m25p80.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748
  1. /*
  2. * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
  3. *
  4. * Author: Mike Lavender, mike@steroidmicros.com
  5. *
  6. * Copyright (c) 2005, Intec Automation Inc.
  7. *
  8. * Some parts are based on lart.c by Abraham Van Der Merwe
  9. *
  10. * Cleaned up and generalized based on mtd_dataflash.c
  11. *
  12. * This code is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. *
  16. */
  17. #include <linux/init.h>
  18. #include <linux/module.h>
  19. #include <linux/device.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/mutex.h>
  22. #include <linux/mtd/mtd.h>
  23. #include <linux/mtd/partitions.h>
  24. #include <linux/spi/spi.h>
  25. #include <linux/spi/flash.h>
  26. #define FLASH_PAGESIZE 256
  27. /* Flash opcodes. */
  28. #define OPCODE_WREN 0x06 /* Write enable */
  29. #define OPCODE_RDSR 0x05 /* Read status register */
  30. #define OPCODE_WRSR 0x01 /* Write status register 1 byte */
  31. #define OPCODE_NORM_READ 0x03 /* Read data bytes (low frequency) */
  32. #define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
  33. #define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
  34. #define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
  35. #define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
  36. #define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
  37. #define OPCODE_RDID 0x9f /* Read JEDEC ID */
  38. /* Status Register bits. */
  39. #define SR_WIP 1 /* Write in progress */
  40. #define SR_WEL 2 /* Write enable latch */
  41. /* meaning of other SR_* bits may differ between vendors */
  42. #define SR_BP0 4 /* Block protect 0 */
  43. #define SR_BP1 8 /* Block protect 1 */
  44. #define SR_BP2 0x10 /* Block protect 2 */
  45. #define SR_SRWD 0x80 /* SR write protect */
  46. /* Define max times to check status register before we give up. */
  47. #define MAX_READY_WAIT_COUNT 100000
  48. #define CMD_SIZE 4
  49. #ifdef CONFIG_M25PXX_USE_FAST_READ
  50. #define OPCODE_READ OPCODE_FAST_READ
  51. #define FAST_READ_DUMMY_BYTE 1
  52. #else
  53. #define OPCODE_READ OPCODE_NORM_READ
  54. #define FAST_READ_DUMMY_BYTE 0
  55. #endif
  56. #ifdef CONFIG_MTD_PARTITIONS
  57. #define mtd_has_partitions() (1)
  58. #else
  59. #define mtd_has_partitions() (0)
  60. #endif
  61. /****************************************************************************/
  62. struct m25p {
  63. struct spi_device *spi;
  64. struct mutex lock;
  65. struct mtd_info mtd;
  66. unsigned partitioned:1;
  67. u8 erase_opcode;
  68. u8 command[CMD_SIZE + FAST_READ_DUMMY_BYTE];
  69. };
  70. static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
  71. {
  72. return container_of(mtd, struct m25p, mtd);
  73. }
  74. /****************************************************************************/
  75. /*
  76. * Internal helper functions
  77. */
  78. /*
  79. * Read the status register, returning its value in the location
  80. * Return the status register value.
  81. * Returns negative if error occurred.
  82. */
  83. static int read_sr(struct m25p *flash)
  84. {
  85. ssize_t retval;
  86. u8 code = OPCODE_RDSR;
  87. u8 val;
  88. retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
  89. if (retval < 0) {
  90. dev_err(&flash->spi->dev, "error %d reading SR\n",
  91. (int) retval);
  92. return retval;
  93. }
  94. return val;
  95. }
  96. /*
  97. * Write status register 1 byte
  98. * Returns negative if error occurred.
  99. */
  100. static int write_sr(struct m25p *flash, u8 val)
  101. {
  102. flash->command[0] = OPCODE_WRSR;
  103. flash->command[1] = val;
  104. return spi_write(flash->spi, flash->command, 2);
  105. }
  106. /*
  107. * Set write enable latch with Write Enable command.
  108. * Returns negative if error occurred.
  109. */
  110. static inline int write_enable(struct m25p *flash)
  111. {
  112. u8 code = OPCODE_WREN;
  113. return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
  114. }
  115. /*
  116. * Service routine to read status register until ready, or timeout occurs.
