core.c 9.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327
  1. /*P:400 This contains run_guest() which actually calls into the Host<->Guest
  2. * Switcher and analyzes the return, such as determining if the Guest wants the
  3. * Host to do something. This file also contains useful helper routines. :*/
  4. #include <linux/module.h>
  5. #include <linux/stringify.h>
  6. #include <linux/stddef.h>
  7. #include <linux/io.h>
  8. #include <linux/mm.h>
  9. #include <linux/vmalloc.h>
  10. #include <linux/cpu.h>
  11. #include <linux/freezer.h>
  12. #include <linux/highmem.h>
  13. #include <asm/paravirt.h>
  14. #include <asm/pgtable.h>
  15. #include <asm/uaccess.h>
  16. #include <asm/poll.h>
  17. #include <asm/asm-offsets.h>
  18. #include "lg.h"
  19. static struct vm_struct *switcher_vma;
  20. static struct page **switcher_page;
  21. /* This One Big lock protects all inter-guest data structures. */
  22. DEFINE_MUTEX(lguest_lock);
  23. /*H:010 We need to set up the Switcher at a high virtual address. Remember the
  24. * Switcher is a few hundred bytes of assembler code which actually changes the
  25. * CPU to run the Guest, and then changes back to the Host when a trap or
  26. * interrupt happens.
  27. *
  28. * The Switcher code must be at the same virtual address in the Guest as the
  29. * Host since it will be running as the switchover occurs.
  30. *
  31. * Trying to map memory at a particular address is an unusual thing to do, so
  32. * it's not a simple one-liner. */
  33. static __init int map_switcher(void)
  34. {
  35. int i, err;
  36. struct page **pagep;
  37. /*
  38. * Map the Switcher in to high memory.
  39. *
  40. * It turns out that if we choose the address 0xFFC00000 (4MB under the
  41. * top virtual address), it makes setting up the page tables really
  42. * easy.
  43. */
  44. /* We allocate an array of struct page pointers. map_vm_area() wants
  45. * this, rather than just an array of pages. */
  46. switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
  47. GFP_KERNEL);
  48. if (!switcher_page) {
  49. err = -ENOMEM;
  50. goto out;
  51. }
  52. /* Now we actually allocate the pages. The Guest will see these pages,
  53. * so we make sure they're zeroed. */
  54. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
  55. unsigned long addr = get_zeroed_page(GFP_KERNEL);
  56. if (!addr) {
  57. err = -ENOMEM;
  58. goto free_some_pages;
  59. }
  60. switcher_page[i] = virt_to_page(addr);
  61. }
  62. /* First we check that the Switcher won't overlap the fixmap area at
  63. * the top of memory. It's currently nowhere near, but it could have
  64. * very strange effects if it ever happened. */
  65. if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
  66. err = -ENOMEM;
  67. printk("lguest: mapping switcher would thwack fixmap\n");
  68. goto free_pages;
  69. }
  70. /* Now we reserve the "virtual memory area" we want: 0xFFC00000
  71. * (SWITCHER_ADDR). We might not get it in theory, but in practice
  72. * it's worked so far. The end address needs +1 because __get_vm_area
  73. * allocates an extra guard page, so we need space for that. */
  74. switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
  75. VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR
  76. + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
  77. if (!switcher_vma) {
  78. err = -ENOMEM;
  79. printk("lguest: could not map switcher pages high\n");
  80. goto free_pages;
  81. }
  82. /* This code actually sets up the pages we've allocated to appear at
  83. * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
  84. * kind of pages we're mapping (kernel pages), and a pointer to our
  85. * array of struct pages. It increments that pointer, but we don't
  86. * care. */
  87. pagep = switcher_page;
  88. err = map_vm_area(switcher_vma, PAGE_KERNEL, &pagep);
  89. if (err) {
  90. printk("lguest: map_vm_area failed: %i\n", err);
  91. goto free_vma;
  92. }
  93. /* Now the Switcher is mapped at the right address, we can't fail!
  94. * Copy in the compiled-in Switcher code (from <arch>_switcher.S). */
  95. memcpy(switcher_vma->addr, start_switcher_text,
  96. end_switcher_text - start_switcher_text);
  97. printk(KERN_INFO "lguest: mapped switcher at %p\n",
  98. switcher_vma->addr);
  99. /* And we succeeded... */
  100. return 0;
  101. free_vma:
  102. vunmap(switcher_vma->addr);
  103. free_pages:
  104. i = TOTAL_SWITCHER_PAGES;
  105. free_some_pages:
  106. for (--i; i >= 0; i--)
  107. __free_pages(switcher_page[i], 0);
  108. kfree(switcher_page);
  109. out:
  110. return err;
  111. }
  112. /*:*/
  113. /* Cleaning up the mapping when the module is unloaded is almost...
  114. * too easy. */
  115. static void unmap_switcher(void)
  116. {
  117. unsigned int i;
  118. /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
  119. vunmap(switcher_vma->addr);
  120. /* Now we just need to free the pages we copied the switcher into */
  121. for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
  122. __free_pages(switcher_page[i], 0);
  123. kfree(switcher_page);
  124. }
  125. /*H:032
  126. * Dealing With Guest Memory.
  127. *
  128. * Before we go too much further into the Host, we need to grok the routines
  129. * we use to deal with Guest memory.
  130. *
  131. * When the Guest gives us (what it thinks is) a physical address, we can use
  132. * the normal copy_from_user() & copy_to_user() on the corresponding place in
  133. * the memory region allocated by the Launcher.
