. }
  1296. }
  1297. static inline int __init doc2001plus_init(struct mtd_info *mtd)
  1298. {
  1299. struct nand_chip *this = mtd->priv;
  1300. struct doc_priv *doc = this->priv;
  1301. this->read_byte = doc2001plus_read_byte;
  1302. this->write_buf = doc2001plus_writebuf;
  1303. this->read_buf = doc2001plus_readbuf;
  1304. this->verify_buf = doc2001plus_verifybuf;
  1305. this->scan_bbt = inftl_scan_bbt;
  1306. this->cmd_ctrl = NULL;
  1307. this->select_chip = doc2001plus_select_chip;
  1308. this->cmdfunc = doc2001plus_command;
  1309. this->ecc.hwctl = doc2001plus_enable_hwecc;
  1310. doc->chips_per_floor = 1;
  1311. mtd->name = "DiskOnChip Millennium Plus";
  1312. return 1;
  1313. }
  1314. static int __init doc_probe(unsigned long physadr)
  1315. {
  1316. unsigned char ChipID;
  1317. struct mtd_info *mtd;
  1318. struct nand_chip *nand;
  1319. struct doc_priv *doc;
  1320. void __iomem *virtadr;
  1321. unsigned char save_control;
  1322. unsigned char tmp, tmpb, tmpc;
  1323. int reg, len, numchips;
  1324. int ret = 0;
  1325. virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
  1326. if (!virtadr) {
  1327. printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
  1328. return -EIO;
  1329. }
  1330. /* It's not possible to cleanly detect the DiskOnChip - the
  1331. * bootup procedure will put the device into reset mode, and
  1332. * it's not possible to talk to it without actually writing
  1333. * to the DOCControl register. So we store the current contents
  1334. * of the DOCControl register's location, in case we later decide
  1335. * that it's not a DiskOnChip, and want to put it back how we
  1336. * found it.
  1337. */
  1338. save_control = ReadDOC(virtadr, DOCControl);
  1339. /* Reset the DiskOnChip ASIC */
  1340. WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
  1341. WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
  1342. /* Enable the DiskOnChip ASIC */
  1343. WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
  1344. WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
  1345. ChipID = ReadDOC(virtadr, ChipID);
  1346. switch (ChipID) {
  1347. case DOC_ChipID_Doc2k:
  1348. reg = DoC_2k_ECCStatus;
  1349. break;
  1350. case DOC_ChipID_DocMil:
  1351. reg = DoC_ECCConf;
  1352. break;
  1353. case DOC_ChipID_DocMilPlus16:
  1354. case DOC_ChipID_DocMilPlus32:
  1355. case 0:
  1356. /* Possible Millennium Plus, need to do more checks */
  1357. /* Possibly release from power down mode */
  1358. for (tmp = 0; (tmp < 4); tmp++)
  1359. ReadDOC(virtadr, Mplus_Power);
  1360. /* Reset the Millennium Plus ASIC */
  1361. tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
  1362. WriteDOC(tmp, virtadr, Mplus_DOCControl);
  1363. WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
  1364. mdelay(1);
  1365. /* Enable the Millennium Plus ASIC */
  1366. tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
  1367. WriteDOC(tmp, virtadr, Mplus_DOCControl);
  1368. WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
  1369. mdelay(1);
  1370. ChipID = ReadDOC(virtadr, ChipID);
  1371. switch (ChipID) {
  1372. case DOC_ChipID_DocMilPlus16:
  1373. reg = DoC_Mplus_Toggle;
  1374. break;
  1375. case DOC_ChipID_DocMilPlus32:
  1376. printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
  1377. default:
  1378. ret = -ENODEV;
  1379. goto notfound;
  1380. }
  1381. break;
  1382. default:
  1383. ret = -ENODEV;
  1384. goto notfound;
  1385. }
  1386. /* Check the TOGGLE bit in the ECC register */
  1387. tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
  1388. tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
  1389. tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
  1390. if ((tmp == tmpb) || (tmp != tmpc)) {
  1391. printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
  1392. ret = -ENODEV;
  1393. goto notfound;
  1394. }
  1395. for (mtd = doclist; mtd; mtd = doc->nextdoc) {
  1396. unsigned char oldval;
  1397. unsigned char newval;
  1398. nand = mtd->priv;
  1399. doc = nand->priv;
  1400. /* Use the alias resolution register to determine if this is
  1401. in fact the same DOC aliased to a new address. If writes
  1402. to one chip's alias resolution register change the value on
  1403. the other chip, they're the same chip. */
  1404. if (ChipID == DOC_ChipID_DocMilPlus16) {
  1405. oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
  1406. newval = ReadDOC(virtadr, Mplus_AliasResolution);
  1407. } else {
  1408. oldval = ReadDOC(doc->virtadr, AliasResolution);
  1409. newval = ReadDOC(virtadr, AliasResolution);
  1410. }
  1411. if (oldval != newval)
  1412. continue;
  1413. if (ChipID == DOC_ChipID_DocMilPlus16) {
  1414. WriteDOC(~newval, virtadr, Mplus_AliasResolution);
  1415. oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
  1416. WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
  1417. } else {
