hfc_pci.c 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744
  1. /* $Id: hfc_pci.c,v 1.48.2.4 2004/02/11 13:21:33 keil Exp $
  2. *
  3. * low level driver for CCD's hfc-pci based cards
  4. *
  5. * Author Werner Cornelius
  6. * based on existing driver for CCD hfc ISA cards
  7. * Copyright by Werner Cornelius <werner@isdn4linux.de>
  8. * by Karsten Keil <keil@isdn4linux.de>
  9. *
  10. * This software may be used and distributed according to the terms
  11. * of the GNU General Public License, incorporated herein by reference.
  12. *
  13. * For changes and modifications please read
  14. * Documentation/isdn/HiSax.cert
  15. *
  16. */
  17. #include <linux/init.h>
  18. #include "hisax.h"
  19. #include "hfc_pci.h"
  20. #include "isdnl1.h"
  21. #include <linux/pci.h>
  22. #include <linux/interrupt.h>
  23. static const char *hfcpci_revision = "$Revision: 1.48.2.4 $";
  24. /* table entry in the PCI devices list */
  25. typedef struct {
  26. int vendor_id;
  27. int device_id;
  28. char *vendor_name;
  29. char *card_name;
  30. } PCI_ENTRY;
  31. #define NT_T1_COUNT 20 /* number of 3.125ms interrupts for G2 timeout */
  32. #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */
  33. #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
  34. static const PCI_ENTRY id_list[] =
  35. {
  36. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_2BD0, "CCD/Billion/Asuscom", "2BD0"},
  37. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B000, "Billion", "B000"},
  38. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B006, "Billion", "B006"},
  39. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B007, "Billion", "B007"},
  40. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B008, "Billion", "B008"},
  41. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B009, "Billion", "B009"},
  42. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00A, "Billion", "B00A"},
  43. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00B, "Billion", "B00B"},
  44. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B00C, "Billion", "B00C"},
  45. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B100, "Seyeon", "B100"},
  46. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B700, "Primux II S0", "B700"},
  47. {PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_B701, "Primux II S0 NT", "B701"},
  48. {PCI_VENDOR_ID_ABOCOM, PCI_DEVICE_ID_ABOCOM_2BD1, "Abocom/Magitek", "2BD1"},
  49. {PCI_VENDOR_ID_ASUSTEK, PCI_DEVICE_ID_ASUSTEK_0675, "Asuscom/Askey", "675"},
  50. {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_T_CONCEPT, "German telekom", "T-Concept"},
  51. {PCI_VENDOR_ID_BERKOM, PCI_DEVICE_ID_BERKOM_A1T, "German telekom", "A1T"},
  52. {PCI_VENDOR_ID_ANIGMA, PCI_DEVICE_ID_ANIGMA_MC145575, "Motorola MC145575", "MC145575"},
  53. {PCI_VENDOR_ID_ZOLTRIX, PCI_DEVICE_ID_ZOLTRIX_2BD0, "Zoltrix", "2BD0"},
  54. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_E,"Digi International", "Digi DataFire Micro V IOM2 (Europe)"},
  55. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_E,"Digi International", "Digi DataFire Micro V (Europe)"},
  56. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_IOM2_A,"Digi International", "Digi DataFire Micro V IOM2 (North America)"},
  57. {PCI_VENDOR_ID_DIGI, PCI_DEVICE_ID_DIGI_DF_M_A,"Digi International", "Digi DataFire Micro V (North America)"},
  58. {PCI_VENDOR_ID_SITECOM, PCI_DEVICE_ID_SITECOM_DC105V2, "Sitecom Europe", "DC-105 ISDN PCI"},
  59. {0, 0, NULL, NULL},
  60. };
  61. /******************************************/
  62. /* free hardware resources used by driver */
  63. /******************************************/
  64. static void
  65. release_io_hfcpci(struct IsdnCardState *cs)
  66. {
  67. printk(KERN_INFO "HiSax: release hfcpci at %p\n",
  68. cs->hw.hfcpci.pci_io);
  69. cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */
  70. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  71. Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */
  72. mdelay(10);
  73. Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */
  74. mdelay(10);
  75. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  76. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, 0); /* disable memory mapped ports + busmaster */
  77. del_timer(&cs->hw.hfcpci.timer);
  78. kfree(cs->hw.hfcpci.share_start);
  79. cs->hw.hfcpci.share_start = NULL;
  80. iounmap((void *)cs->hw.hfcpci.pci_io);
  81. }
  82. /********************************************************************************/
  83. /* function called to reset the HFC PCI chip. A complete software reset of chip */
  84. /* and fifos is done. */
  85. /********************************************************************************/
  86. static void
  87. reset_hfcpci(struct IsdnCardState *cs)
  88. {
  89. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */
  90. cs->hw.hfcpci.int_m2 = 0; /* interrupt output off ! */
  91. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  92. printk(KERN_INFO "HFC_PCI: resetting card\n");
  93. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO + PCI_ENA_MASTER); /* enable memory ports + busmaster */
  94. Write_hfc(cs, HFCPCI_CIRM, HFCPCI_RESET); /* Reset On */
  95. mdelay(10);
  96. Write_hfc(cs, HFCPCI_CIRM, 0); /* Reset Off */
  97. mdelay(10);
  98. if (Read_hfc(cs, HFCPCI_STATUS) & 2)
  99. printk(KERN_WARNING "HFC-PCI init bit busy\n");
  100. cs->hw.hfcpci.fifo_en = 0x30; /* only D fifos enabled */
  101. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  102. cs->hw.hfcpci.trm = 0 + HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
  103. Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
  104. Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_TE); /* ST-Bit delay for TE-Mode */
  105. cs->hw.hfcpci.sctrl_e = HFCPCI_AUTO_AWAKE;
  106. Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e); /* S/T Auto awake */
  107. cs->hw.hfcpci.bswapped = 0; /* no exchange */
  108. cs->hw.hfcpci.nt_mode = 0; /* we are in TE mode */
  109. cs->hw.hfcpci.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
  110. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
  111. cs->hw.hfcpci.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
  112. HFCPCI_INTS_L1STATE | HFCPCI_INTS_TIMER;
  113. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  114. /* Clear already pending ints */
  115. if (Read_hfc(cs, HFCPCI_INT_S1));
  116. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 2); /* HFC ST 2 */
  117. udelay(10);
  118. Write_hfc(cs, HFCPCI_STATES, 2); /* HFC ST 2 */
  119. cs->hw.hfcpci.mst_m = HFCPCI_MASTER; /* HFC Master Mode */
  120. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  121. cs->hw.hfcpci.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
  122. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
  123. cs->hw.hfcpci.sctrl_r = 0;
  124. Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
  125. /* Init GCI/IOM2 in master mode */
  126. /* Slots 0 and 1 are set for B-chan 1 and 2 */
  127. /* D- and monitor/CI channel are not enabled */
  128. /* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */
  129. /* STIO2 is used as data input, B1+B2 from IOM->ST */
  130. /* ST B-channel send disabled -> continous 1s */
  131. /* The IOM slots are always enabled */
  132. cs->hw.hfcpci.conn = 0x36; /* set data flow directions */
  133. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  134. Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* B1-Slot 0 STIO1 out enabled */
  135. Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* B2-Slot 1 STIO1 out enabled */
  136. Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* B1-Slot 0 STIO2 in enabled */
  137. Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* B2-Slot 1 STIO2 in enabled */
  138. /* Finally enable IRQ output */
  139. cs->hw.hfcpci.int_m2 = HFCPCI_IRQ_ENABLE;
  140. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  141. if (Read_hfc(cs, HFCPCI_INT_S1));
