icc.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683
  1. /* $Id: icc.c,v 1.8.2.3 2004/01/13 14:31:25 keil Exp $
  2. *
  3. * ICC specific routines
  4. *
  5. * Author Matt Henderson & Guy Ellis
  6. * Copyright by Traverse Technologies Pty Ltd, www.travers.com.au
  7. *
  8. * This software may be used and distributed according to the terms
  9. * of the GNU General Public License, incorporated herein by reference.
  10. *
  11. * 1999.6.25 Initial implementation of routines for Siemens ISDN
  12. * Communication Controller PEB 2070 based on the ISAC routines
  13. * written by Karsten Keil.
  14. *
  15. */
  16. #include <linux/init.h>
  17. #include "hisax.h"
  18. #include "icc.h"
  19. // #include "arcofi.h"
  20. #include "isdnl1.h"
  21. #include <linux/interrupt.h>
  22. #define DBUSY_TIMER_VALUE 80
  23. #define ARCOFI_USE 0
  24. static char *ICCVer[] =
  25. {"2070 A1/A3", "2070 B1", "2070 B2/B3", "2070 V2.4"};
  26. void
  27. ICCVersion(struct IsdnCardState *cs, char *s)
  28. {
  29. int val;
  30. val = cs->readisac(cs, ICC_RBCH);
  31. printk(KERN_INFO "%s ICC version (%x): %s\n", s, val, ICCVer[(val >> 5) & 3]);
  32. }
  33. static void
  34. ph_command(struct IsdnCardState *cs, unsigned int command)
  35. {
  36. if (cs->debug & L1_DEB_ISAC)
  37. debugl1(cs, "ph_command %x", command);
  38. cs->writeisac(cs, ICC_CIX0, (command << 2) | 3);
  39. }
  40. static void
  41. icc_new_ph(struct IsdnCardState *cs)
  42. {
  43. switch (cs->dc.icc.ph_state) {
  44. case (ICC_IND_EI1):
  45. ph_command(cs, ICC_CMD_DI);
  46. l1_msg(cs, HW_RESET | INDICATION, NULL);
  47. break;
  48. case (ICC_IND_DC):
  49. l1_msg(cs, HW_DEACTIVATE | CONFIRM, NULL);
  50. break;
  51. case (ICC_IND_DR):
  52. l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
  53. break;
  54. case (ICC_IND_PU):
  55. l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
  56. break;
  57. case (ICC_IND_FJ):
  58. l1_msg(cs, HW_RSYNC | INDICATION, NULL);
  59. break;
  60. case (ICC_IND_AR):
  61. l1_msg(cs, HW_INFO2 | INDICATION, NULL);
  62. break;
  63. case (ICC_IND_AI):
  64. l1_msg(cs, HW_INFO4 | INDICATION, NULL);
  65. break;
  66. default:
  67. break;
  68. }
  69. }
  70. static void
  71. icc_bh(struct work_struct *work)
  72. {
  73. struct IsdnCardState *cs =
  74. container_of(work, struct IsdnCardState, tqueue);
  75. struct PStack *stptr;
  76. if (!cs)
  77. return;
  78. if (test_and_clear_bit(D_CLEARBUSY, &cs->event)) {
  79. if (cs->debug)
  80. debugl1(cs, "D-Channel Busy cleared");
  81. stptr = cs->stlist;
  82. while (stptr != NULL) {
  83. stptr->l1.l1l2(stptr, PH_PAUSE | CONFIRM, NULL);
  84. stptr = stptr->next;
  85. }
  86. }
  87. if (test_and_clear_bit(D_L1STATECHANGE, &cs->event))
  88. icc_new_ph(cs);
  89. if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
  90. DChannel_proc_rcv(cs);
  91. if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
  92. DChannel_proc_xmt(cs);
  93. #if ARCOFI_USE
  94. if (!test_bit(HW_ARCOFI, &cs->HW_Flags))
  95. return;
  96. if (test_and_clear_bit(D_RX_MON1, &cs->event))