  1418. WriteDOC(~newval, virtadr, AliasResolution);
  1419. oldval = ReadDOC(doc->virtadr, AliasResolution);
  1420. WriteDOC(newval, virtadr, AliasResolution); // restore it
  1421. }
  1422. newval = ~newval;
  1423. if (oldval == newval) {
  1424. printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
  1425. goto notfound;
  1426. }
  1427. }
  1428. printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
  1429. len = sizeof(struct mtd_info) +
  1430. sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
  1431. mtd = kzalloc(len, GFP_KERNEL);
  1432. if (!mtd) {
  1433. printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
  1434. ret = -ENOMEM;
  1435. goto fail;
  1436. }
  1437. nand = (struct nand_chip *) (mtd + 1);
  1438. doc = (struct doc_priv *) (nand + 1);
  1439. nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
  1440. nand->bbt_md = nand->bbt_td + 1;
  1441. mtd->priv = nand;
  1442. mtd->owner = THIS_MODULE;
  1443. nand->priv = doc;
  1444. nand->select_chip = doc200x_select_chip;
  1445. nand->cmd_ctrl = doc200x_hwcontrol;
  1446. nand->dev_ready = doc200x_dev_ready;
  1447. nand->waitfunc = doc200x_wait;
  1448. nand->block_bad = doc200x_block_bad;
  1449. nand->ecc.hwctl = doc200x_enable_hwecc;
  1450. nand->ecc.calculate = doc200x_calculate_ecc;
  1451. nand->ecc.correct = doc200x_correct_data;
  1452. nand->ecc.layout = &doc200x_oobinfo;
  1453. nand->ecc.mode = NAND_ECC_HW_SYNDROME;
  1454. nand->ecc.size = 512;
  1455. nand->ecc.bytes = 6;
  1456. nand->options = NAND_USE_FLASH_BBT;
  1457. doc->physadr = physadr;
  1458. doc->virtadr = virtadr;
  1459. doc->ChipID = ChipID;
  1460. doc->curfloor = -1;
  1461. doc->curchip = -1;
  1462. doc->mh0_page = -1;
  1463. doc->mh1_page = -1;
  1464. doc->nextdoc = doclist;
  1465. if (ChipID == DOC_ChipID_Doc2k)
  1466. numchips = doc2000_init(mtd);
  1467. else if (ChipID == DOC_ChipID_DocMilPlus16)
  1468. numchips = doc2001plus_init(mtd);
  1469. else
  1470. numchips = doc2001_init(mtd);
  1471. if ((ret = nand_scan(mtd, numchips))) {
  1472. /* DBB note: i believe nand_release is necessary here, as
  1473. buffers may have been allocated in nand_base. Check with
  1474. Thomas. FIX ME! */
  1475. /* nand_release will call del_mtd_device, but we haven't yet
  1476. added it. This is handled without incident by
  1477. del_mtd_device, as far as I can tell. */
  1478. nand_release(mtd);
  1479. kfree(mtd);
  1480. goto fail;
  1481. }
  1482. /* Success! */
  1483. doclist = mtd;
  1484. return 0;
  1485. notfound:
  1486. /* Put back the contents of the DOCControl register, in case it's not
  1487. actually a DiskOnChip. */
  1488. WriteDOC(save_control, virtadr, DOCControl);
  1489. fail:
  1490. iounmap(virtadr);
  1491. return ret;
  1492. }
  1493. static void release_nanddoc(void)
  1494. {
  1495. struct mtd_info *mtd, *nextmtd;
  1496. struct nand_chip *nand;
  1497. struct doc_priv *doc;
  1498. for (mtd = doclist; mtd; mtd = nextmtd) {
  1499. nand = mtd->priv;
  1500. doc = nand->priv;
  1501. nextmtd = doc->nextdoc;
  1502. nand_release(mtd);
  1503. iounmap(doc->virtadr);
  1504. kfree(mtd);
  1505. }
  1506. }
  1507. static int __init init_nanddoc(void)
  1508. {
  1509. int i, ret = 0;
  1510. /* We could create the decoder on demand, if memory is a concern.
  1511. * This way we have it handy, if an error happens
  1512. *
  1513. * Symbolsize is 10 (bits)
  1514. * Primitve polynomial is x^10+x^3+1
  1515. * first consecutive root is 510
  1516. * primitve element to generate roots = 1
  1517. * generator polinomial degree = 4
  1518. */
  1519. rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
  1520. if (!rs_decoder) {
  1521. printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
  1522. return -ENOMEM;
  1523. }
  1524. if (doc_config_location) {
  1525. printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
  1526. ret = doc_probe(doc_config_location);
  1527. if (ret < 0)
  1528. goto outerr;
  1529. } else {
  1530. for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
  1531. doc_probe(doc_locations[i]);
  1532. }
  1533. }
  1534. /* No banner message any more. Print a message if no DiskOnChip
  1535. found, so the user knows we at least tried. */
  1536. if (!doclist) {
  1537. printk(KERN_INFO "No valid DiskOnChip devices found\n");
  1538. ret = -ENODEV;
  1539. goto outerr;
  1540. }
  1541. return 0;
  1542. outerr:
  1543. free_rs(rs_decoder);
  1544. return ret;
  1545. }
  1546. static void __exit cleanup_nanddoc(void)
  1547. {
  1548. /* Cleanup the nand/DoC resources */
  1549. release_nanddoc();
  1550. /* Free the reed solomon resources */
  1551. if (rs_decoder) {
  1552. free_rs(rs_decoder);
  1553. }
  1554. }
  1555. module_init(init_nanddoc);
  1556. module_exit(cleanup_nanddoc);
  1557. MODULE_LICENSE("GPL");
  1558. MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
  1559. MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");