  142. }
  143. /***************************************************/
  144. /* Timer function called when kernel timer expires */
  145. /***************************************************/
  146. static void
  147. hfcpci_Timer(struct IsdnCardState *cs)
  148. {
  149. cs->hw.hfcpci.timer.expires = jiffies + 75;
  150. /* WD RESET */
  151. /* WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcpci.ctmt | 0x80);
  152. add_timer(&cs->hw.hfcpci.timer);
  153. */
  154. }
  155. /*********************************/
  156. /* schedule a new D-channel task */
  157. /*********************************/
  158. static void
  159. sched_event_D_pci(struct IsdnCardState *cs, int event)
  160. {
  161. test_and_set_bit(event, &cs->event);
  162. schedule_work(&cs->tqueue);
  163. }
  164. /*********************************/
  165. /* schedule a new b_channel task */
  166. /*********************************/
  167. static void
  168. hfcpci_sched_event(struct BCState *bcs, int event)
  169. {
  170. test_and_set_bit(event, &bcs->event);
  171. schedule_work(&bcs->tqueue);
  172. }
  173. /************************************************/
  174. /* select a b-channel entry matching and active */
  175. /************************************************/
  176. static
  177. struct BCState *
  178. Sel_BCS(struct IsdnCardState *cs, int channel)
  179. {
  180. if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
  181. return (&cs->bcs[0]);
  182. else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
  183. return (&cs->bcs[1]);
  184. else
  185. return (NULL);
  186. }
  187. /***************************************/
  188. /* clear the desired B-channel rx fifo */
  189. /***************************************/
  190. static void hfcpci_clear_fifo_rx(struct IsdnCardState *cs, int fifo)
  191. { u_char fifo_state;
  192. bzfifo_type *bzr;
  193. if (fifo) {
  194. bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
  195. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2RX;
  196. } else {
  197. bzr = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
  198. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1RX;
  199. }
  200. if (fifo_state)
  201. cs->hw.hfcpci.fifo_en ^= fifo_state;
  202. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  203. cs->hw.hfcpci.last_bfifo_cnt[fifo] = 0;
  204. bzr->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
  205. bzr->za[MAX_B_FRAMES].z2 = bzr->za[MAX_B_FRAMES].z1;
  206. bzr->f1 = MAX_B_FRAMES;
  207. bzr->f2 = bzr->f1; /* init F pointers to remain constant */
  208. if (fifo_state)
  209. cs->hw.hfcpci.fifo_en |= fifo_state;
  210. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  211. }
  212. /***************************************/
  213. /* clear the desired B-channel tx fifo */
  214. /***************************************/
  215. static void hfcpci_clear_fifo_tx(struct IsdnCardState *cs, int fifo)
  216. { u_char fifo_state;
  217. bzfifo_type *bzt;
  218. if (fifo) {
  219. bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
  220. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B2TX;
  221. } else {
  222. bzt = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
  223. fifo_state = cs->hw.hfcpci.fifo_en & HFCPCI_FIFOEN_B1TX;
  224. }
  225. if (fifo_state)
  226. cs->hw.hfcpci.fifo_en ^= fifo_state;
  227. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  228. bzt->za[MAX_B_FRAMES].z1 = B_FIFO_SIZE + B_SUB_VAL - 1;
  229. bzt->za[MAX_B_FRAMES].z2 = bzt->za[MAX_B_FRAMES].z1;
  230. bzt->f1 = MAX_B_FRAMES;
  231. bzt->f2 = bzt->f1; /* init F pointers to remain constant */
  232. if (fifo_state)
  233. cs->hw.hfcpci.fifo_en |= fifo_state;
  234. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  235. }
  236. /*********************************************/
  237. /* read a complete B-frame out of the buffer */
  238. /*********************************************/
  239. static struct sk_buff
  240. *
  241. hfcpci_empty_fifo(struct BCState *bcs, bzfifo_type * bz, u_char * bdata, int count)
  242. {
  243. u_char *ptr, *ptr1, new_f2;
  244. struct sk_buff *skb;
  245. struct IsdnCardState *cs = bcs->cs;
  246. int total, maxlen, new_z2;
  247. z_type *zp;
  248. if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
  249. debugl1(cs, "hfcpci_empty_fifo");
  250. zp = &bz->za[bz->f2]; /* point to Z-Regs */
  251. new_z2 = zp->z2 + count; /* new position in fifo */
  252. if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
  253. new_z2 -= B_FIFO_SIZE; /* buffer wrap */
  254. new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
  255. if ((count > HSCX_BUFMAX + 3) || (count < 4) ||
  256. (*(bdata + (zp->z1 - B_SUB_VAL)))) {
  257. if (cs->debug & L1_DEB_WARN)
  258. debugl1(cs, "hfcpci_empty_fifo: incoming packet invalid length %d or crc", count);
  259. #ifdef ERROR_STATISTIC
  260. bcs->err_inv++;
  261. #endif
  262. bz->za[new_f2].z2 = new_z2;
  263. bz->f2 = new_f2; /* next buffer */
  264. skb = NULL;
  265. } else if (!(skb = dev_alloc_skb(count - 3)))
  266. printk(KERN_WARNING "HFCPCI: receive out of memory\n");
  267. else {
  268. total = count;
  269. count -= 3;
  270. ptr = skb_put(skb, count);
  271. if (zp->z2 + count <= B_FIFO_SIZE + B_SUB_VAL)
  272. maxlen = count; /* complete transfer */
  273. else
  274. maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */
  275. ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */
  276. memcpy(ptr, ptr1, maxlen); /* copy data */
  277. count -= maxlen;
  278. if (count) { /* rest remaining */
  279. ptr += maxlen;
  280. ptr1 = bdata; /* start of buffer */
  281. memcpy(ptr, ptr1, count); /* rest */
  282. }
  283. bz->za[new_f2].z2 = new_z2;
  284. bz->f2 = new_f2; /* next buffer */
  285. }
  286. return (skb);
  287. }
  288. /*******************************/
  289. /* D-channel receive procedure */
  290. /*******************************/
  291. static
  292. int
  293. receive_dmsg(struct IsdnCardState *cs)
  294. {
  295. struct sk_buff *skb;
  296. int maxlen;
  297. int rcnt, total;
  298. int count = 5;
  299. u_char *ptr, *ptr1;
  300. dfifo_type *df;
  301. z_type *zp;
  302. df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_rx;
  303. if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  304. debugl1(cs, "rec_dmsg blocked");
  305. return (1);
  306. }
  307. while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
  308. zp = &df->za[df->f2 & D_FREG_MASK];
  309. rcnt = zp->z1 - zp->z2;
  310. if (rcnt < 0)
  311. rcnt += D_FIFO_SIZE;
  312. rcnt++;
  313. if (cs->debug & L1_DEB_ISAC)
  314. debugl1(cs, "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)",
  315. df->f1, df->f2, zp->z1, zp->z2, rcnt);
  316. if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
  317. (df->data[zp->z1])) {
  318. if (cs->debug & L1_DEB_WARN)
  319. debugl1(cs, "empty_fifo hfcpci paket inv. len %d or crc %d", rcnt, df->data[zp->z1]);
  320. #ifdef ERROR_STATISTIC
  321. cs->err_rx++;
  322. #endif
  323. df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */
  324. df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + rcnt) & (D_FIFO_SIZE - 1);
  325. } else if ((skb = dev_alloc_skb(rcnt - 3))) {
  326. total = rcnt;
  327. rcnt -= 3;
  328. ptr = skb_put(skb, rcnt);
  329. if (zp->z2 + rcnt <= D_FIFO_SIZE)
  330. maxlen = rcnt; /* complete transfer */
  331. else
  332. maxlen = D_FIFO_SIZE - zp->z2; /* maximum */
  333. ptr1 = df->data + zp->z2; /* start of data */
  334. memcpy(ptr, ptr1, maxlen); /* copy data */
  335. rcnt -= maxlen;
  336. if (rcnt) { /* rest remaining */
  337. ptr += maxlen;
  338. ptr1 = df->data; /* start of buffer */
  339. memcpy(ptr, ptr1, rcnt); /* rest */
  340. }
  341. df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) | (MAX_D_FRAMES + 1); /* next buffer */
  342. df->za[df->f2 & D_FREG_MASK].z2 = (zp->z2 + total) & (D_FIFO_SIZE - 1);