  117. * Returns non-zero if error.
  118. */
  119. static int wait_till_ready(struct m25p *flash)
  120. {
  121. int count;
  122. int sr;
  123. /* one chip guarantees max 5 msec wait here after page writes,
  124. * but potentially three seconds (!) after page erase.
  125. */
  126. for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {
  127. if ((sr = read_sr(flash)) < 0)
  128. break;
  129. else if (!(sr & SR_WIP))
  130. return 0;
  131. /* REVISIT sometimes sleeping would be best */
  132. }
  133. return 1;
  134. }
  135. /*
  136. * Erase one sector of flash memory at offset ``offset'' which is any
  137. * address within the sector which should be erased.
  138. *
  139. * Returns 0 if successful, non-zero otherwise.
  140. */
  141. static int erase_sector(struct m25p *flash, u32 offset)
  142. {
  143. DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
  144. flash->spi->dev.bus_id, __func__,
  145. flash->mtd.erasesize / 1024, offset);
  146. /* Wait until finished previous write command. */
  147. if (wait_till_ready(flash))
  148. return 1;
  149. /* Send write enable, then erase commands. */
  150. write_enable(flash);
  151. /* Set up command buffer. */
  152. flash->command[0] = flash->erase_opcode;
  153. flash->command[1] = offset >> 16;
  154. flash->command[2] = offset >> 8;
  155. flash->command[3] = offset;
  156. spi_write(flash->spi, flash->command, CMD_SIZE);
  157. return 0;
  158. }
  159. /****************************************************************************/
  160. /*
  161. * MTD implementation
  162. */
  163. /*
  164. * Erase an address range on the flash chip. The address range may extend
  165. * one or more erase sectors. Return an error is there is a problem erasing.
  166. */
  167. static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
  168. {
  169. struct m25p *flash = mtd_to_m25p(mtd);
  170. u32 addr,len;
  171. DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n",
  172. flash->spi->dev.bus_id, __func__, "at",
  173. (u32)instr->addr, instr->len);
  174. /* sanity checks */
  175. if (instr->addr + instr->len > flash->mtd.size)
  176. return -EINVAL;
  177. if ((instr->addr % mtd->erasesize) != 0
  178. || (instr->len % mtd->erasesize) != 0) {
  179. return -EINVAL;
  180. }
  181. addr = instr->addr;
  182. len = instr->len;
  183. mutex_lock(&flash->lock);
  184. /* REVISIT in some cases we could speed up erasing large regions
  185. * by using OPCODE_SE instead of OPCODE_BE_4K
  186. */
  187. /* now erase those sectors */
  188. while (len) {
  189. if (erase_sector(flash, addr)) {
  190. instr->state = MTD_ERASE_FAILED;
  191. mutex_unlock(&flash->lock);
  192. return -EIO;
  193. }
  194. addr += mtd->erasesize;
  195. len -= mtd->erasesize;
  196. }
  197. mutex_unlock(&flash->lock);
  198. instr->state = MTD_ERASE_DONE;
  199. mtd_erase_callback(instr);
  200. return 0;
  201. }
  202. /*
  203. * Read an address range from the flash chip. The address range
  204. * may be any size provided it is within the physical boundaries.
  205. */
  206. static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
  207. size_t *retlen, u_char *buf)
  208. {
  209. struct m25p *flash = mtd_to_m25p(mtd);
  210. struct spi_transfer t[2];
  211. struct spi_message m;
  212. DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
  213. flash->spi->dev.bus_id, __func__, "from",
  214. (u32)from, len);
  215. /* sanity checks */
  216. if (!len)
  217. return 0;
  218. if (from + len > flash->mtd.size)
  219. return -EINVAL;
  220. spi_message_init(&m);
  221. memset(t, 0, (sizeof t));
  222. /* NOTE:
  223. * OPCODE_FAST_READ (if available) is faster.
  224. * Should add 1 byte DUMMY_BYTE.
