dm-delay.c 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381
  1. /*
  2. * Copyright (C) 2005-2007 Red Hat GmbH
  3. *
  4. * A target that delays reads and/or writes and can send
  5. * them to different devices.
  6. *
  7. * This file is released under the GPL.
  8. */
  9. #include <linux/module.h>
  10. #include <linux/init.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/bio.h>
  13. #include <linux/slab.h>
  14. #include "dm.h"
  15. #include "dm-bio-list.h"
  16. #define DM_MSG_PREFIX "delay"
  17. struct delay_c {
  18. struct timer_list delay_timer;
  19. struct mutex timer_lock;
  20. struct work_struct flush_expired_bios;
  21. struct list_head delayed_bios;
  22. atomic_t may_delay;
  23. mempool_t *delayed_pool;
  24. struct dm_dev *dev_read;
  25. sector_t start_read;
  26. unsigned read_delay;
  27. unsigned reads;
  28. struct dm_dev *dev_write;
  29. sector_t start_write;
  30. unsigned write_delay;
  31. unsigned writes;
  32. };
  33. struct dm_delay_info {
  34. struct delay_c *context;
  35. struct list_head list;
  36. struct bio *bio;
  37. unsigned long expires;
  38. };
  39. static DEFINE_MUTEX(delayed_bios_lock);
  40. static struct workqueue_struct *kdelayd_wq;
  41. static struct kmem_cache *delayed_cache;
  42. static void handle_delayed_timer(unsigned long data)
  43. {
  44. struct delay_c *dc = (struct delay_c *)data;
  45. queue_work(kdelayd_wq, &dc->flush_expired_bios);
  46. }
  47. static void queue_timeout(struct delay_c *dc, unsigned long expires)
  48. {
  49. mutex_lock(&dc->timer_lock);
  50. if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
  51. mod_timer(&dc->delay_timer, expires);
  52. mutex_unlock(&dc->timer_lock);
  53. }
  54. static void flush_bios(struct bio *bio)
  55. {
  56. struct bio *n;
  57. while (bio) {
  58. n = bio->bi_next;
  59. bio->bi_next = NULL;
  60. generic_make_request(bio);
  61. bio = n;
  62. }
  63. }
  64. static struct bio *flush_delayed_bios(struct delay_c *dc, int flush_all)
  65. {
  66. struct dm_delay_info *delayed, *next;
  67. unsigned long next_expires = 0;
  68. int start_timer = 0;
  69. struct bio_list flush_bios = { };
  70. mutex_lock(&delayed_bios_lock);
  71. list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
  72. if (flush_all || time_after_eq(jiffies, delayed->expires)) {
  73. list_del(&delayed->list);
  74. bio_list_add(&flush_bios, delayed->bio);
  75. if ((bio_data_dir(delayed->bio) == WRITE))
  76. delayed->context->writes--;
  77. else
  78. delayed->context->reads--;
  79. mempool_free(delayed, dc->delayed_pool);
  80. continue;
  81. }
  82. if (!start_timer) {
  83. start_timer = 1;
  84. next_expires = delayed->expires;
  85. } else
  86. next_expires = min(next_expires, delayed->expires);
  87. }
  88. mutex_unlock(&delayed_bios_lock);
  89. if (start_timer)
  90. queue_timeout(dc, next_expires);
  91. return bio_list_get(&flush_bios);
  92. }
  93. static void flush_expired_bios(struct work_struct *work)
  94. {
  95. struct delay_c *dc;
  96. dc = container_of(work, struct delay_c, flush_expired_bios);
  97. flush_bios(flush_delayed_bios(dc, 0));
  98. }
  99. /*
  100. * Mapping parameters:
  101. * <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
  102. *
  103. * With separate write parameters, the first set is only used for reads.
  104. * Delays are specified in milliseconds.