  343. skb_queue_tail(&cs->rq, skb);
  344. sched_event_D_pci(cs, D_RCVBUFREADY);
  345. } else
  346. printk(KERN_WARNING "HFC-PCI: D receive out of memory\n");
  347. }
  348. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  349. return (1);
  350. }
  351. /*******************************************************************************/
  352. /* check for transparent receive data and read max one threshold size if avail */
  353. /*******************************************************************************/
  354. static int
  355. hfcpci_empty_fifo_trans(struct BCState *bcs, bzfifo_type * bz, u_char * bdata)
  356. {
  357. unsigned short *z1r, *z2r;
  358. int new_z2, fcnt, maxlen;
  359. struct sk_buff *skb;
  360. u_char *ptr, *ptr1;
  361. z1r = &bz->za[MAX_B_FRAMES].z1; /* pointer to z reg */
  362. z2r = z1r + 1;
  363. if (!(fcnt = *z1r - *z2r))
  364. return (0); /* no data avail */
  365. if (fcnt <= 0)
  366. fcnt += B_FIFO_SIZE; /* bytes actually buffered */
  367. if (fcnt > HFCPCI_BTRANS_THRESHOLD)
  368. fcnt = HFCPCI_BTRANS_THRESHOLD; /* limit size */
  369. new_z2 = *z2r + fcnt; /* new position in fifo */
  370. if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
  371. new_z2 -= B_FIFO_SIZE; /* buffer wrap */
  372. if (!(skb = dev_alloc_skb(fcnt)))
  373. printk(KERN_WARNING "HFCPCI: receive out of memory\n");
  374. else {
  375. ptr = skb_put(skb, fcnt);
  376. if (*z2r + fcnt <= B_FIFO_SIZE + B_SUB_VAL)
  377. maxlen = fcnt; /* complete transfer */
  378. else
  379. maxlen = B_FIFO_SIZE + B_SUB_VAL - *z2r; /* maximum */
  380. ptr1 = bdata + (*z2r - B_SUB_VAL); /* start of data */
  381. memcpy(ptr, ptr1, maxlen); /* copy data */
  382. fcnt -= maxlen;
  383. if (fcnt) { /* rest remaining */
  384. ptr += maxlen;
  385. ptr1 = bdata; /* start of buffer */
  386. memcpy(ptr, ptr1, fcnt); /* rest */
  387. }
  388. skb_queue_tail(&bcs->rqueue, skb);
  389. hfcpci_sched_event(bcs, B_RCVBUFREADY);
  390. }
  391. *z2r = new_z2; /* new position */
  392. return (1);
  393. } /* hfcpci_empty_fifo_trans */
  394. /**********************************/
  395. /* B-channel main receive routine */
  396. /**********************************/
  397. static void
  398. main_rec_hfcpci(struct BCState *bcs)
  399. {
  400. struct IsdnCardState *cs = bcs->cs;
  401. int rcnt, real_fifo;
  402. int receive, count = 5;
  403. struct sk_buff *skb;
  404. bzfifo_type *bz;
  405. u_char *bdata;
  406. z_type *zp;
  407. if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
  408. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
  409. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
  410. real_fifo = 1;
  411. } else {
  412. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b1;
  413. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b1;
  414. real_fifo = 0;
  415. }
  416. Begin:
  417. count--;
  418. if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  419. debugl1(cs, "rec_data %d blocked", bcs->channel);
  420. return;
  421. }
  422. if (bz->f1 != bz->f2) {
  423. if (cs->debug & L1_DEB_HSCX)
  424. debugl1(cs, "hfcpci rec %d f1(%d) f2(%d)",
  425. bcs->channel, bz->f1, bz->f2);
  426. zp = &bz->za[bz->f2];
  427. rcnt = zp->z1 - zp->z2;
  428. if (rcnt < 0)
  429. rcnt += B_FIFO_SIZE;
  430. rcnt++;
  431. if (cs->debug & L1_DEB_HSCX)
  432. debugl1(cs, "hfcpci rec %d z1(%x) z2(%x) cnt(%d)",
  433. bcs->channel, zp->z1, zp->z2, rcnt);
  434. if ((skb = hfcpci_empty_fifo(bcs, bz, bdata, rcnt))) {
  435. skb_queue_tail(&bcs->rqueue, skb);
  436. hfcpci_sched_event(bcs, B_RCVBUFREADY);
  437. }
  438. rcnt = bz->f1 - bz->f2;
  439. if (rcnt < 0)
  440. rcnt += MAX_B_FRAMES + 1;
  441. if (cs->hw.hfcpci.last_bfifo_cnt[real_fifo] > rcnt + 1) {
  442. rcnt = 0;
  443. hfcpci_clear_fifo_rx(cs, real_fifo);
  444. }
  445. cs->hw.hfcpci.last_bfifo_cnt[real_fifo] = rcnt;
  446. if (rcnt > 1)
  447. receive = 1;
  448. else
  449. receive = 0;
  450. } else if (bcs->mode == L1_MODE_TRANS)
  451. receive = hfcpci_empty_fifo_trans(bcs, bz, bdata);
  452. else
  453. receive = 0;
  454. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  455. if (count && receive)
  456. goto Begin;
  457. }
  458. /**************************/
  459. /* D-channel send routine */
  460. /**************************/
  461. static void
  462. hfcpci_fill_dfifo(struct IsdnCardState *cs)
  463. {
  464. int fcnt;
  465. int count, new_z1, maxlen;
  466. dfifo_type *df;
  467. u_char *src, *dst, new_f1;
  468. if (!cs->tx_skb)
  469. return;
  470. if (cs->tx_skb->len <= 0)
  471. return;
  472. df = &((fifo_area *) (cs->hw.hfcpci.fifos))->d_chan.d_tx;
  473. if (cs->debug & L1_DEB_ISAC)
  474. debugl1(cs, "hfcpci_fill_Dfifo f1(%d) f2(%d) z1(f1)(%x)",
  475. df->f1, df->f2,
  476. df->za[df->f1 & D_FREG_MASK].z1);
  477. fcnt = df->f1 - df->f2; /* frame count actually buffered */
  478. if (fcnt < 0)
  479. fcnt += (MAX_D_FRAMES + 1); /* if wrap around */
  480. if (fcnt > (MAX_D_FRAMES - 1)) {
  481. if (cs->debug & L1_DEB_ISAC)
  482. debugl1(cs, "hfcpci_fill_Dfifo more as 14 frames");
  483. #ifdef ERROR_STATISTIC
  484. cs->err_tx++;
  485. #endif
  486. return;
  487. }
  488. /* now determine free bytes in FIFO buffer */
  489. count = df->za[df->f2 & D_FREG_MASK].z2 - df->za[df->f1 & D_FREG_MASK].z1 - 1;
  490. if (count <= 0)
  491. count += D_FIFO_SIZE; /* count now contains available bytes */
  492. if (cs->debug & L1_DEB_ISAC)
  493. debugl1(cs, "hfcpci_fill_Dfifo count(%ld/%d)",
  494. cs->tx_skb->len, count);
  495. if (count < cs->tx_skb->len) {
  496. if (cs->debug & L1_DEB_ISAC)
  497. debugl1(cs, "hfcpci_fill_Dfifo no fifo mem");
  498. return;
  499. }
  500. count = cs->tx_skb->len; /* get frame len */
  501. new_z1 = (df->za[df->f1 & D_FREG_MASK].z1 + count) & (D_FIFO_SIZE - 1);
  502. new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
  503. src = cs->tx_skb->data; /* source pointer */
  504. dst = df->data + df->za[df->f1 & D_FREG_MASK].z1;
  505. maxlen = D_FIFO_SIZE - df->za[df->f1 & D_FREG_MASK].z1; /* end fifo */
  506. if (maxlen > count)
  507. maxlen = count; /* limit size */
  508. memcpy(dst, src, maxlen); /* first copy */
  509. count -= maxlen; /* remaining bytes */
  510. if (count) {
  511. dst = df->data; /* start of buffer */
  512. src += maxlen; /* new position */
  513. memcpy(dst, src, count);
  514. }
  515. df->za[new_f1 & D_FREG_MASK].z1 = new_z1; /* for next buffer */
  516. df->za[df->f1 & D_FREG_MASK].z1 = new_z1; /* new pos actual buffer */
  517. df->f1 = new_f1; /* next frame */
  518. dev_kfree_skb_any(cs->tx_skb);
  519. cs->tx_skb = NULL;
  520. }
  521. /**************************/
  522. /* B-channel send routine */
  523. /**************************/
  524. static void
  525. hfcpci_fill_fifo(struct BCState *bcs)
  526. {
  527. struct IsdnCardState *cs = bcs->cs;
  528. int maxlen, fcnt;
  529. int count, new_z1;
  530. bzfifo_type *bz;
  531. u_char *bdata;
  532. u_char new_f1, *src, *dst;
  533. unsigned short *z1t, *z2t;
  534. if (!bcs->tx_skb)
  535. return;
  536. if (bcs->tx_skb->len <= 0)
  537. return;
  538. if ((bcs->channel) && (!cs->hw.hfcpci.bswapped)) {
  539. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b2;
  540. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b2;
  541. } else {
  542. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txbz_b1;
  543. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.txdat_b1;
  544. }
  545. if (bcs->mode == L1_MODE_TRANS) {
  546. z1t = &bz->za[MAX_B_FRAMES].z1;
  547. z2t = z1t + 1;
  548. if (cs->debug & L1_DEB_HSCX)
  549. debugl1(cs, "hfcpci_fill_fifo_trans %d z1(%x) z2(%x)",
  550. bcs->channel, *z1t, *z2t);
  551. fcnt = *z2t - *z1t;
  552. if (fcnt <= 0)
  553. fcnt += B_FIFO_SIZE; /* fcnt contains available bytes in fifo */
  554. fcnt = B_FIFO_SIZE - fcnt; /* remaining bytes to send */
  555. while ((fcnt < 2 * HFCPCI_BTRANS_THRESHOLD) && (bcs->tx_skb)) {
