hfc_2bs0.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589
  1. /* $Id: hfc_2bs0.c,v 1.20.2.6 2004/02/11 13:21:33 keil Exp $
  2. *
  3. * specific routines for CCD's HFC 2BS0
  4. *
  5. * Author Karsten Keil
  6. * Copyright by Karsten Keil <keil@isdn4linux.de>
  7. *
  8. * This software may be used and distributed according to the terms
  9. * of the GNU General Public License, incorporated herein by reference.
  10. *
  11. */
  12. #include <linux/init.h>
  13. #include "hisax.h"
  14. #include "hfc_2bs0.h"
  15. #include "isac.h"
  16. #include "isdnl1.h"
  17. #include <linux/interrupt.h>
  18. static inline int
  19. WaitForBusy(struct IsdnCardState *cs)
  20. {
  21. int to = 130;
  22. u_char val;
  23. while (!(cs->BC_Read_Reg(cs, HFC_STATUS, 0) & HFC_BUSY) && to) {
  24. val = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2 |
  25. (cs->hw.hfc.cip & 3));
  26. udelay(1);
  27. to--;
  28. }
  29. if (!to) {
  30. printk(KERN_WARNING "HiSax: waitforBusy timeout\n");
  31. return (0);
  32. } else
  33. return (to);
  34. }
  35. static inline int
  36. WaitNoBusy(struct IsdnCardState *cs)
  37. {
  38. int to = 125;
  39. while ((cs->BC_Read_Reg(cs, HFC_STATUS, 0) & HFC_BUSY) && to) {
  40. udelay(1);
  41. to--;
  42. }
  43. if (!to) {
  44. printk(KERN_WARNING "HiSax: waitforBusy timeout\n");
  45. return (0);
  46. } else
  47. return (to);
  48. }
  49. static int
  50. GetFreeFifoBytes(struct BCState *bcs)
  51. {
  52. int s;
  53. if (bcs->hw.hfc.f1 == bcs->hw.hfc.f2)
  54. return (bcs->cs->hw.hfc.fifosize);
  55. s = bcs->hw.hfc.send[bcs->hw.hfc.f1] - bcs->hw.hfc.send[bcs->hw.hfc.f2];
  56. if (s <= 0)
  57. s += bcs->cs->hw.hfc.fifosize;
  58. s = bcs->cs->hw.hfc.fifosize - s;
  59. return (s);
  60. }
  61. static int
  62. ReadZReg(struct BCState *bcs, u_char reg)
  63. {
  64. int val;
  65. WaitNoBusy(bcs->cs);
  66. val = 256 * bcs->cs->BC_Read_Reg(bcs->cs, HFC_DATA, reg | HFC_CIP | HFC_Z_HIGH);
  67. WaitNoBusy(bcs->cs);
  68. val += bcs->cs->BC_Read_Reg(bcs->cs, HFC_DATA, reg | HFC_CIP | HFC_Z_LOW);
  69. return (val);
  70. }
  71. static void
  72. hfc_clear_fifo(struct BCState *bcs)
  73. {
  74. struct IsdnCardState *cs = bcs->cs;
  75. int idx, cnt;
  76. int rcnt, z1, z2;
  77. u_char cip, f1, f2;
  78. if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
  79. debugl1(cs, "hfc_clear_fifo");
  80. cip = HFC_CIP | HFC_F1 | HFC_REC | HFC_CHANNEL(bcs->channel);
  81. if ((cip & 0xc3) != (cs->hw.hfc.cip & 0xc3)) {
  82. cs->BC_Write_Reg(cs, HFC_STATUS, cip, cip);
  83. WaitForBusy(cs);
  84. }
  85. WaitNoBusy(cs);
  86. f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
  87. cip = HFC_CIP | HFC_F2 | HFC_REC | HFC_CHANNEL(bcs->channel);
  88. WaitNoBusy(cs);
  89. f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
  90. z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel));
  91. z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel));
  92. cnt = 32;
  93. while (((f1 != f2) || (z1 != z2)) && cnt--) {
  94. if (cs->debug & L1_DEB_HSCX)
  95. debugl1(cs, "hfc clear %d f1(%d) f2(%d)",
  96. bcs->channel, f1, f2);
  97. rcnt = z1 - z2;
  98. if (rcnt < 0)
  99. rcnt += cs->hw.hfc.fifosize;
  100. if (rcnt)
  101. rcnt++;
  102. if (cs->debug & L1_DEB_HSCX)
  103. debugl1(cs, "hfc clear %d z1(%x) z2(%x) cnt(%d)",
  104. bcs->channel, z1, z2, rcnt);
  105. cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel);
  106. idx = 0;
  107. while ((idx < rcnt) && WaitNoBusy(cs)) {
  108. cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip);
  109. idx++;
  110. }
  111. if (f1 != f2) {
  112. WaitNoBusy(cs);
  113. cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
  114. HFC_CHANNEL(bcs->channel));
  115. WaitForBusy(cs);
  116. }