  225. */
  226. t[0].tx_buf = flash->command;
  227. t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE;
  228. spi_message_add_tail(&t[0], &m);
  229. t[1].rx_buf = buf;
  230. t[1].len = len;
  231. spi_message_add_tail(&t[1], &m);
  232. /* Byte count starts at zero. */
  233. if (retlen)
  234. *retlen = 0;
  235. mutex_lock(&flash->lock);
  236. /* Wait till previous write/erase is done. */
  237. if (wait_till_ready(flash)) {
  238. /* REVISIT status return?? */
  239. mutex_unlock(&flash->lock);
  240. return 1;
  241. }
  242. /* FIXME switch to OPCODE_FAST_READ. It's required for higher
  243. * clocks; and at this writing, every chip this driver handles
  244. * supports that opcode.
  245. */
  246. /* Set up the write data buffer. */
  247. flash->command[0] = OPCODE_READ;
  248. flash->command[1] = from >> 16;
  249. flash->command[2] = from >> 8;
  250. flash->command[3] = from;
  251. spi_sync(flash->spi, &m);
  252. *retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE;
  253. mutex_unlock(&flash->lock);
  254. return 0;
  255. }
  256. /*
  257. * Write an address range to the flash chip. Data must be written in
  258. * FLASH_PAGESIZE chunks. The address range may be any size provided
  259. * it is within the physical boundaries.
  260. */
  261. static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
  262. size_t *retlen, const u_char *buf)
  263. {
  264. struct m25p *flash = mtd_to_m25p(mtd);
  265. u32 page_offset, page_size;
  266. struct spi_transfer t[2];
  267. struct spi_message m;
  268. DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
  269. flash->spi->dev.bus_id, __func__, "to",
  270. (u32)to, len);
  271. if (retlen)
  272. *retlen = 0;
  273. /* sanity checks */
  274. if (!len)
  275. return(0);
  276. if (to + len > flash->mtd.size)
  277. return -EINVAL;
  278. spi_message_init(&m);
  279. memset(t, 0, (sizeof t));
  280. t[0].tx_buf = flash->command;
  281. t[0].len = CMD_SIZE;
  282. spi_message_add_tail(&t[0], &m);
  283. t[1].tx_buf = buf;
  284. spi_message_add_tail(&t[1], &m);
  285. mutex_lock(&flash->lock);
  286. /* Wait until finished previous write command. */
  287. if (wait_till_ready(flash)) {
  288. mutex_unlock(&flash->lock);
  289. return 1;
  290. }
  291. write_enable(flash);
  292. /* Set up the opcode in the write buffer. */
  293. flash->command[0] = OPCODE_PP;
  294. flash->command[1] = to >> 16;
  295. flash->command[2] = to >> 8;
  296. flash->command[3] = to;
  297. /* what page do we start with? */
  298. page_offset = to % FLASH_PAGESIZE;
  299. /* do all the bytes fit onto one page? */
  300. if (page_offset + len <= FLASH_PAGESIZE) {
  301. t[1].len = len;
  302. spi_sync(flash->spi, &m);
  303. *retlen = m.actual_length - CMD_SIZE;
  304. } else {
  305. u32 i;
  306. /* the size of data remaining on the first page */
  307. page_size = FLASH_PAGESIZE - page_offset;
  308. t[1].len = page_size;
  309. spi_sync(flash->spi, &m);
  310. *retlen = m.actual_length - CMD_SIZE;
  311. /* write everything in PAGESIZE chunks */
  312. for (i = page_size; i < len; i += page_size) {
  313. page_size = len - i;
  314. if (page_size > FLASH_PAGESIZE)
  315. page_size = FLASH_PAGESIZE;
  316. /* write the next page to flash */
  317. flash->command[1] = (to + i) >> 16;
  318. flash->command[2] = (to + i) >> 8;
  319. flash->command[3] = (to + i);
  320. t[1].tx_buf = buf + i;
  321. t[1].len = page_size;
  322. wait_till_ready(flash);
  323. write_enable(flash);
  324. spi_sync(flash->spi, &m);
  325. if (retlen)
  326. *retlen += m.actual_length - CMD_SIZE;
  327. }
  328. }
  329. mutex_unlock(&flash->lock);
  330. return 0;
  331. }
  332. /****************************************************************************/
  333. /*
  334. * SPI device driver setup and teardown
  335. */
  336. struct flash_info {
  337. char *name;
  338. /* JEDEC id zero means "no ID" (most older chips); otherwise it has
  339. * a high byte of zero plus three data bytes: the manufacturer id,
  340. * then a two byte device id.