  97. arcofi_fsm(cs, ARCOFI_RX_END, NULL);
  98. if (test_and_clear_bit(D_TX_MON1, &cs->event))
  99. arcofi_fsm(cs, ARCOFI_TX_END, NULL);
  100. #endif
  101. }
  102. static void
  103. icc_empty_fifo(struct IsdnCardState *cs, int count)
  104. {
  105. u_char *ptr;
  106. if ((cs->debug & L1_DEB_ISAC) && !(cs->debug & L1_DEB_ISAC_FIFO))
  107. debugl1(cs, "icc_empty_fifo");
  108. if ((cs->rcvidx + count) >= MAX_DFRAME_LEN_L1) {
  109. if (cs->debug & L1_DEB_WARN)
  110. debugl1(cs, "icc_empty_fifo overrun %d",
  111. cs->rcvidx + count);
  112. cs->writeisac(cs, ICC_CMDR, 0x80);
  113. cs->rcvidx = 0;
  114. return;
  115. }
  116. ptr = cs->rcvbuf + cs->rcvidx;
  117. cs->rcvidx += count;
  118. cs->readisacfifo(cs, ptr, count);
  119. cs->writeisac(cs, ICC_CMDR, 0x80);
  120. if (cs->debug & L1_DEB_ISAC_FIFO) {
  121. char *t = cs->dlog;
  122. t += sprintf(t, "icc_empty_fifo cnt %d", count);
  123. QuickHex(t, ptr, count);
  124. debugl1(cs, cs->dlog);
  125. }
  126. }
  127. static void
  128. icc_fill_fifo(struct IsdnCardState *cs)
  129. {
  130. int count, more;
  131. u_char *ptr;
  132. if ((cs->debug & L1_DEB_ISAC) && !(cs->debug & L1_DEB_ISAC_FIFO))
  133. debugl1(cs, "icc_fill_fifo");
  134. if (!cs->tx_skb)
  135. return;
  136. count = cs->tx_skb->len;
  137. if (count <= 0)
  138. return;
  139. more = 0;
  140. if (count > 32) {
  141. more = !0;
  142. count = 32;
  143. }
  144. ptr = cs->tx_skb->data;
  145. skb_pull(cs->tx_skb, count);
  146. cs->tx_cnt += count;
  147. cs->writeisacfifo(cs, ptr, count);
  148. cs->writeisac(cs, ICC_CMDR, more ? 0x8 : 0xa);
  149. if (test_and_set_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
  150. debugl1(cs, "icc_fill_fifo dbusytimer running");
  151. del_timer(&cs->dbusytimer);
  152. }
  153. init_timer(&cs->dbusytimer);
  154. cs->dbusytimer.expires = jiffies + ((DBUSY_TIMER_VALUE * HZ)/1000);
  155. add_timer(&cs->dbusytimer);
  156. if (cs->debug & L1_DEB_ISAC_FIFO) {
  157. char *t = cs->dlog;
  158. t += sprintf(t, "icc_fill_fifo cnt %d", count);
  159. QuickHex(t, ptr, count);
  160. debugl1(cs, cs->dlog);
  161. }
  162. }
  163. void
  164. icc_interrupt(struct IsdnCardState *cs, u_char val)
  165. {
  166. u_char exval, v1;
  167. struct sk_buff *skb;
  168. unsigned int count;
  169. if (cs->debug & L1_DEB_ISAC)
  170. debugl1(cs, "ICC interrupt %x", val);
  171. if (val & 0x80) { /* RME */
  172. exval = cs->readisac(cs, ICC_RSTA);
  173. if ((exval & 0x70) != 0x20) {
  174. if (exval & 0x40) {
  175. if (cs->debug & L1_DEB_WARN)
  176. debugl1(cs, "ICC RDO");
  177. #ifdef ERROR_STATISTIC
  178. cs->err_rx++;
  179. #endif
  180. }
  181. if (!(exval & 0x20)) {
  182. if (cs->debug & L1_DEB_WARN)
  183. debugl1(cs, "ICC CRC error");
  184. #ifdef ERROR_STATISTIC
  185. cs->err_crc++;
  186. #endif
  187. }
  188. cs->writeisac(cs, ICC_CMDR, 0x80);
  189. } else {
  190. count = cs->readisac(cs, ICC_RBCL) & 0x1f;
  191. if (count == 0)
  192. count = 32;
  193. icc_empty_fifo(cs, count);