  117. cip = HFC_CIP | HFC_F1 | HFC_REC | HFC_CHANNEL(bcs->channel);
  118. WaitNoBusy(cs);
  119. f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
  120. cip = HFC_CIP | HFC_F2 | HFC_REC | HFC_CHANNEL(bcs->channel);
  121. WaitNoBusy(cs);
  122. f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
  123. z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel));
  124. z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel));
  125. }
  126. return;
  127. }
  128. static struct sk_buff
  129. *
  130. hfc_empty_fifo(struct BCState *bcs, int count)
  131. {
  132. u_char *ptr;
  133. struct sk_buff *skb;
  134. struct IsdnCardState *cs = bcs->cs;
  135. int idx;
  136. int chksum;
  137. u_char stat, cip;
  138. if ((cs->debug & L1_DEB_HSCX) && !(cs->debug & L1_DEB_HSCX_FIFO))
  139. debugl1(cs, "hfc_empty_fifo");
  140. idx = 0;
  141. if (count > HSCX_BUFMAX + 3) {
  142. if (cs->debug & L1_DEB_WARN)
  143. debugl1(cs, "hfc_empty_fifo: incoming packet too large");
  144. cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel);
  145. while ((idx++ < count) && WaitNoBusy(cs))
  146. cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip);
  147. WaitNoBusy(cs);
  148. stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
  149. HFC_CHANNEL(bcs->channel));
  150. WaitForBusy(cs);
  151. return (NULL);
  152. }
  153. if ((count < 4) && (bcs->mode != L1_MODE_TRANS)) {
  154. if (cs->debug & L1_DEB_WARN)
  155. debugl1(cs, "hfc_empty_fifo: incoming packet too small");
  156. cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel);
  157. while ((idx++ < count) && WaitNoBusy(cs))
  158. cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip);
  159. WaitNoBusy(cs);
  160. stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
  161. HFC_CHANNEL(bcs->channel));
  162. WaitForBusy(cs);
  163. #ifdef ERROR_STATISTIC
  164. bcs->err_inv++;
  165. #endif
  166. return (NULL);
  167. }
  168. if (bcs->mode == L1_MODE_TRANS)
  169. count -= 1;
  170. else
  171. count -= 3;
  172. if (!(skb = dev_alloc_skb(count)))
  173. printk(KERN_WARNING "HFC: receive out of memory\n");
  174. else {
  175. ptr = skb_put(skb, count);
  176. idx = 0;
  177. cip = HFC_CIP | HFC_FIFO_OUT | HFC_REC | HFC_CHANNEL(bcs->channel);
  178. while ((idx < count) && WaitNoBusy(cs)) {
  179. *ptr++ = cs->BC_Read_Reg(cs, HFC_DATA_NODEB, cip);
  180. idx++;
  181. }
  182. if (idx != count) {
  183. debugl1(cs, "RFIFO BUSY error");
  184. printk(KERN_WARNING "HFC FIFO channel %d BUSY Error\n", bcs->channel);
  185. dev_kfree_skb_any(skb);
  186. if (bcs->mode != L1_MODE_TRANS) {
  187. WaitNoBusy(cs);
  188. stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
  189. HFC_CHANNEL(bcs->channel));
  190. WaitForBusy(cs);
  191. }
  192. return (NULL);
  193. }
  194. if (bcs->mode != L1_MODE_TRANS) {
  195. WaitNoBusy(cs);
  196. chksum = (cs->BC_Read_Reg(cs, HFC_DATA, cip) << 8);
  197. WaitNoBusy(cs);
  198. chksum += cs->BC_Read_Reg(cs, HFC_DATA, cip);
  199. WaitNoBusy(cs);
  200. stat = cs->BC_Read_Reg(cs, HFC_DATA, cip);
  201. if (cs->debug & L1_DEB_HSCX)
  202. debugl1(cs, "hfc_empty_fifo %d chksum %x stat %x",
  203. bcs->channel, chksum, stat);
  204. if (stat) {
  205. debugl1(cs, "FIFO CRC error");
  206. dev_kfree_skb_any(skb);
  207. skb = NULL;
  208. #ifdef ERROR_STATISTIC
  209. bcs->err_crc++;
  210. #endif
  211. }
  212. WaitNoBusy(cs);
  213. stat = cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F2_INC | HFC_REC |
  214. HFC_CHANNEL(bcs->channel));
  215. WaitForBusy(cs);
  216. }
  217. }
  218. return (skb);
  219. }
  220. static void
  221. hfc_fill_fifo(struct BCState *bcs)
  222. {
  223. struct IsdnCardState *cs = bcs->cs;
  224. int idx, fcnt;
  225. int count;
  226. int z1, z2;
  227. u_char cip;
  228. if (!bcs->tx_skb)