  556. if (bcs->tx_skb->len < B_FIFO_SIZE - fcnt) {
  557. /* data is suitable for fifo */
  558. count = bcs->tx_skb->len;
  559. new_z1 = *z1t + count; /* new buffer Position */
  560. if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
  561. new_z1 -= B_FIFO_SIZE; /* buffer wrap */
  562. src = bcs->tx_skb->data; /* source pointer */
  563. dst = bdata + (*z1t - B_SUB_VAL);
  564. maxlen = (B_FIFO_SIZE + B_SUB_VAL) - *z1t; /* end of fifo */
  565. if (maxlen > count)
  566. maxlen = count; /* limit size */
  567. memcpy(dst, src, maxlen); /* first copy */
  568. count -= maxlen; /* remaining bytes */
  569. if (count) {
  570. dst = bdata; /* start of buffer */
  571. src += maxlen; /* new position */
  572. memcpy(dst, src, count);
  573. }
  574. bcs->tx_cnt -= bcs->tx_skb->len;
  575. fcnt += bcs->tx_skb->len;
  576. *z1t = new_z1; /* now send data */
  577. } else if (cs->debug & L1_DEB_HSCX)
  578. debugl1(cs, "hfcpci_fill_fifo_trans %d frame length %d discarded",
  579. bcs->channel, bcs->tx_skb->len);
  580. if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
  581. (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
  582. u_long flags;
  583. spin_lock_irqsave(&bcs->aclock, flags);
  584. bcs->ackcnt += bcs->tx_skb->len;
  585. spin_unlock_irqrestore(&bcs->aclock, flags);
  586. schedule_event(bcs, B_ACKPENDING);
  587. }
  588. dev_kfree_skb_any(bcs->tx_skb);
  589. bcs->tx_skb = skb_dequeue(&bcs->squeue); /* fetch next data */
  590. }
  591. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  592. return;
  593. }
  594. if (cs->debug & L1_DEB_HSCX)
  595. debugl1(cs, "hfcpci_fill_fifo_hdlc %d f1(%d) f2(%d) z1(f1)(%x)",
  596. bcs->channel, bz->f1, bz->f2,
  597. bz->za[bz->f1].z1);
  598. fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
  599. if (fcnt < 0)
  600. fcnt += (MAX_B_FRAMES + 1); /* if wrap around */
  601. if (fcnt > (MAX_B_FRAMES - 1)) {
  602. if (cs->debug & L1_DEB_HSCX)
  603. debugl1(cs, "hfcpci_fill_Bfifo more as 14 frames");
  604. return;
  605. }
  606. /* now determine free bytes in FIFO buffer */
  607. count = bz->za[bz->f2].z2 - bz->za[bz->f1].z1 - 1;
  608. if (count <= 0)
  609. count += B_FIFO_SIZE; /* count now contains available bytes */
  610. if (cs->debug & L1_DEB_HSCX)
  611. debugl1(cs, "hfcpci_fill_fifo %d count(%ld/%d),%lx",
  612. bcs->channel, bcs->tx_skb->len,
  613. count, current->state);
  614. if (count < bcs->tx_skb->len) {
  615. if (cs->debug & L1_DEB_HSCX)
  616. debugl1(cs, "hfcpci_fill_fifo no fifo mem");
  617. return;
  618. }
  619. count = bcs->tx_skb->len; /* get frame len */
  620. new_z1 = bz->za[bz->f1].z1 + count; /* new buffer Position */
  621. if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
  622. new_z1 -= B_FIFO_SIZE; /* buffer wrap */
  623. new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
  624. src = bcs->tx_skb->data; /* source pointer */
  625. dst = bdata + (bz->za[bz->f1].z1 - B_SUB_VAL);
  626. maxlen = (B_FIFO_SIZE + B_SUB_VAL) - bz->za[bz->f1].z1; /* end fifo */
  627. if (maxlen > count)
  628. maxlen = count; /* limit size */
  629. memcpy(dst, src, maxlen); /* first copy */
  630. count -= maxlen; /* remaining bytes */
  631. if (count) {
  632. dst = bdata; /* start of buffer */
  633. src += maxlen; /* new position */
  634. memcpy(dst, src, count);
  635. }
  636. bcs->tx_cnt -= bcs->tx_skb->len;
  637. if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
  638. (PACKET_NOACK != bcs->tx_skb->pkt_type)) {
  639. u_long flags;
  640. spin_lock_irqsave(&bcs->aclock, flags);
  641. bcs->ackcnt += bcs->tx_skb->len;
  642. spin_unlock_irqrestore(&bcs->aclock, flags);
  643. schedule_event(bcs, B_ACKPENDING);
  644. }
  645. bz->za[new_f1].z1 = new_z1; /* for next buffer */
  646. bz->f1 = new_f1; /* next frame */
  647. dev_kfree_skb_any(bcs->tx_skb);
  648. bcs->tx_skb = NULL;
  649. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  650. }
  651. /**********************************************/
  652. /* D-channel l1 state call for leased NT-mode */
  653. /**********************************************/
  654. static void
  655. dch_nt_l2l1(struct PStack *st, int pr, void *arg)
  656. {
  657. struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
  658. switch (pr) {
  659. case (PH_DATA | REQUEST):
  660. case (PH_PULL | REQUEST):
  661. case (PH_PULL | INDICATION):
  662. st->l1.l1hw(st, pr, arg);
  663. break;
  664. case (PH_ACTIVATE | REQUEST):
  665. st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
  666. break;
  667. case (PH_TESTLOOP | REQUEST):
  668. if (1 & (long) arg)
  669. debugl1(cs, "PH_TEST_LOOP B1");
  670. if (2 & (long) arg)
  671. debugl1(cs, "PH_TEST_LOOP B2");
  672. if (!(3 & (long) arg))
  673. debugl1(cs, "PH_TEST_LOOP DISABLED");
  674. st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
  675. break;
  676. default:
  677. if (cs->debug)
  678. debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr);
  679. break;
  680. }
  681. }
  682. /***********************/
  683. /* set/reset echo mode */
  684. /***********************/
  685. static int
  686. hfcpci_auxcmd(struct IsdnCardState *cs, isdn_ctrl * ic)
  687. {
  688. u_long flags;
  689. int i = *(unsigned int *) ic->parm.num;
  690. if ((ic->arg == 98) &&
  691. (!(cs->hw.hfcpci.int_m1 & (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC + HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC)))) {
  692. spin_lock_irqsave(&cs->lock, flags);
  693. Write_hfc(cs, HFCPCI_CLKDEL, CLKDEL_NT); /* ST-Bit delay for NT-Mode */
  694. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 0); /* HFC ST G0 */
  695. udelay(10);
  696. cs->hw.hfcpci.sctrl |= SCTRL_MODE_NT;
  697. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl); /* set NT-mode */
  698. udelay(10);
  699. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 1); /* HFC ST G1 */
  700. udelay(10);
  701. Write_hfc(cs, HFCPCI_STATES, 1 | HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
  702. cs->dc.hfcpci.ph_state = 1;
  703. cs->hw.hfcpci.nt_mode = 1;
  704. cs->hw.hfcpci.nt_timer = 0;
  705. cs->stlist->l2.l2l1 = dch_nt_l2l1;
  706. spin_unlock_irqrestore(&cs->lock, flags);
  707. debugl1(cs, "NT mode activated");
  708. return (0);
  709. }
  710. if ((cs->chanlimit > 1) || (cs->hw.hfcpci.bswapped) ||
  711. (cs->hw.hfcpci.nt_mode) || (ic->arg != 12))
  712. return (-EINVAL);
  713. spin_lock_irqsave(&cs->lock, flags);
  714. if (i) {
  715. cs->logecho = 1;
  716. cs->hw.hfcpci.trm |= 0x20; /* enable echo chan */
  717. cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_B2REC;
  718. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2RX;
  719. } else {
  720. cs->logecho = 0;
  721. cs->hw.hfcpci.trm &= ~0x20; /* disable echo chan */
  722. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_B2REC;
  723. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2RX;
  724. }
  725. cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
  726. cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
  727. cs->hw.hfcpci.conn |= 0x10; /* B2-IOM -> B2-ST */
  728. cs->hw.hfcpci.ctmt &= ~2;
  729. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
  730. Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
  731. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
  732. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  733. Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
  734. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  735. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  736. spin_unlock_irqrestore(&cs->lock, flags);
  737. return (0);
  738. } /* hfcpci_auxcmd */
  739. /*****************************/
  740. /* E-channel receive routine */
  741. /*****************************/
  742. static void
  743. receive_emsg(struct IsdnCardState *cs)
  744. {
  745. int rcnt;
  746. int receive, count = 5;
  747. bzfifo_type *bz;