  194. if ((count = cs->rcvidx) > 0) {
  195. cs->rcvidx = 0;
  196. if (!(skb = alloc_skb(count, GFP_ATOMIC)))
  197. printk(KERN_WARNING "HiSax: D receive out of memory\n");
  198. else {
  199. memcpy(skb_put(skb, count), cs->rcvbuf, count);
  200. skb_queue_tail(&cs->rq, skb);
  201. }
  202. }
  203. }
  204. cs->rcvidx = 0;
  205. schedule_event(cs, D_RCVBUFREADY);
  206. }
  207. if (val & 0x40) { /* RPF */
  208. icc_empty_fifo(cs, 32);
  209. }
  210. if (val & 0x20) { /* RSC */
  211. /* never */
  212. if (cs->debug & L1_DEB_WARN)
  213. debugl1(cs, "ICC RSC interrupt");
  214. }
  215. if (val & 0x10) { /* XPR */
  216. if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
  217. del_timer(&cs->dbusytimer);
  218. if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
  219. schedule_event(cs, D_CLEARBUSY);
  220. if (cs->tx_skb) {
  221. if (cs->tx_skb->len) {
  222. icc_fill_fifo(cs);
  223. goto afterXPR;
  224. } else {
  225. dev_kfree_skb_irq(cs->tx_skb);
  226. cs->tx_cnt = 0;
  227. cs->tx_skb = NULL;
  228. }
  229. }
  230. if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
  231. cs->tx_cnt = 0;
  232. icc_fill_fifo(cs);
  233. } else
  234. schedule_event(cs, D_XMTBUFREADY);
  235. }
  236. afterXPR:
  237. if (val & 0x04) { /* CISQ */
  238. exval = cs->readisac(cs, ICC_CIR0);
  239. if (cs->debug & L1_DEB_ISAC)
  240. debugl1(cs, "ICC CIR0 %02X", exval );
  241. if (exval & 2) {
  242. cs->dc.icc.ph_state = (exval >> 2) & 0xf;
  243. if (cs->debug & L1_DEB_ISAC)
  244. debugl1(cs, "ph_state change %x", cs->dc.icc.ph_state);
  245. schedule_event(cs, D_L1STATECHANGE);
  246. }
  247. if (exval & 1) {
  248. exval = cs->readisac(cs, ICC_CIR1);
  249. if (cs->debug & L1_DEB_ISAC)
  250. debugl1(cs, "ICC CIR1 %02X", exval );
  251. }
  252. }
  253. if (val & 0x02) { /* SIN */
  254. /* never */
  255. if (cs->debug & L1_DEB_WARN)
  256. debugl1(cs, "ICC SIN interrupt");
  257. }
  258. if (val & 0x01) { /* EXI */
  259. exval = cs->readisac(cs, ICC_EXIR);
  260. if (cs->debug & L1_DEB_WARN)
  261. debugl1(cs, "ICC EXIR %02x", exval);
  262. if (exval & 0x80) { /* XMR */
  263. debugl1(cs, "ICC XMR");
  264. printk(KERN_WARNING "HiSax: ICC XMR\n");
  265. }
  266. if (exval & 0x40) { /* XDU */
  267. debugl1(cs, "ICC XDU");
  268. printk(KERN_WARNING "HiSax: ICC XDU\n");
  269. #ifdef ERROR_STATISTIC
  270. cs->err_tx++;
  271. #endif
  272. if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
  273. del_timer(&cs->dbusytimer);
  274. if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
  275. schedule_event(cs, D_CLEARBUSY);
  276. if (cs->tx_skb) { /* Restart frame */
  277. skb_push(cs->tx_skb, cs->tx_cnt);
  278. cs->tx_cnt = 0;
  279. icc_fill_fifo(cs);
  280. } else {
  281. printk(KERN_WARNING "HiSax: ICC XDU no skb\n");
  282. debugl1(cs, "ICC XDU no skb");
  283. }
  284. }
  285. if (exval & 0x04) { /* MOS */
  286. v1 = cs->readisac(cs, ICC_MOSR);
  287. if (cs->debug & L1_DEB_MONITOR)
  288. debugl1(cs, "ICC MOSR %02x", v1);
  289. #if ARCOFI_USE
  290. if (v1 & 0x08) {