  105. */
  106. static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
  107. {
  108. struct delay_c *dc;
  109. unsigned long long tmpll;
  110. if (argc != 3 && argc != 6) {
  111. ti->error = "requires exactly 3 or 6 arguments";
  112. return -EINVAL;
  113. }
  114. dc = kmalloc(sizeof(*dc), GFP_KERNEL);
  115. if (!dc) {
  116. ti->error = "Cannot allocate context";
  117. return -ENOMEM;
  118. }
  119. dc->reads = dc->writes = 0;
  120. if (sscanf(argv[1], "%llu", &tmpll) != 1) {
  121. ti->error = "Invalid device sector";
  122. goto bad;
  123. }
  124. dc->start_read = tmpll;
  125. if (sscanf(argv[2], "%u", &dc->read_delay) != 1) {
  126. ti->error = "Invalid delay";
  127. goto bad;
  128. }
  129. if (dm_get_device(ti, argv[0], dc->start_read, ti->len,
  130. dm_table_get_mode(ti->table), &dc->dev_read)) {
  131. ti->error = "Device lookup failed";
  132. goto bad;
  133. }
  134. dc->dev_write = NULL;
  135. if (argc == 3)
  136. goto out;
  137. if (sscanf(argv[4], "%llu", &tmpll) != 1) {
  138. ti->error = "Invalid write device sector";
  139. goto bad_dev_read;
  140. }
  141. dc->start_write = tmpll;
  142. if (sscanf(argv[5], "%u", &dc->write_delay) != 1) {
  143. ti->error = "Invalid write delay";
  144. goto bad_dev_read;
  145. }
  146. if (dm_get_device(ti, argv[3], dc->start_write, ti->len,
  147. dm_table_get_mode(ti->table), &dc->dev_write)) {
  148. ti->error = "Write device lookup failed";
  149. goto bad_dev_read;
  150. }
  151. out:
  152. dc->delayed_pool = mempool_create_slab_pool(128, delayed_cache);
  153. if (!dc->delayed_pool) {
  154. DMERR("Couldn't create delayed bio pool.");
  155. goto bad_dev_write;
  156. }
  157. setup_timer(&dc->delay_timer, handle_delayed_timer, (unsigned long)dc);
  158. INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
  159. INIT_LIST_HEAD(&dc->delayed_bios);
  160. mutex_init(&dc->timer_lock);
  161. atomic_set(&dc->may_delay, 1);
  162. ti->private = dc;
  163. return 0;
  164. bad_dev_write:
  165. if (dc->dev_write)
  166. dm_put_device(ti, dc->dev_write);
  167. bad_dev_read:
  168. dm_put_device(ti, dc->dev_read);
  169. bad:
  170. kfree(dc);
  171. return -EINVAL;
  172. }
  173. static void delay_dtr(struct dm_target *ti)
  174. {
  175. struct delay_c *dc = ti->private;
  176. flush_workqueue(kdelayd_wq);
  177. dm_put_device(ti, dc->dev_read);
  178. if (dc->dev_write)
  179. dm_put_device(ti, dc->dev_write);
  180. mempool_destroy(dc->delayed_pool);
  181. kfree(dc);
  182. }
  183. static int delay_bio(struct delay_c *dc, int delay, struct bio *bio)
  184. {
  185. struct dm_delay_info *delayed;
  186. unsigned long expires = 0;
  187. if (!delay || !atomic_read(&dc->may_delay))
  188. return 1;
  189. delayed = mempool_alloc(dc->delayed_pool, GFP_NOIO);
  190. delayed->context = dc;
  191. delayed->bio = bio;
  192. delayed->expires = expires = jiffies + (delay * HZ / 1000);
  193. mutex_lock(&delayed_bios_lock);
  194. if (bio_data_dir(bio) == WRITE)
  195. dc->writes++;
  196. else
  197. dc->reads++;
  198. list_add_tail(&delayed->list, &dc->delayed_bios);
  199. mutex_unlock(&delayed_bios_lock);
  200. queue_timeout(dc, expires);