  748. u_char *bdata;
  749. z_type *zp;
  750. u_char *ptr, *ptr1, new_f2;
  751. int total, maxlen, new_z2;
  752. u_char e_buffer[256];
  753. bz = &((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxbz_b2;
  754. bdata = ((fifo_area *) (cs->hw.hfcpci.fifos))->b_chans.rxdat_b2;
  755. Begin:
  756. count--;
  757. if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  758. debugl1(cs, "echo_rec_data blocked");
  759. return;
  760. }
  761. if (bz->f1 != bz->f2) {
  762. if (cs->debug & L1_DEB_ISAC)
  763. debugl1(cs, "hfcpci e_rec f1(%d) f2(%d)",
  764. bz->f1, bz->f2);
  765. zp = &bz->za[bz->f2];
  766. rcnt = zp->z1 - zp->z2;
  767. if (rcnt < 0)
  768. rcnt += B_FIFO_SIZE;
  769. rcnt++;
  770. if (cs->debug & L1_DEB_ISAC)
  771. debugl1(cs, "hfcpci e_rec z1(%x) z2(%x) cnt(%d)",
  772. zp->z1, zp->z2, rcnt);
  773. new_z2 = zp->z2 + rcnt; /* new position in fifo */
  774. if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
  775. new_z2 -= B_FIFO_SIZE; /* buffer wrap */
  776. new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
  777. if ((rcnt > 256 + 3) || (count < 4) ||
  778. (*(bdata + (zp->z1 - B_SUB_VAL)))) {
  779. if (cs->debug & L1_DEB_WARN)
  780. debugl1(cs, "hfcpci_empty_echan: incoming packet invalid length %d or crc", rcnt);
  781. bz->za[new_f2].z2 = new_z2;
  782. bz->f2 = new_f2; /* next buffer */
  783. } else {
  784. total = rcnt;
  785. rcnt -= 3;
  786. ptr = e_buffer;
  787. if (zp->z2 <= B_FIFO_SIZE + B_SUB_VAL)
  788. maxlen = rcnt; /* complete transfer */
  789. else
  790. maxlen = B_FIFO_SIZE + B_SUB_VAL - zp->z2; /* maximum */
  791. ptr1 = bdata + (zp->z2 - B_SUB_VAL); /* start of data */
  792. memcpy(ptr, ptr1, maxlen); /* copy data */
  793. rcnt -= maxlen;
  794. if (rcnt) { /* rest remaining */
  795. ptr += maxlen;
  796. ptr1 = bdata; /* start of buffer */
  797. memcpy(ptr, ptr1, rcnt); /* rest */
  798. }
  799. bz->za[new_f2].z2 = new_z2;
  800. bz->f2 = new_f2; /* next buffer */
  801. if (cs->debug & DEB_DLOG_HEX) {
  802. ptr = cs->dlog;
  803. if ((total - 3) < MAX_DLOG_SPACE / 3 - 10) {
  804. *ptr++ = 'E';
  805. *ptr++ = 'C';
  806. *ptr++ = 'H';
  807. *ptr++ = 'O';
  808. *ptr++ = ':';
  809. ptr += QuickHex(ptr, e_buffer, total - 3);
  810. ptr--;
  811. *ptr++ = '\n';
  812. *ptr = 0;
  813. HiSax_putstatus(cs, NULL, cs->dlog);
  814. } else
  815. HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", total - 3);
  816. }
  817. }
  818. rcnt = bz->f1 - bz->f2;
  819. if (rcnt < 0)
  820. rcnt += MAX_B_FRAMES + 1;
  821. if (rcnt > 1)
  822. receive = 1;
  823. else
  824. receive = 0;
  825. } else
  826. receive = 0;
  827. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  828. if (count && receive)
  829. goto Begin;
  830. } /* receive_emsg */
  831. /*********************/
  832. /* Interrupt handler */
  833. /*********************/
  834. static irqreturn_t
  835. hfcpci_interrupt(int intno, void *dev_id)
  836. {
  837. u_long flags;
  838. struct IsdnCardState *cs = dev_id;
  839. u_char exval;
  840. struct BCState *bcs;
  841. int count = 15;
  842. u_char val, stat;
  843. if (!(cs->hw.hfcpci.int_m2 & 0x08)) {
  844. debugl1(cs, "HFC-PCI: int_m2 %x not initialised", cs->hw.hfcpci.int_m2);
  845. return IRQ_NONE; /* not initialised */
  846. }
  847. spin_lock_irqsave(&cs->lock, flags);
  848. if (HFCPCI_ANYINT & (stat = Read_hfc(cs, HFCPCI_STATUS))) {
  849. val = Read_hfc(cs, HFCPCI_INT_S1);
  850. if (cs->debug & L1_DEB_ISAC)
  851. debugl1(cs, "HFC-PCI: stat(%02x) s1(%02x)", stat, val);
  852. } else {
  853. spin_unlock_irqrestore(&cs->lock, flags);
  854. return IRQ_NONE;
  855. }
  856. if (cs->debug & L1_DEB_ISAC)
  857. debugl1(cs, "HFC-PCI irq %x %s", val,
  858. test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
  859. "locked" : "unlocked");
  860. val &= cs->hw.hfcpci.int_m1;
  861. if (val & 0x40) { /* state machine irq */
  862. exval = Read_hfc(cs, HFCPCI_STATES) & 0xf;
  863. if (cs->debug & L1_DEB_ISAC)
  864. debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcpci.ph_state,
  865. exval);
  866. cs->dc.hfcpci.ph_state = exval;
  867. sched_event_D_pci(cs, D_L1STATECHANGE);
  868. val &= ~0x40;
  869. }
  870. if (val & 0x80) { /* timer irq */
  871. if (cs->hw.hfcpci.nt_mode) {
  872. if ((--cs->hw.hfcpci.nt_timer) < 0)
  873. sched_event_D_pci(cs, D_L1STATECHANGE);
  874. }
  875. val &= ~0x80;
  876. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
  877. }
  878. while (val) {
  879. if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  880. cs->hw.hfcpci.int_s1 |= val;
  881. spin_unlock_irqrestore(&cs->lock, flags);
  882. return IRQ_HANDLED;
  883. }
  884. if (cs->hw.hfcpci.int_s1 & 0x18) {
  885. exval = val;
  886. val = cs->hw.hfcpci.int_s1;
  887. cs->hw.hfcpci.int_s1 = exval;
  888. }
  889. if (val & 0x08) {
  890. if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
  891. if (cs->debug)
  892. debugl1(cs, "hfcpci spurious 0x08 IRQ");
  893. } else
  894. main_rec_hfcpci(bcs);
  895. }
  896. if (val & 0x10) {
  897. if (cs->logecho)
  898. receive_emsg(cs);
  899. else if (!(bcs = Sel_BCS(cs, 1))) {
  900. if (cs->debug)
  901. debugl1(cs, "hfcpci spurious 0x10 IRQ");
  902. } else
  903. main_rec_hfcpci(bcs);
  904. }
  905. if (val & 0x01) {
  906. if (!(bcs = Sel_BCS(cs, cs->hw.hfcpci.bswapped ? 1 : 0))) {
  907. if (cs->debug)
  908. debugl1(cs, "hfcpci spurious 0x01 IRQ");
  909. } else {
  910. if (bcs->tx_skb) {
  911. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  912. hfcpci_fill_fifo(bcs);
  913. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  914. } else
  915. debugl1(cs, "fill_data %d blocked", bcs->channel);
  916. } else {
  917. if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
  918. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  919. hfcpci_fill_fifo(bcs);
  920. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  921. } else
  922. debugl1(cs, "fill_data %d blocked", bcs->channel);
  923. } else {
  924. hfcpci_sched_event(bcs, B_XMTBUFREADY);
  925. }
  926. }
  927. }
  928. }
  929. if (val & 0x02) {
  930. if (!(bcs = Sel_BCS(cs, 1))) {
  931. if (cs->debug)
  932. debugl1(cs, "hfcpci spurious 0x02 IRQ");
  933. } else {
  934. if (bcs->tx_skb) {
  935. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  936. hfcpci_fill_fifo(bcs);
  937. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  938. } else
  939. debugl1(cs, "fill_data %d blocked", bcs->channel);
  940. } else {
  941. if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
  942. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  943. hfcpci_fill_fifo(bcs);
  944. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  945. } else
  946. debugl1(cs, "fill_data %d blocked", bcs->channel);
  947. } else {
  948. hfcpci_sched_event(bcs, B_XMTBUFREADY);
  949. }
  950. }
  951. }
  952. }
  953. if (val & 0x20) { /* receive dframe */
  954. receive_dmsg(cs);
  955. }
  956. if (val & 0x04) { /* dframe transmitted */
  957. if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
  958. del_timer(&cs->dbusytimer);
  959. if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
  960. sched_event_D_pci(cs, D_CLEARBUSY);
  961. if (cs->tx_skb) {
  962. if (cs->tx_skb->len) {
  963. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  964. hfcpci_fill_dfifo(cs);
  965. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  966. } else {
  967. debugl1(cs, "hfcpci_fill_dfifo irq blocked");
  968. }
  969. goto afterXPR;
  970. } else {
  971. dev_kfree_skb_irq(cs->tx_skb);
  972. cs->tx_cnt = 0;
  973. cs->tx_skb = NULL;
  974. }
  975. }
  976. if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
  977. cs->tx_cnt = 0;
  978. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  979. hfcpci_fill_dfifo(cs);
  980. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  981. } else {
  982. debugl1(cs, "hfcpci_fill_dfifo irq blocked");