  291. if (!cs->dc.icc.mon_rx) {
  292. if (!(cs->dc.icc.mon_rx = kmalloc(MAX_MON_FRAME, GFP_ATOMIC))) {
  293. if (cs->debug & L1_DEB_WARN)
  294. debugl1(cs, "ICC MON RX out of memory!");
  295. cs->dc.icc.mocr &= 0xf0;
  296. cs->dc.icc.mocr |= 0x0a;
  297. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  298. goto afterMONR0;
  299. } else
  300. cs->dc.icc.mon_rxp = 0;
  301. }
  302. if (cs->dc.icc.mon_rxp >= MAX_MON_FRAME) {
  303. cs->dc.icc.mocr &= 0xf0;
  304. cs->dc.icc.mocr |= 0x0a;
  305. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  306. cs->dc.icc.mon_rxp = 0;
  307. if (cs->debug & L1_DEB_WARN)
  308. debugl1(cs, "ICC MON RX overflow!");
  309. goto afterMONR0;
  310. }
  311. cs->dc.icc.mon_rx[cs->dc.icc.mon_rxp++] = cs->readisac(cs, ICC_MOR0);
  312. if (cs->debug & L1_DEB_MONITOR)
  313. debugl1(cs, "ICC MOR0 %02x", cs->dc.icc.mon_rx[cs->dc.icc.mon_rxp -1]);
  314. if (cs->dc.icc.mon_rxp == 1) {
  315. cs->dc.icc.mocr |= 0x04;
  316. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  317. }
  318. }
  319. afterMONR0:
  320. if (v1 & 0x80) {
  321. if (!cs->dc.icc.mon_rx) {
  322. if (!(cs->dc.icc.mon_rx = kmalloc(MAX_MON_FRAME, GFP_ATOMIC))) {
  323. if (cs->debug & L1_DEB_WARN)
  324. debugl1(cs, "ICC MON RX out of memory!");
  325. cs->dc.icc.mocr &= 0x0f;
  326. cs->dc.icc.mocr |= 0xa0;
  327. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  328. goto afterMONR1;
  329. } else
  330. cs->dc.icc.mon_rxp = 0;
  331. }
  332. if (cs->dc.icc.mon_rxp >= MAX_MON_FRAME) {
  333. cs->dc.icc.mocr &= 0x0f;
  334. cs->dc.icc.mocr |= 0xa0;
  335. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  336. cs->dc.icc.mon_rxp = 0;
  337. if (cs->debug & L1_DEB_WARN)
  338. debugl1(cs, "ICC MON RX overflow!");
  339. goto afterMONR1;
  340. }
  341. cs->dc.icc.mon_rx[cs->dc.icc.mon_rxp++] = cs->readisac(cs, ICC_MOR1);
  342. if (cs->debug & L1_DEB_MONITOR)
  343. debugl1(cs, "ICC MOR1 %02x", cs->dc.icc.mon_rx[cs->dc.icc.mon_rxp -1]);
  344. cs->dc.icc.mocr |= 0x40;
  345. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  346. }
  347. afterMONR1:
  348. if (v1 & 0x04) {
  349. cs->dc.icc.mocr &= 0xf0;
  350. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  351. cs->dc.icc.mocr |= 0x0a;
  352. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  353. schedule_event(cs, D_RX_MON0);
  354. }
  355. if (v1 & 0x40) {
  356. cs->dc.icc.mocr &= 0x0f;
  357. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  358. cs->dc.icc.mocr |= 0xa0;
  359. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  360. schedule_event(cs, D_RX_MON1);
  361. }
  362. if (v1 & 0x02) {
  363. if ((!cs->dc.icc.mon_tx) || (cs->dc.icc.mon_txc &&
  364. (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc) &&
  365. !(v1 & 0x08))) {
  366. cs->dc.icc.mocr &= 0xf0;
  367. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  368. cs->dc.icc.mocr |= 0x0a;
  369. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  370. if (cs->dc.icc.mon_txc &&
  371. (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc))