  341. */
  342. u32 jedec_id;
  343. /* The size listed here is what works with OPCODE_SE, which isn't
  344. * necessarily called a "sector" by the vendor.
  345. */
  346. unsigned sector_size;
  347. u16 n_sectors;
  348. u16 flags;
  349. #define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
  350. };
  351. /* NOTE: double check command sets and memory organization when you add
  352. * more flash chips. This current list focusses on newer chips, which
  353. * have been converging on command sets which including JEDEC ID.
  354. */
  355. static struct flash_info __devinitdata m25p_data [] = {
  356. /* Atmel -- some are (confusingly) marketed as "DataFlash" */
  357. { "at25fs010", 0x1f6601, 32 * 1024, 4, SECT_4K, },
  358. { "at25fs040", 0x1f6604, 64 * 1024, 8, SECT_4K, },
  359. { "at25df041a", 0x1f4401, 64 * 1024, 8, SECT_4K, },
  360. { "at25df641", 0x1f4800, 64 * 1024, 128, SECT_4K, },
  361. { "at26f004", 0x1f0400, 64 * 1024, 8, SECT_4K, },
  362. { "at26df081a", 0x1f4501, 64 * 1024, 16, SECT_4K, },
  363. { "at26df161a", 0x1f4601, 64 * 1024, 32, SECT_4K, },
  364. { "at26df321", 0x1f4701, 64 * 1024, 64, SECT_4K, },
  365. /* Spansion -- single (large) sector size only, at least
  366. * for the chips listed here (without boot sectors).
  367. */
  368. { "s25sl004a", 0x010212, 64 * 1024, 8, },
  369. { "s25sl008a", 0x010213, 64 * 1024, 16, },
  370. { "s25sl016a", 0x010214, 64 * 1024, 32, },
  371. { "s25sl032a", 0x010215, 64 * 1024, 64, },
  372. { "s25sl064a", 0x010216, 64 * 1024, 128, },
  373. /* SST -- large erase sizes are "overlays", "sectors" are 4K */
  374. { "sst25vf040b", 0xbf258d, 64 * 1024, 8, SECT_4K, },
  375. { "sst25vf080b", 0xbf258e, 64 * 1024, 16, SECT_4K, },
  376. { "sst25vf016b", 0xbf2541, 64 * 1024, 32, SECT_4K, },
  377. { "sst25vf032b", 0xbf254a, 64 * 1024, 64, SECT_4K, },
  378. /* ST Microelectronics -- newer production may have feature updates */
  379. { "m25p05", 0x202010, 32 * 1024, 2, },
  380. { "m25p10", 0x202011, 32 * 1024, 4, },
  381. { "m25p20", 0x202012, 64 * 1024, 4, },
  382. { "m25p40", 0x202013, 64 * 1024, 8, },
  383. { "m25p80", 0, 64 * 1024, 16, },
  384. { "m25p16", 0x202015, 64 * 1024, 32, },
  385. { "m25p32", 0x202016, 64 * 1024, 64, },
  386. { "m25p64", 0x202017, 64 * 1024, 128, },
  387. { "m25p128", 0x202018, 256 * 1024, 64, },
  388. { "m45pe80", 0x204014, 64 * 1024, 16, },
  389. { "m45pe16", 0x204015, 64 * 1024, 32, },
  390. { "m25pe80", 0x208014, 64 * 1024, 16, },
  391. { "m25pe16", 0x208015, 64 * 1024, 32, SECT_4K, },
  392. /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
  393. { "w25x10", 0xef3011, 64 * 1024, 2, SECT_4K, },
  394. { "w25x20", 0xef3012, 64 * 1024, 4, SECT_4K, },
  395. { "w25x40", 0xef3013, 64 * 1024, 8, SECT_4K, },
  396. { "w25x80", 0xef3014, 64 * 1024, 16, SECT_4K, },
  397. { "w25x16", 0xef3015, 64 * 1024, 32, SECT_4K, },
  398. { "w25x32", 0xef3016, 64 * 1024, 64, SECT_4K, },
  399. { "w25x64", 0xef3017, 64 * 1024, 128, SECT_4K, },
  400. };
  401. static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
  402. {
  403. int tmp;
  404. u8 code = OPCODE_RDID;
  405. u8 id[3];
  406. u32 jedec;
  407. struct flash_info *info;
  408. /* JEDEC also defines an optional "extended device information"
  409. * string for after vendor-specific data, after the three bytes
  410. * we use here. Supporting some chips might require using it.