  983. }
  984. } else
  985. sched_event_D_pci(cs, D_XMTBUFREADY);
  986. }
  987. afterXPR:
  988. if (cs->hw.hfcpci.int_s1 && count--) {
  989. val = cs->hw.hfcpci.int_s1;
  990. cs->hw.hfcpci.int_s1 = 0;
  991. if (cs->debug & L1_DEB_ISAC)
  992. debugl1(cs, "HFC-PCI irq %x loop %d", val, 15 - count);
  993. } else
  994. val = 0;
  995. }
  996. spin_unlock_irqrestore(&cs->lock, flags);
  997. return IRQ_HANDLED;
  998. }
  999. /********************************************************************/
  1000. /* timer callback for D-chan busy resolution. Currently no function */
  1001. /********************************************************************/
  1002. static void
  1003. hfcpci_dbusy_timer(struct IsdnCardState *cs)
  1004. {
  1005. }
  1006. /*************************************/
  1007. /* Layer 1 D-channel hardware access */
  1008. /*************************************/
  1009. static void
  1010. HFCPCI_l1hw(struct PStack *st, int pr, void *arg)
  1011. {
  1012. u_long flags;
  1013. struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
  1014. struct sk_buff *skb = arg;
  1015. switch (pr) {
  1016. case (PH_DATA | REQUEST):
  1017. if (cs->debug & DEB_DLOG_HEX)
  1018. LogFrame(cs, skb->data, skb->len);
  1019. if (cs->debug & DEB_DLOG_VERBOSE)
  1020. dlogframe(cs, skb, 0);
  1021. spin_lock_irqsave(&cs->lock, flags);
  1022. if (cs->tx_skb) {
  1023. skb_queue_tail(&cs->sq, skb);
  1024. #ifdef L2FRAME_DEBUG /* psa */
  1025. if (cs->debug & L1_DEB_LAPD)
  1026. Logl2Frame(cs, skb, "PH_DATA Queued", 0);
  1027. #endif
  1028. } else {
  1029. cs->tx_skb = skb;
  1030. cs->tx_cnt = 0;
  1031. #ifdef L2FRAME_DEBUG /* psa */
  1032. if (cs->debug & L1_DEB_LAPD)
  1033. Logl2Frame(cs, skb, "PH_DATA", 0);
  1034. #endif
  1035. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  1036. hfcpci_fill_dfifo(cs);
  1037. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  1038. } else
  1039. debugl1(cs, "hfcpci_fill_dfifo blocked");
  1040. }
  1041. spin_unlock_irqrestore(&cs->lock, flags);
  1042. break;
  1043. case (PH_PULL | INDICATION):
  1044. spin_lock_irqsave(&cs->lock, flags);
  1045. if (cs->tx_skb) {
  1046. if (cs->debug & L1_DEB_WARN)
  1047. debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
  1048. skb_queue_tail(&cs->sq, skb);
  1049. spin_unlock_irqrestore(&cs->lock, flags);
  1050. break;
  1051. }
  1052. if (cs->debug & DEB_DLOG_HEX)
  1053. LogFrame(cs, skb->data, skb->len);
  1054. if (cs->debug & DEB_DLOG_VERBOSE)
  1055. dlogframe(cs, skb, 0);
  1056. cs->tx_skb = skb;
  1057. cs->tx_cnt = 0;
  1058. #ifdef L2FRAME_DEBUG /* psa */
  1059. if (cs->debug & L1_DEB_LAPD)
  1060. Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
  1061. #endif
  1062. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  1063. hfcpci_fill_dfifo(cs);
  1064. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  1065. } else
  1066. debugl1(cs, "hfcpci_fill_dfifo blocked");
  1067. spin_unlock_irqrestore(&cs->lock, flags);
  1068. break;
  1069. case (PH_PULL | REQUEST):
  1070. #ifdef L2FRAME_DEBUG /* psa */
  1071. if (cs->debug & L1_DEB_LAPD)
  1072. debugl1(cs, "-> PH_REQUEST_PULL");
  1073. #endif
  1074. if (!cs->tx_skb) {
  1075. test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1076. st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
  1077. } else
  1078. test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1079. break;
  1080. case (HW_RESET | REQUEST):
  1081. spin_lock_irqsave(&cs->lock, flags);
  1082. Write_hfc(cs, HFCPCI_STATES, HFCPCI_LOAD_STATE | 3); /* HFC ST 3 */
  1083. udelay(6);
  1084. Write_hfc(cs, HFCPCI_STATES, 3); /* HFC ST 2 */
  1085. cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
  1086. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1087. Write_hfc(cs, HFCPCI_STATES, HFCPCI_ACTIVATE | HFCPCI_DO_ACTION);
  1088. spin_unlock_irqrestore(&cs->lock, flags);
  1089. l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
  1090. break;
  1091. case (HW_ENABLE | REQUEST):
  1092. spin_lock_irqsave(&cs->lock, flags);
  1093. Write_hfc(cs, HFCPCI_STATES, HFCPCI_DO_ACTION);
  1094. spin_unlock_irqrestore(&cs->lock, flags);
  1095. break;
  1096. case (HW_DEACTIVATE | REQUEST):
  1097. spin_lock_irqsave(&cs->lock, flags);
  1098. cs->hw.hfcpci.mst_m &= ~HFCPCI_MASTER;
  1099. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1100. spin_unlock_irqrestore(&cs->lock, flags);
  1101. break;
  1102. case (HW_INFO3 | REQUEST):
  1103. spin_lock_irqsave(&cs->lock, flags);
  1104. cs->hw.hfcpci.mst_m |= HFCPCI_MASTER;
  1105. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1106. spin_unlock_irqrestore(&cs->lock, flags);
  1107. break;
  1108. case (HW_TESTLOOP | REQUEST):
  1109. spin_lock_irqsave(&cs->lock, flags);
  1110. switch ((long) arg) {
  1111. case (1):
  1112. Write_hfc(cs, HFCPCI_B1_SSL, 0x80); /* tx slot */
  1113. Write_hfc(cs, HFCPCI_B1_RSL, 0x80); /* rx slot */
  1114. cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~7) | 1;
  1115. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  1116. break;
  1117. case (2):
  1118. Write_hfc(cs, HFCPCI_B2_SSL, 0x81); /* tx slot */
  1119. Write_hfc(cs, HFCPCI_B2_RSL, 0x81); /* rx slot */
  1120. cs->hw.hfcpci.conn = (cs->hw.hfcpci.conn & ~0x38) | 0x08;
  1121. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  1122. break;
  1123. default:
  1124. spin_unlock_irqrestore(&cs->lock, flags);
  1125. if (cs->debug & L1_DEB_WARN)
  1126. debugl1(cs, "hfcpci_l1hw loop invalid %4lx", (long) arg);
  1127. return;
  1128. }
  1129. cs->hw.hfcpci.trm |= 0x80; /* enable IOM-loop */
  1130. Write_hfc(cs, HFCPCI_TRM, cs->hw.hfcpci.trm);
  1131. spin_unlock_irqrestore(&cs->lock, flags);
  1132. break;
  1133. default:
  1134. if (cs->debug & L1_DEB_WARN)
  1135. debugl1(cs, "hfcpci_l1hw unknown pr %4x", pr);
  1136. break;
  1137. }
  1138. }
  1139. /***********************************************/
  1140. /* called during init setting l1 stack pointer */
  1141. /***********************************************/
  1142. static void
  1143. setstack_hfcpci(struct PStack *st, struct IsdnCardState *cs)
  1144. {
  1145. st->l1.l1hw = HFCPCI_l1hw;
  1146. }
  1147. /**************************************/
  1148. /* send B-channel data if not blocked */
  1149. /**************************************/
  1150. static void
  1151. hfcpci_send_data(struct BCState *bcs)
  1152. {
  1153. struct IsdnCardState *cs = bcs->cs;
  1154. if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
  1155. hfcpci_fill_fifo(bcs);
  1156. test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
  1157. } else
  1158. debugl1(cs, "send_data %d blocked", bcs->channel);
  1159. }
  1160. /***************************************************************/
  1161. /* activate/deactivate hardware for selected channels and mode */
  1162. /***************************************************************/
  1163. static void
  1164. mode_hfcpci(struct BCState *bcs, int mode, int bc)
  1165. {
  1166. struct IsdnCardState *cs = bcs->cs;
  1167. int fifo2;
  1168. if (cs->debug & L1_DEB_HSCX)
  1169. debugl1(cs, "HFCPCI bchannel mode %d bchan %d/%d",
  1170. mode, bc, bcs->channel);
  1171. bcs->mode = mode;
  1172. bcs->channel = bc;
  1173. fifo2 = bc;
  1174. if (cs->chanlimit > 1) {
  1175. cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
  1176. cs->hw.hfcpci.sctrl_e &= ~0x80;
  1177. } else {
  1178. if (bc) {
  1179. if (mode != L1_MODE_NULL) {
  1180. cs->hw.hfcpci.bswapped = 1; /* B1 and B2 exchanged */
  1181. cs->hw.hfcpci.sctrl_e |= 0x80;
  1182. } else {
  1183. cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
  1184. cs->hw.hfcpci.sctrl_e &= ~0x80;
  1185. }
  1186. fifo2 = 0;
  1187. } else {
  1188. cs->hw.hfcpci.bswapped = 0; /* B1 and B2 normal mode */
  1189. cs->hw.hfcpci.sctrl_e &= ~0x80;
  1190. }
  1191. }
  1192. switch (mode) {
  1193. case (L1_MODE_NULL):