  134. *
  135. * But we can't trust the Guest: it might be trying to access the Launcher
  136. * code. We have to check that the range is below the pfn_limit the Launcher
  137. * gave us. We have to make sure that addr + len doesn't give us a false
  138. * positive by overflowing, too. */
  139. int lguest_address_ok(const struct lguest *lg,
  140. unsigned long addr, unsigned long len)
  141. {
  142. return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
  143. }
  144. /* This routine copies memory from the Guest. Here we can see how useful the
  145. * kill_lguest() routine we met in the Launcher can be: we return a random
  146. * value (all zeroes) instead of needing to return an error. */
  147. void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
  148. {
  149. if (!lguest_address_ok(cpu->lg, addr, bytes)
  150. || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
  151. /* copy_from_user should do this, but as we rely on it... */
  152. memset(b, 0, bytes);
  153. kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
  154. }
  155. }
  156. /* This is the write (copy into Guest) version. */
  157. void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
  158. unsigned bytes)
  159. {
  160. if (!lguest_address_ok(cpu->lg, addr, bytes)
  161. || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
  162. kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
  163. }
  164. /*:*/
  165. /*H:030 Let's jump straight to the the main loop which runs the Guest.
  166. * Remember, this is called by the Launcher reading /dev/lguest, and we keep
  167. * going around and around until something interesting happens. */
  168. int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
  169. {
  170. /* We stop running once the Guest is dead. */
  171. while (!cpu->lg->dead) {
  172. /* First we run any hypercalls the Guest wants done. */
  173. if (cpu->hcall)
  174. do_hypercalls(cpu);
  175. /* It's possible the Guest did a NOTIFY hypercall to the
  176. * Launcher, in which case we return from the read() now. */
  177. if (cpu->pending_notify) {
  178. if (put_user(cpu->pending_notify, user))
  179. return -EFAULT;
  180. return sizeof(cpu->pending_notify);
  181. }
  182. /* Check for signals */
  183. if (signal_pending(current))
  184. return -ERESTARTSYS;
  185. /* If Waker set break_out, return to Launcher. */
  186. if (cpu->break_out)
  187. return -EAGAIN;
  188. /* Check if there are any interrupts which can be delivered now:
  189. * if so, this sets up the hander to be executed when we next
  190. * run the Guest. */
  191. maybe_do_interrupt(cpu);
  192. /* All long-lived kernel loops need to check with this horrible
  193. * thing called the freezer. If the Host is trying to suspend,
  194. * it stops us. */
  195. try_to_freeze();
  196. /* Just make absolutely sure the Guest is still alive. One of
  197. * those hypercalls could have been fatal, for example. */
  198. if (cpu->lg->dead)
  199. break;
  200. /* If the Guest asked to be stopped, we sleep. The Guest's
  201. * clock timer or LHCALL_BREAK from the Waker will wake us. */
  202. if (cpu->halted) {
  203. set_current_state(TASK_INTERRUPTIBLE);
  204. schedule();
  205. continue;
  206. }
  207. /* OK, now we're ready to jump into the Guest. First we put up
  208. * the "Do Not Disturb" sign: */
  209. local_irq_disable();
  210. /* Actually run the Guest until something happens. */
  211. lguest_arch_run_guest(cpu);
  212. /* Now we're ready to be interrupted or moved to other CPUs */
  213. local_irq_enable();
  214. /* Now we deal with whatever happened to the Guest. */
  215. lguest_arch_handle_trap(cpu);
  216. }
  217. /* Special case: Guest is 'dead' but wants a reboot. */
  218. if (cpu->lg->dead == ERR_PTR(-ERESTART))
  219. return -ERESTART;
  220. /* The Guest is dead => "No such file or directory" */
  221. return -ENOENT;
  222. }
  223. /*H:000
  224. * Welcome to the Host!
  225. *
  226. * By this point your brain has been tickled by the Guest code and numbed by
  227. * the Launcher code; prepare for it to be stretched by the Host code. This is
  228. * the heart. Let's begin at the initialization routine for the Host's lg
  229. * module.
  230. */
  231. static int __init init(void)
  232. {
  233. int err;
  234. /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
  235. if (paravirt_enabled()) {
  236. printk("lguest is afraid of being a guest\n");
  237. return -EPERM;
  238. }
  239. /* First we put the Switcher up in very high virtual memory. */
  240. err = map_switcher();
  241. if (err)
  242. goto out;
  243. /* Now we set up the pagetable implementation for the Guests. */
  244. err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
  245. if (err)
  246. goto unmap;
  247. /* We might need to reserve an interrupt vector. */
  248. err = init_interrupts();
  249. if (err)
  250. goto free_pgtables;
  251. /* /dev/lguest needs to be registered. */
  252. err = lguest_device_init();
  253. if (err)
  254. goto free_interrupts;
  255. /* Finally we do some architecture-specific setup. */
  256. lguest_arch_host_init();
  257. /* All good! */
  258. return 0;
  259. free_interrupts:
  260. free_interrupts();
  261. free_pgtables:
  262. free_pagetables();
  263. unmap:
  264. unmap_switcher();
  265. out:
  266. return err;
  267. }
  268. /* Cleaning up is just the same code, backwards. With a little French. */
  269. static void __exit fini(void)
  270. {
  271. lguest_device_remove();
  272. free_interrupts();
  273. free_pagetables();
  274. unmap_switcher();
  275. lguest_arch_host_fini();
  276. }
  277. /*:*/
  278. /* The Host side of lguest can be a module. This is a nice way for people to
  279. * play with it. */
  280. module_init(init);
  281. module_exit(fini);
  282. MODULE_LICENSE("GPL");
  283. MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");