  411. */
  412. tmp = spi_write_then_read(spi, &code, 1, id, 3);
  413. if (tmp < 0) {
  414. DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
  415. spi->dev.bus_id, tmp);
  416. return NULL;
  417. }
  418. jedec = id[0];
  419. jedec = jedec << 8;
  420. jedec |= id[1];
  421. jedec = jedec << 8;
  422. jedec |= id[2];
  423. for (tmp = 0, info = m25p_data;
  424. tmp < ARRAY_SIZE(m25p_data);
  425. tmp++, info++) {
  426. if (info->jedec_id == jedec)
  427. return info;
  428. }
  429. dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
  430. return NULL;
  431. }
  432. /*
  433. * board specific setup should have ensured the SPI clock used here
  434. * matches what the READ command supports, at least until this driver
  435. * understands FAST_READ (for clocks over 25 MHz).
  436. */
  437. static int __devinit m25p_probe(struct spi_device *spi)
  438. {
  439. struct flash_platform_data *data;
  440. struct m25p *flash;
  441. struct flash_info *info;
  442. unsigned i;
  443. /* Platform data helps sort out which chip type we have, as
  444. * well as how this board partitions it. If we don't have
  445. * a chip ID, try the JEDEC id commands; they'll work for most
  446. * newer chips, even if we don't recognize the particular chip.
  447. */
  448. data = spi->dev.platform_data;
  449. if (data && data->type) {
  450. for (i = 0, info = m25p_data;
  451. i < ARRAY_SIZE(m25p_data);
  452. i++, info++) {
  453. if (strcmp(data->type, info->name) == 0)
  454. break;
  455. }
  456. /* unrecognized chip? */
  457. if (i == ARRAY_SIZE(m25p_data)) {
  458. DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
  459. spi->dev.bus_id, data->type);
  460. info = NULL;
  461. /* recognized; is that chip really what's there? */
  462. } else if (info->jedec_id) {
  463. struct flash_info *chip = jedec_probe(spi);
  464. if (!chip || chip != info) {
  465. dev_warn(&spi->dev, "found %s, expected %s\n",
  466. chip ? chip->name : "UNKNOWN",
  467. info->name);
  468. info = NULL;
  469. }
  470. }
  471. } else
  472. info = jedec_probe(spi);
  473. if (!info)
  474. return -ENODEV;
  475. flash = kzalloc(sizeof *flash, GFP_KERNEL);
  476. if (!flash)
  477. return -ENOMEM;
  478. flash->spi = spi;
  479. mutex_init(&flash->lock);
  480. dev_set_drvdata(&spi->dev, flash);
  481. /*
  482. * Atmel serial flash tend to power up
  483. * with the software protection bits set
  484. */
  485. if (info->jedec_id >> 16 == 0x1f) {
  486. write_enable(flash);
  487. write_sr(flash, 0);
  488. }
  489. if (data && data->name)
  490. flash->mtd.name = data->name;
  491. else
  492. flash->mtd.name = spi->dev.bus_id;
  493. flash->mtd.type = MTD_NORFLASH;
  494. flash->mtd.writesize = 1;
  495. flash->mtd.flags = MTD_CAP_NORFLASH;
  496. flash->mtd.size = info->sector_size * info->n_sectors;
  497. flash->mtd.erase = m25p80_erase;
  498. flash->mtd.read = m25p80_read;
  499. flash->mtd.write = m25p80_write;
  500. /* prefer "small sector" erase if possible */
  501. if (info->flags & SECT_4K) {
  502. flash->erase_opcode = OPCODE_BE_4K;
  503. flash->mtd.erasesize = 4096;
  504. } else {
  505. flash->erase_opcode = OPCODE_SE;
  506. flash->mtd.erasesize = info->sector_size;
  507. }
  508. dev_info(&spi->dev, "%s (%d Kbytes)\n", info->name,