  372. schedule_event(cs, D_TX_MON0);
  373. goto AfterMOX0;
  374. }
  375. if (cs->dc.icc.mon_txc && (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc)) {
  376. schedule_event(cs, D_TX_MON0);
  377. goto AfterMOX0;
  378. }
  379. cs->writeisac(cs, ICC_MOX0,
  380. cs->dc.icc.mon_tx[cs->dc.icc.mon_txp++]);
  381. if (cs->debug & L1_DEB_MONITOR)
  382. debugl1(cs, "ICC %02x -> MOX0", cs->dc.icc.mon_tx[cs->dc.icc.mon_txp -1]);
  383. }
  384. AfterMOX0:
  385. if (v1 & 0x20) {
  386. if ((!cs->dc.icc.mon_tx) || (cs->dc.icc.mon_txc &&
  387. (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc) &&
  388. !(v1 & 0x80))) {
  389. cs->dc.icc.mocr &= 0x0f;
  390. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  391. cs->dc.icc.mocr |= 0xa0;
  392. cs->writeisac(cs, ICC_MOCR, cs->dc.icc.mocr);
  393. if (cs->dc.icc.mon_txc &&
  394. (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc))
  395. schedule_event(cs, D_TX_MON1);
  396. goto AfterMOX1;
  397. }
  398. if (cs->dc.icc.mon_txc && (cs->dc.icc.mon_txp >= cs->dc.icc.mon_txc)) {
  399. schedule_event(cs, D_TX_MON1);
  400. goto AfterMOX1;
  401. }
  402. cs->writeisac(cs, ICC_MOX1,
  403. cs->dc.icc.mon_tx[cs->dc.icc.mon_txp++]);
  404. if (cs->debug & L1_DEB_MONITOR)
  405. debugl1(cs, "ICC %02x -> MOX1", cs->dc.icc.mon_tx[cs->dc.icc.mon_txp -1]);
  406. }
  407. AfterMOX1:
  408. #endif
  409. }
  410. }
  411. }
  412. static void
  413. ICC_l1hw(struct PStack *st, int pr, void *arg)
  414. {
  415. struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
  416. struct sk_buff *skb = arg;
  417. u_long flags;
  418. int val;
  419. switch (pr) {
  420. case (PH_DATA |REQUEST):
  421. if (cs->debug & DEB_DLOG_HEX)
  422. LogFrame(cs, skb->data, skb->len);
  423. if (cs->debug & DEB_DLOG_VERBOSE)
  424. dlogframe(cs, skb, 0);
  425. spin_lock_irqsave(&cs->lock, flags);
  426. if (cs->tx_skb) {
  427. skb_queue_tail(&cs->sq, skb);
  428. #ifdef L2FRAME_DEBUG /* psa */
  429. if (cs->debug & L1_DEB_LAPD)
  430. Logl2Frame(cs, skb, "PH_DATA Queued", 0);
  431. #endif
  432. } else {
  433. cs->tx_skb = skb;
  434. cs->tx_cnt = 0;
  435. #ifdef L2FRAME_DEBUG /* psa */
  436. if (cs->debug & L1_DEB_LAPD)
  437. Logl2Frame(cs, skb, "PH_DATA", 0);
  438. #endif
  439. icc_fill_fifo(cs);
  440. }
  441. spin_unlock_irqrestore(&cs->lock, flags);
  442. break;
  443. case (PH_PULL |INDICATION):
  444. spin_lock_irqsave(&cs->lock, flags);
  445. if (cs->tx_skb) {
  446. if (cs->debug & L1_DEB_WARN)
  447. debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
  448. skb_queue_tail(&cs->sq, skb);
  449. break;
  450. }
  451. if (cs->debug & DEB_DLOG_HEX)
  452. LogFrame(cs, skb->data, skb->len);
  453. if (cs->debug & DEB_DLOG_VERBOSE)
  454. dlogframe(cs, skb, 0);
  455. cs->tx_skb = skb;
  456. cs->tx_cnt = 0;
  457. #ifdef L2FRAME_DEBUG /* psa */
  458. if (cs->debug & L1_DEB_LAPD)
  459. Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
  460. #endif
  461. icc_fill_fifo(cs);
  462. spin_unlock_irqrestore(&cs->lock, flags);
  463. break;
  464. case (PH_PULL | REQUEST):