  201. return 0;
  202. }
  203. static void delay_presuspend(struct dm_target *ti)
  204. {
  205. struct delay_c *dc = ti->private;
  206. atomic_set(&dc->may_delay, 0);
  207. del_timer_sync(&dc->delay_timer);
  208. flush_bios(flush_delayed_bios(dc, 1));
  209. }
  210. static void delay_resume(struct dm_target *ti)
  211. {
  212. struct delay_c *dc = ti->private;
  213. atomic_set(&dc->may_delay, 1);
  214. }
  215. static int delay_map(struct dm_target *ti, struct bio *bio,
  216. union map_info *map_context)
  217. {
  218. struct delay_c *dc = ti->private;
  219. if ((bio_data_dir(bio) == WRITE) && (dc->dev_write)) {
  220. bio->bi_bdev = dc->dev_write->bdev;
  221. bio->bi_sector = dc->start_write +
  222. (bio->bi_sector - ti->begin);
  223. return delay_bio(dc, dc->write_delay, bio);
  224. }
  225. bio->bi_bdev = dc->dev_read->bdev;
  226. bio->bi_sector = dc->start_read +
  227. (bio->bi_sector - ti->begin);
  228. return delay_bio(dc, dc->read_delay, bio);
  229. }
  230. static int delay_status(struct dm_target *ti, status_type_t type,
  231. char *result, unsigned maxlen)
  232. {
  233. struct delay_c *dc = ti->private;
  234. int sz = 0;
  235. switch (type) {
  236. case STATUSTYPE_INFO:
  237. DMEMIT("%u %u", dc->reads, dc->writes);
  238. break;
  239. case STATUSTYPE_TABLE:
  240. DMEMIT("%s %llu %u", dc->dev_read->name,
  241. (unsigned long long) dc->start_read,
  242. dc->read_delay);
  243. if (dc->dev_write)
  244. DMEMIT(" %s %llu %u", dc->dev_write->name,
  245. (unsigned long long) dc->start_write,
  246. dc->write_delay);
  247. break;
  248. }
  249. return 0;
  250. }
  251. static struct target_type delay_target = {
  252. .name = "delay",
  253. .version = {1, 0, 2},
  254. .module = THIS_MODULE,
  255. .ctr = delay_ctr,
  256. .dtr = delay_dtr,
  257. .map = delay_map,
  258. .presuspend = delay_presuspend,
  259. .resume = delay_resume,
  260. .status = delay_status,
  261. };
  262. static int __init dm_delay_init(void)
  263. {
  264. int r = -ENOMEM;
  265. kdelayd_wq = create_workqueue("kdelayd");
  266. if (!kdelayd_wq) {
  267. DMERR("Couldn't start kdelayd");
  268. goto bad_queue;
  269. }
  270. delayed_cache = KMEM_CACHE(dm_delay_info, 0);
  271. if (!delayed_cache) {
  272. DMERR("Couldn't create delayed bio cache.");
  273. goto bad_memcache;
  274. }
  275. r = dm_register_target(&delay_target);
  276. if (r < 0) {
  277. DMERR("register failed %d", r);
  278. goto bad_register;
  279. }
  280. return 0;
  281. bad_register:
  282. kmem_cache_destroy(delayed_cache);
  283. bad_memcache:
  284. destroy_workqueue(kdelayd_wq);
  285. bad_queue:
  286. return r;
  287. }
  288. static void __exit dm_delay_exit(void)
  289. {
  290. int r = dm_unregister_target(&delay_target);
  291. if (r < 0)
  292. DMERR("unregister failed %d", r);
  293. kmem_cache_destroy(delayed_cache);
  294. destroy_workqueue(kdelayd_wq);
  295. }
  296. /* Module hooks */
  297. module_init(dm_delay_init);
  298. module_exit(dm_delay_exit);
  299. MODULE_DESCRIPTION(DM_NAME " delay target");
  300. MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
  301. MODULE_LICENSE("GPL");