  509. flash->mtd.size / 1024);
  510. DEBUG(MTD_DEBUG_LEVEL2,
  511. "mtd .name = %s, .size = 0x%.8x (%uMiB) "
  512. ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
  513. flash->mtd.name,
  514. flash->mtd.size, flash->mtd.size / (1024*1024),
  515. flash->mtd.erasesize, flash->mtd.erasesize / 1024,
  516. flash->mtd.numeraseregions);
  517. if (flash->mtd.numeraseregions)
  518. for (i = 0; i < flash->mtd.numeraseregions; i++)
  519. DEBUG(MTD_DEBUG_LEVEL2,
  520. "mtd.eraseregions[%d] = { .offset = 0x%.8x, "
  521. ".erasesize = 0x%.8x (%uKiB), "
  522. ".numblocks = %d }\n",
  523. i, flash->mtd.eraseregions[i].offset,
  524. flash->mtd.eraseregions[i].erasesize,
  525. flash->mtd.eraseregions[i].erasesize / 1024,
  526. flash->mtd.eraseregions[i].numblocks);
  527. /* partitions should match sector boundaries; and it may be good to
  528. * use readonly partitions for writeprotected sectors (BP2..BP0).
  529. */
  530. if (mtd_has_partitions()) {
  531. struct mtd_partition *parts = NULL;
  532. int nr_parts = 0;
  533. #ifdef CONFIG_MTD_CMDLINE_PARTS
  534. static const char *part_probes[] = { "cmdlinepart", NULL, };
  535. nr_parts = parse_mtd_partitions(&flash->mtd,
  536. part_probes, &parts, 0);
  537. #endif
  538. if (nr_parts <= 0 && data && data->parts) {
  539. parts = data->parts;
  540. nr_parts = data->nr_parts;
  541. }
  542. if (nr_parts > 0) {
  543. for (i = 0; i < nr_parts; i++) {
  544. DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
  545. "{.name = %s, .offset = 0x%.8x, "
  546. ".size = 0x%.8x (%uKiB) }\n",
  547. i, parts[i].name,
  548. parts[i].offset,
  549. parts[i].size,
  550. parts[i].size / 1024);
  551. }
  552. flash->partitioned = 1;
  553. return add_mtd_partitions(&flash->mtd, parts, nr_parts);
  554. }
  555. } else if (data->nr_parts)
  556. dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
  557. data->nr_parts, data->name);
  558. return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
  559. }
  560. static int __devexit m25p_remove(struct spi_device *spi)
  561. {
  562. struct m25p *flash = dev_get_drvdata(&spi->dev);
  563. int status;
  564. /* Clean up MTD stuff. */
  565. if (mtd_has_partitions() && flash->partitioned)
  566. status = del_mtd_partitions(&flash->mtd);
  567. else
  568. status = del_mtd_device(&flash->mtd);
  569. if (status == 0)
  570. kfree(flash);
  571. return 0;
  572. }
  573. static struct spi_driver m25p80_driver = {
  574. .driver = {
  575. .name = "m25p80",
  576. .bus = &spi_bus_type,
  577. .owner = THIS_MODULE,
  578. },
  579. .probe = m25p_probe,
  580. .remove = __devexit_p(m25p_remove),
  581. /* REVISIT: many of these chips have deep power-down modes, which
  582. * should clearly be entered on suspend() to minimize power use.
  583. * And also when they're otherwise idle...
  584. */
  585. };
  586. static int m25p80_init(void)
  587. {
  588. return spi_register_driver(&m25p80_driver);
  589. }
  590. static void m25p80_exit(void)
  591. {
  592. spi_unregister_driver(&m25p80_driver);
  593. }
  594. module_init(m25p80_init);
  595. module_exit(m25p80_exit);
  596. MODULE_LICENSE("GPL");
  597. MODULE_AUTHOR("Mike Lavender");
  598. MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");