  465. #ifdef L2FRAME_DEBUG /* psa */
  466. if (cs->debug & L1_DEB_LAPD)
  467. debugl1(cs, "-> PH_REQUEST_PULL");
  468. #endif
  469. if (!cs->tx_skb) {
  470. test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  471. st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
  472. } else
  473. test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  474. break;
  475. case (HW_RESET | REQUEST):
  476. spin_lock_irqsave(&cs->lock, flags);
  477. if ((cs->dc.icc.ph_state == ICC_IND_EI1) ||
  478. (cs->dc.icc.ph_state == ICC_IND_DR))
  479. ph_command(cs, ICC_CMD_DI);
  480. else
  481. ph_command(cs, ICC_CMD_RES);
  482. spin_unlock_irqrestore(&cs->lock, flags);
  483. break;
  484. case (HW_ENABLE | REQUEST):
  485. spin_lock_irqsave(&cs->lock, flags);
  486. ph_command(cs, ICC_CMD_DI);
  487. spin_unlock_irqrestore(&cs->lock, flags);
  488. break;
  489. case (HW_INFO1 | REQUEST):
  490. spin_lock_irqsave(&cs->lock, flags);
  491. ph_command(cs, ICC_CMD_AR);
  492. spin_unlock_irqrestore(&cs->lock, flags);
  493. break;
  494. case (HW_INFO3 | REQUEST):
  495. spin_lock_irqsave(&cs->lock, flags);
  496. ph_command(cs, ICC_CMD_AI);
  497. spin_unlock_irqrestore(&cs->lock, flags);
  498. break;
  499. case (HW_TESTLOOP | REQUEST):
  500. spin_lock_irqsave(&cs->lock, flags);
  501. val = 0;
  502. if (1 & (long) arg)
  503. val |= 0x0c;
  504. if (2 & (long) arg)
  505. val |= 0x3;
  506. if (test_bit(HW_IOM1, &cs->HW_Flags)) {
  507. /* IOM 1 Mode */
  508. if (!val) {
  509. cs->writeisac(cs, ICC_SPCR, 0xa);
  510. cs->writeisac(cs, ICC_ADF1, 0x2);
  511. } else {
  512. cs->writeisac(cs, ICC_SPCR, val);
  513. cs->writeisac(cs, ICC_ADF1, 0xa);
  514. }
  515. } else {
  516. /* IOM 2 Mode */
  517. cs->writeisac(cs, ICC_SPCR, val);
  518. if (val)
  519. cs->writeisac(cs, ICC_ADF1, 0x8);
  520. else
  521. cs->writeisac(cs, ICC_ADF1, 0x0);
  522. }
  523. spin_unlock_irqrestore(&cs->lock, flags);
  524. break;
  525. case (HW_DEACTIVATE | RESPONSE):
  526. skb_queue_purge(&cs->rq);
  527. skb_queue_purge(&cs->sq);
  528. if (cs->tx_skb) {
  529. dev_kfree_skb_any(cs->tx_skb);
  530. cs->tx_skb = NULL;
  531. }
  532. if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
  533. del_timer(&cs->dbusytimer);
  534. if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
  535. schedule_event(cs, D_CLEARBUSY);
  536. break;
  537. default:
  538. if (cs->debug & L1_DEB_WARN)
  539. debugl1(cs, "icc_l1hw unknown %04x", pr);
  540. break;
  541. }
  542. }
  543. static void
  544. setstack_icc(struct PStack *st, struct IsdnCardState *cs)
  545. {
  546. st->l1.l1hw = ICC_l1hw;
  547. }
  548. static void
  549. DC_Close_icc(struct IsdnCardState *cs) {
  550. kfree(cs->dc.icc.mon_rx);
  551. cs->dc.icc.mon_rx = NULL;
  552. kfree(cs->dc.icc.mon_tx);
  553. cs->dc.icc.mon_tx = NULL;
  554. }
  555. static void
  556. dbusy_timer_handler(struct IsdnCardState *cs)
  557. {
  558. struct PStack *stptr;
  559. int rbch, star;
  560. if (test_bit(FLG_DBUSY_TIMER, &cs->HW_Flags)) {
  561. rbch = cs->readisac(cs, ICC_RBCH);