  1194. if (bc) {
  1195. cs->hw.hfcpci.sctrl &= ~SCTRL_B2_ENA;
  1196. cs->hw.hfcpci.sctrl_r &= ~SCTRL_B2_ENA;
  1197. } else {
  1198. cs->hw.hfcpci.sctrl &= ~SCTRL_B1_ENA;
  1199. cs->hw.hfcpci.sctrl_r &= ~SCTRL_B1_ENA;
  1200. }
  1201. if (fifo2) {
  1202. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
  1203. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1204. } else {
  1205. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
  1206. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1207. }
  1208. break;
  1209. case (L1_MODE_TRANS):
  1210. hfcpci_clear_fifo_rx(cs, fifo2);
  1211. hfcpci_clear_fifo_tx(cs, fifo2);
  1212. if (bc) {
  1213. cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
  1214. cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
  1215. } else {
  1216. cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
  1217. cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
  1218. }
  1219. if (fifo2) {
  1220. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
  1221. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1222. cs->hw.hfcpci.ctmt |= 2;
  1223. cs->hw.hfcpci.conn &= ~0x18;
  1224. } else {
  1225. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
  1226. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1227. cs->hw.hfcpci.ctmt |= 1;
  1228. cs->hw.hfcpci.conn &= ~0x03;
  1229. }
  1230. break;
  1231. case (L1_MODE_HDLC):
  1232. hfcpci_clear_fifo_rx(cs, fifo2);
  1233. hfcpci_clear_fifo_tx(cs, fifo2);
  1234. if (bc) {
  1235. cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
  1236. cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
  1237. } else {
  1238. cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
  1239. cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
  1240. }
  1241. if (fifo2) {
  1242. cs->hw.hfcpci.last_bfifo_cnt[1] = 0;
  1243. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B2;
  1244. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1245. cs->hw.hfcpci.ctmt &= ~2;
  1246. cs->hw.hfcpci.conn &= ~0x18;
  1247. } else {
  1248. cs->hw.hfcpci.last_bfifo_cnt[0] = 0;
  1249. cs->hw.hfcpci.fifo_en |= HFCPCI_FIFOEN_B1;
  1250. cs->hw.hfcpci.int_m1 |= (HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1251. cs->hw.hfcpci.ctmt &= ~1;
  1252. cs->hw.hfcpci.conn &= ~0x03;
  1253. }
  1254. break;
  1255. case (L1_MODE_EXTRN):
  1256. if (bc) {
  1257. cs->hw.hfcpci.conn |= 0x10;
  1258. cs->hw.hfcpci.sctrl |= SCTRL_B2_ENA;
  1259. cs->hw.hfcpci.sctrl_r |= SCTRL_B2_ENA;
  1260. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B2;
  1261. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B2TRANS + HFCPCI_INTS_B2REC);
  1262. } else {
  1263. cs->hw.hfcpci.conn |= 0x02;
  1264. cs->hw.hfcpci.sctrl |= SCTRL_B1_ENA;
  1265. cs->hw.hfcpci.sctrl_r |= SCTRL_B1_ENA;
  1266. cs->hw.hfcpci.fifo_en &= ~HFCPCI_FIFOEN_B1;
  1267. cs->hw.hfcpci.int_m1 &= ~(HFCPCI_INTS_B1TRANS + HFCPCI_INTS_B1REC);
  1268. }
  1269. break;
  1270. }
  1271. Write_hfc(cs, HFCPCI_SCTRL_E, cs->hw.hfcpci.sctrl_e);
  1272. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1273. Write_hfc(cs, HFCPCI_FIFO_EN, cs->hw.hfcpci.fifo_en);
  1274. Write_hfc(cs, HFCPCI_SCTRL, cs->hw.hfcpci.sctrl);
  1275. Write_hfc(cs, HFCPCI_SCTRL_R, cs->hw.hfcpci.sctrl_r);
  1276. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt);
  1277. Write_hfc(cs, HFCPCI_CONNECT, cs->hw.hfcpci.conn);
  1278. }
  1279. /******************************/
  1280. /* Layer2 -> Layer 1 Transfer */
  1281. /******************************/
  1282. static void
  1283. hfcpci_l2l1(struct PStack *st, int pr, void *arg)
  1284. {
  1285. struct BCState *bcs = st->l1.bcs;
  1286. u_long flags;
  1287. struct sk_buff *skb = arg;
  1288. switch (pr) {
  1289. case (PH_DATA | REQUEST):
  1290. spin_lock_irqsave(&bcs->cs->lock, flags);
  1291. if (bcs->tx_skb) {
  1292. skb_queue_tail(&bcs->squeue, skb);
  1293. } else {
  1294. bcs->tx_skb = skb;
  1295. // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  1296. bcs->cs->BC_Send_Data(bcs);
  1297. }
  1298. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1299. break;
  1300. case (PH_PULL | INDICATION):
  1301. spin_lock_irqsave(&bcs->cs->lock, flags);
  1302. if (bcs->tx_skb) {
  1303. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1304. printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
  1305. break;
  1306. }
  1307. // test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  1308. bcs->tx_skb = skb;
  1309. bcs->cs->BC_Send_Data(bcs);
  1310. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1311. break;
  1312. case (PH_PULL | REQUEST):
  1313. if (!bcs->tx_skb) {
  1314. test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1315. st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
  1316. } else
  1317. test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  1318. break;
  1319. case (PH_ACTIVATE | REQUEST):
  1320. spin_lock_irqsave(&bcs->cs->lock, flags);
  1321. test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
  1322. mode_hfcpci(bcs, st->l1.mode, st->l1.bc);
  1323. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1324. l1_msg_b(st, pr, arg);
  1325. break;
  1326. case (PH_DEACTIVATE | REQUEST):
  1327. l1_msg_b(st, pr, arg);
  1328. break;
  1329. case (PH_DEACTIVATE | CONFIRM):
  1330. spin_lock_irqsave(&bcs->cs->lock, flags);
  1331. test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
  1332. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  1333. mode_hfcpci(bcs, 0, st->l1.bc);
  1334. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  1335. st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
  1336. break;
  1337. }
  1338. }
  1339. /******************************************/
  1340. /* deactivate B-channel access and queues */
  1341. /******************************************/
  1342. static void
  1343. close_hfcpci(struct BCState *bcs)
  1344. {
  1345. mode_hfcpci(bcs, 0, bcs->channel);
  1346. if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
  1347. skb_queue_purge(&bcs->rqueue);
  1348. skb_queue_purge(&bcs->squeue);
  1349. if (bcs->tx_skb) {
  1350. dev_kfree_skb_any(bcs->tx_skb);
  1351. bcs->tx_skb = NULL;
  1352. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  1353. }
  1354. }
  1355. }
  1356. /*************************************/
  1357. /* init B-channel queues and control */
  1358. /*************************************/
  1359. static int
  1360. open_hfcpcistate(struct IsdnCardState *cs, struct BCState *bcs)
  1361. {
  1362. if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
  1363. skb_queue_head_init(&bcs->rqueue);
  1364. skb_queue_head_init(&bcs->squeue);
  1365. }
  1366. bcs->tx_skb = NULL;
  1367. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  1368. bcs->event = 0;
  1369. bcs->tx_cnt = 0;
  1370. return (0);
  1371. }
  1372. /*********************************/
  1373. /* inits the stack for B-channel */
  1374. /*********************************/
  1375. static int
  1376. setstack_2b(struct PStack *st, struct BCState *bcs)
  1377. {
  1378. bcs->channel = st->l1.bc;
  1379. if (open_hfcpcistate(st->l1.hardware, bcs))
  1380. return (-1);
  1381. st->l1.bcs = bcs;
  1382. st->l2.l2l1 = hfcpci_l2l1;
  1383. setstack_manager(st);
  1384. bcs->st = st;
  1385. setstack_l1_B(st);
  1386. return (0);
  1387. }
  1388. /***************************/
  1389. /* handle L1 state changes */
  1390. /***************************/
  1391. static void
  1392. hfcpci_bh(struct work_struct *work)
  1393. {
  1394. struct IsdnCardState *cs =
  1395. container_of(work, struct IsdnCardState, tqueue);
  1396. u_long flags;
  1397. // struct PStack *stptr;
  1398. if (!cs)
  1399. return;
  1400. if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
  1401. if (!cs->hw.hfcpci.nt_mode)
  1402. switch (cs->dc.hfcpci.ph_state) {
  1403. case (0):
  1404. l1_msg(cs, HW_RESET | INDICATION, NULL);
  1405. break;
  1406. case (3):
  1407. l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
  1408. break;
  1409. case (8):
  1410. l1_msg(cs, HW_RSYNC | INDICATION, NULL);
  1411. break;
  1412. case (6):
  1413. l1_msg(cs, HW_INFO2 | INDICATION, NULL);
  1414. break;
  1415. case (7):
  1416. l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
  1417. break;
  1418. default:
  1419. break;
  1420. } else {
  1421. spin_lock_irqsave(&cs->lock, flags);
  1422. switch (cs->dc.hfcpci.ph_state) {
  1423. case (2):
  1424. if (cs->hw.hfcpci.nt_timer < 0) {
  1425. cs->hw.hfcpci.nt_timer = 0;
  1426. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
  1427. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1428. /* Clear already pending ints */
  1429. if (Read_hfc(cs, HFCPCI_INT_S1));
  1430. Write_hfc(cs, HFCPCI_STATES, 4 | HFCPCI_LOAD_STATE);
  1431. udelay(10);
  1432. Write_hfc(cs, HFCPCI_STATES, 4);
  1433. cs->dc.hfcpci.ph_state = 4;
  1434. } else {
  1435. cs->hw.hfcpci.int_m1 |= HFCPCI_INTS_TIMER;
  1436. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1437. cs->hw.hfcpci.ctmt &= ~HFCPCI_AUTO_TIMER;
  1438. cs->hw.hfcpci.ctmt |= HFCPCI_TIM3_125;
  1439. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
  1440. Write_hfc(cs, HFCPCI_CTMT, cs->hw.hfcpci.ctmt | HFCPCI_CLTIMER);
  1441. cs->hw.hfcpci.nt_timer = NT_T1_COUNT;
  1442. Write_hfc(cs, HFCPCI_STATES, 2 | HFCPCI_NT_G2_G3); /* allow G2 -> G3 transition */
  1443. }
  1444. break;
  1445. case (1):
  1446. case (3):
  1447. case (4):
  1448. cs->hw.hfcpci.nt_timer = 0;
  1449. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
  1450. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1451. break;
  1452. default:
  1453. break;
  1454. }
  1455. spin_unlock_irqrestore(&cs->lock, flags);
  1456. }
  1457. }
  1458. if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
  1459. DChannel_proc_rcv(cs);
  1460. if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
  1461. DChannel_proc_xmt(cs);
  1462. }
  1463. /********************************/
  1464. /* called for card init message */
  1465. /********************************/
  1466. static void
  1467. inithfcpci(struct IsdnCardState *cs)
  1468. {
  1469. cs->bcs[0].BC_SetStack = setstack_2b;
  1470. cs->bcs[1].BC_SetStack = setstack_2b;
  1471. cs->bcs[0].BC_Close = close_hfcpci;
  1472. cs->bcs[1].BC_Close = close_hfcpci;
  1473. cs->dbusytimer.function = (void *) hfcpci_dbusy_timer;
  1474. cs->dbusytimer.data = (long) cs;
  1475. init_timer(&cs->dbusytimer);
  1476. mode_hfcpci(cs->bcs, 0, 0);
  1477. mode_hfcpci(cs->bcs + 1, 0, 1);
  1478. }
  1479. /*******************************************/
  1480. /* handle card messages from control layer */
  1481. /*******************************************/
  1482. static int
  1483. hfcpci_card_msg(struct IsdnCardState *cs, int mt, void *arg)
  1484. {
  1485. u_long flags;
  1486. if (cs->debug & L1_DEB_ISAC)
  1487. debugl1(cs, "HFCPCI: card_msg %x", mt);
  1488. switch (mt) {
  1489. case CARD_RESET:
  1490. spin_lock_irqsave(&cs->lock, flags);
  1491. reset_hfcpci(cs);
  1492. spin_unlock_irqrestore(&cs->lock, flags);
  1493. return (0);
  1494. case CARD_RELEASE:
  1495. release_io_hfcpci(cs);
  1496. return (0);
  1497. case CARD_INIT:
  1498. spin_lock_irqsave(&cs->lock, flags);
  1499. inithfcpci(cs);
  1500. reset_hfcpci(cs);
  1501. spin_unlock_irqrestore(&cs->lock, flags);
  1502. msleep(80); /* Timeout 80ms */
  1503. /* now switch timer interrupt off */
  1504. spin_lock_irqsave(&cs->lock, flags);
  1505. cs->hw.hfcpci.int_m1 &= ~HFCPCI_INTS_TIMER;
  1506. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1507. /* reinit mode reg */
  1508. Write_hfc(cs, HFCPCI_MST_MODE, cs->hw.hfcpci.mst_m);
  1509. spin_unlock_irqrestore(&cs->lock, flags);
  1510. return (0);
  1511. case CARD_TEST:
  1512. return (0);
  1513. }
  1514. return (0);
  1515. }
  1516. /* this variable is used as card index when more than one cards are present */
  1517. static struct pci_dev *dev_hfcpci __devinitdata = NULL;
  1518. int __devinit
  1519. setup_hfcpci(struct IsdnCard *card)
  1520. {
  1521. u_long flags;
  1522. struct IsdnCardState *cs = card->cs;
  1523. char tmp[64];
  1524. int i;
  1525. struct pci_dev *tmp_hfcpci = NULL;
  1526. #ifdef __BIG_ENDIAN
  1527. #error "not running on big endian machines now"
  1528. #endif
  1529. strcpy(tmp, hfcpci_revision);
  1530. printk(KERN_INFO "HiSax: HFC-PCI driver Rev. %s\n", HiSax_getrev(tmp));
  1531. cs->hw.hfcpci.int_s1 = 0;
  1532. cs->dc.hfcpci.ph_state = 0;
  1533. cs->hw.hfcpci.fifo = 255;
  1534. if (cs->typ != ISDN_CTYPE_HFC_PCI)
  1535. return(0);
  1536. i = 0;
  1537. while (id_list[i].vendor_id) {
  1538. tmp_hfcpci = pci_find_device(id_list[i].vendor_id,
  1539. id_list[i].device_id,
  1540. dev_hfcpci);
  1541. i++;
  1542. if (tmp_hfcpci) {
  1543. if (pci_enable_device(tmp_hfcpci))
  1544. continue;
  1545. pci_set_master(tmp_hfcpci);
  1546. if ((card->para[0]) && (card->para[0] != (tmp_hfcpci->resource[ 0].start & PCI_BASE_ADDRESS_IO_MASK)))
  1547. continue;
  1548. else
  1549. break;
  1550. }
  1551. }
  1552. if (!tmp_hfcpci) {
  1553. printk(KERN_WARNING "HFC-PCI: No PCI card found\n");
  1554. return (0);
  1555. }
  1556. i--;
  1557. dev_hfcpci = tmp_hfcpci; /* old device */
  1558. cs->hw.hfcpci.dev = dev_hfcpci;
  1559. cs->irq = dev_hfcpci->irq;
  1560. if (!cs->irq) {
  1561. printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
  1562. return (0);
  1563. }
  1564. cs->hw.hfcpci.pci_io = (char *)(unsigned long)dev_hfcpci->resource[1].start;
  1565. printk(KERN_INFO "HiSax: HFC-PCI card manufacturer: %s card name: %s\n", id_list[i].vendor_name, id_list[i].card_name);
  1566. if (!cs->hw.hfcpci.pci_io) {
  1567. printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
  1568. return (0);
  1569. }
  1570. /* Allocate memory for FIFOS */
  1571. /* Because the HFC-PCI needs a 32K physical alignment, we */
  1572. /* need to allocate the double mem and align the address */
  1573. if (!(cs->hw.hfcpci.share_start = kmalloc(65536, GFP_KERNEL))) {
  1574. printk(KERN_WARNING "HFC-PCI: Error allocating memory for FIFO!\n");
  1575. return 0;
  1576. }
  1577. cs->hw.hfcpci.fifos = (void *)
  1578. (((ulong) cs->hw.hfcpci.share_start) & ~0x7FFF) + 0x8000;
  1579. pci_write_config_dword(cs->hw.hfcpci.dev, 0x80, (u_int) virt_to_bus(cs->hw.hfcpci.fifos));
  1580. cs->hw.hfcpci.pci_io = ioremap((ulong) cs->hw.hfcpci.pci_io, 256);
  1581. printk(KERN_INFO
  1582. "HFC-PCI: defined at mem %p fifo %p(%#x) IRQ %d HZ %d\n",
  1583. cs->hw.hfcpci.pci_io,
  1584. cs->hw.hfcpci.fifos,
  1585. (u_int) virt_to_bus(cs->hw.hfcpci.fifos),
  1586. cs->irq, HZ);
  1587. spin_lock_irqsave(&cs->lock, flags);
  1588. pci_write_config_word(cs->hw.hfcpci.dev, PCI_COMMAND, PCI_ENA_MEMIO); /* enable memory mapped ports, disable busmaster */
  1589. cs->hw.hfcpci.int_m2 = 0; /* disable alle interrupts */
  1590. cs->hw.hfcpci.int_m1 = 0;
  1591. Write_hfc(cs, HFCPCI_INT_M1, cs->hw.hfcpci.int_m1);
  1592. Write_hfc(cs, HFCPCI_INT_M2, cs->hw.hfcpci.int_m2);
  1593. /* At this point the needed PCI config is done */
  1594. /* fifos are still not enabled */
  1595. INIT_WORK(&cs->tqueue, hfcpci_bh);
  1596. cs->setstack_d = setstack_hfcpci;
  1597. cs->BC_Send_Data = &hfcpci_send_data;
  1598. cs->readisac = NULL;
  1599. cs->writeisac = NULL;
  1600. cs->readisacfifo = NULL;
  1601. cs->writeisacfifo = NULL;
  1602. cs->BC_Read_Reg = NULL;
  1603. cs->BC_Write_Reg = NULL;
  1604. cs->irq_func = &hfcpci_interrupt;
  1605. cs->irq_flags |= IRQF_SHARED;
  1606. cs->hw.hfcpci.timer.function = (void *) hfcpci_Timer;
  1607. cs->hw.hfcpci.timer.data = (long) cs;
  1608. init_timer(&cs->hw.hfcpci.timer);
  1609. cs->cardmsg = &hfcpci_card_msg;
  1610. cs->auxcmd = &hfcpci_auxcmd;
  1611. spin_unlock_irqrestore(&cs->lock, flags);
  1612. return (1);
  1613. }