  562. star = cs->readisac(cs, ICC_STAR);
  563. if (cs->debug)
  564. debugl1(cs, "D-Channel Busy RBCH %02x STAR %02x",
  565. rbch, star);
  566. if (rbch & ICC_RBCH_XAC) { /* D-Channel Busy */
  567. test_and_set_bit(FLG_L1_DBUSY, &cs->HW_Flags);
  568. stptr = cs->stlist;
  569. while (stptr != NULL) {
  570. stptr->l1.l1l2(stptr, PH_PAUSE | INDICATION, NULL);
  571. stptr = stptr->next;
  572. }
  573. } else {
  574. /* discard frame; reset transceiver */
  575. test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags);
  576. if (cs->tx_skb) {
  577. dev_kfree_skb_any(cs->tx_skb);
  578. cs->tx_cnt = 0;
  579. cs->tx_skb = NULL;
  580. } else {
  581. printk(KERN_WARNING "HiSax: ICC D-Channel Busy no skb\n");
  582. debugl1(cs, "D-Channel Busy no skb");
  583. }
  584. cs->writeisac(cs, ICC_CMDR, 0x01); /* Transmitter reset */
  585. cs->irq_func(cs->irq, cs);
  586. }
  587. }
  588. }
  589. void
  590. initicc(struct IsdnCardState *cs)
  591. {
  592. cs->setstack_d = setstack_icc;
  593. cs->DC_Close = DC_Close_icc;
  594. cs->dc.icc.mon_tx = NULL;
  595. cs->dc.icc.mon_rx = NULL;
  596. cs->writeisac(cs, ICC_MASK, 0xff);
  597. cs->dc.icc.mocr = 0xaa;
  598. if (test_bit(HW_IOM1, &cs->HW_Flags)) {
  599. /* IOM 1 Mode */
  600. cs->writeisac(cs, ICC_ADF2, 0x0);
  601. cs->writeisac(cs, ICC_SPCR, 0xa);
  602. cs->writeisac(cs, ICC_ADF1, 0x2);
  603. cs->writeisac(cs, ICC_STCR, 0x70);
  604. cs->writeisac(cs, ICC_MODE, 0xc9);
  605. } else {
  606. /* IOM 2 Mode */
  607. if (!cs->dc.icc.adf2)
  608. cs->dc.icc.adf2 = 0x80;
  609. cs->writeisac(cs, ICC_ADF2, cs->dc.icc.adf2);
  610. cs->writeisac(cs, ICC_SQXR, 0xa0);
  611. cs->writeisac(cs, ICC_SPCR, 0x20);
  612. cs->writeisac(cs, ICC_STCR, 0x70);
  613. cs->writeisac(cs, ICC_MODE, 0xca);
  614. cs->writeisac(cs, ICC_TIMR, 0x00);
  615. cs->writeisac(cs, ICC_ADF1, 0x20);
  616. }
  617. ph_command(cs, ICC_CMD_RES);
  618. cs->writeisac(cs, ICC_MASK, 0x0);
  619. ph_command(cs, ICC_CMD_DI);
  620. }
  621. void
  622. clear_pending_icc_ints(struct IsdnCardState *cs)
  623. {
  624. int val, eval;
  625. val = cs->readisac(cs, ICC_STAR);
  626. debugl1(cs, "ICC STAR %x", val);
  627. val = cs->readisac(cs, ICC_MODE);
  628. debugl1(cs, "ICC MODE %x", val);
  629. val = cs->readisac(cs, ICC_ADF2);
  630. debugl1(cs, "ICC ADF2 %x", val);
  631. val = cs->readisac(cs, ICC_ISTA);
  632. debugl1(cs, "ICC ISTA %x", val);
  633. if (val & 0x01) {
  634. eval = cs->readisac(cs, ICC_EXIR);
  635. debugl1(cs, "ICC EXIR %x", eval);
  636. }
  637. val = cs->readisac(cs, ICC_CIR0);
  638. debugl1(cs, "ICC CIR0 %x", val);
  639. cs->dc.icc.ph_state = (val >> 2) & 0xf;
  640. schedule_event(cs, D_L1STATECHANGE);
  641. /* Disable all IRQ */
  642. cs->writeisac(cs, ICC_MASK, 0xFF);
  643. }
  644. void __devinit
  645. setup_icc(struct IsdnCardState *cs)
  646. {
  647. INIT_WORK(&cs->tqueue, icc_bh);
  648. cs->dbusytimer.function = (void *) dbusy_timer_handler;
  649. cs->dbusytimer.data = (long) cs;
  650. init_timer(&cs->dbusytimer);
  651. }