  229. return;
  230. if (bcs->tx_skb->len <= 0)
  231. return;
  232. cip = HFC_CIP | HFC_F1 | HFC_SEND | HFC_CHANNEL(bcs->channel);
  233. if ((cip & 0xc3) != (cs->hw.hfc.cip & 0xc3)) {
  234. cs->BC_Write_Reg(cs, HFC_STATUS, cip, cip);
  235. WaitForBusy(cs);
  236. }
  237. WaitNoBusy(cs);
  238. if (bcs->mode != L1_MODE_TRANS) {
  239. bcs->hw.hfc.f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
  240. cip = HFC_CIP | HFC_F2 | HFC_SEND | HFC_CHANNEL(bcs->channel);
  241. WaitNoBusy(cs);
  242. bcs->hw.hfc.f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
  243. bcs->hw.hfc.send[bcs->hw.hfc.f1] = ReadZReg(bcs, HFC_Z1 | HFC_SEND | HFC_CHANNEL(bcs->channel));
  244. if (cs->debug & L1_DEB_HSCX)
  245. debugl1(cs, "hfc_fill_fifo %d f1(%d) f2(%d) z1(%x)",
  246. bcs->channel, bcs->hw.hfc.f1, bcs->hw.hfc.f2,
  247. bcs->hw.hfc.send[bcs->hw.hfc.f1]);
  248. fcnt = bcs->hw.hfc.f1 - bcs->hw.hfc.f2;
  249. if (fcnt < 0)
  250. fcnt += 32;
  251. if (fcnt > 30) {
  252. if (cs->debug & L1_DEB_HSCX)
  253. debugl1(cs, "hfc_fill_fifo more as 30 frames");
  254. return;
  255. }
  256. count = GetFreeFifoBytes(bcs);
  257. }
  258. else {
  259. WaitForBusy(cs);
  260. z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel));
  261. z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel));
  262. count = z1 - z2;
  263. if (count < 0)
  264. count += cs->hw.hfc.fifosize;
  265. } /* L1_MODE_TRANS */
  266. if (cs->debug & L1_DEB_HSCX)
  267. debugl1(cs, "hfc_fill_fifo %d count(%ld/%d)",
  268. bcs->channel, bcs->tx_skb->len,
  269. count);
  270. if (count < bcs->tx_skb->len) {
  271. if (cs->debug & L1_DEB_HSCX)
  272. debugl1(cs, "hfc_fill_fifo no fifo mem");
  273. return;
  274. }
  275. cip = HFC_CIP | HFC_FIFO_IN | HFC_SEND | HFC_CHANNEL(bcs->channel);
  276. idx = 0;
  277. while ((idx < bcs->tx_skb->len) && WaitNoBusy(cs))
  278. cs->BC_Write_Reg(cs, HFC_DATA_NODEB, cip, bcs->tx_skb->data[idx++]);
  279. if (idx != bcs->tx_skb->len) {
  280. debugl1(cs, "FIFO Send BUSY error");
  281. printk(KERN_WARNING "HFC S FIFO channel %d BUSY Error\n", bcs->channel);
  282. } else {
  283. count = bcs->tx_skb->len;
  284. bcs->tx_cnt -= count;
  285. if (PACKET_NOACK == bcs->tx_skb->pkt_type)
  286. count = -1;
  287. dev_kfree_skb_any(bcs->tx_skb);
  288. bcs->tx_skb = NULL;
  289. if (bcs->mode != L1_MODE_TRANS) {
  290. WaitForBusy(cs);
  291. WaitNoBusy(cs);
  292. cs->BC_Read_Reg(cs, HFC_DATA, HFC_CIP | HFC_F1_INC | HFC_SEND | HFC_CHANNEL(bcs->channel));
  293. }
  294. if (test_bit(FLG_LLI_L1WAKEUP,&bcs->st->lli.flag) &&
  295. (count >= 0)) {
  296. u_long flags;
  297. spin_lock_irqsave(&bcs->aclock, flags);
  298. bcs->ackcnt += count;
  299. spin_unlock_irqrestore(&bcs->aclock, flags);
  300. schedule_event(bcs, B_ACKPENDING);
  301. }
  302. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  303. }
  304. return;
  305. }
  306. void
  307. main_irq_hfc(struct BCState *bcs)
  308. {
  309. struct IsdnCardState *cs = bcs->cs;
  310. int z1, z2, rcnt;
  311. u_char f1, f2, cip;
  312. int receive, transmit, count = 5;
  313. struct sk_buff *skb;
  314. Begin:
  315. count--;
  316. cip = HFC_CIP | HFC_F1 | HFC_REC | HFC_CHANNEL(bcs->channel);
  317. if ((cip & 0xc3) != (cs->hw.hfc.cip & 0xc3)) {
  318. cs->BC_Write_Reg(cs, HFC_STATUS, cip, cip);
  319. WaitForBusy(cs);
  320. }
  321. WaitNoBusy(cs);
  322. receive = 0;
  323. if (bcs->mode == L1_MODE_HDLC) {
  324. f1 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
  325. cip = HFC_CIP | HFC_F2 | HFC_REC | HFC_CHANNEL(bcs->channel);
  326. WaitNoBusy(cs);
  327. f2 = cs->BC_Read_Reg(cs, HFC_DATA, cip);
  328. if (f1 != f2) {
  329. if (cs->debug & L1_DEB_HSCX)
  330. debugl1(cs, "hfc rec %d f1(%d) f2(%d)",
  331. bcs->channel, f1, f2);
  332. receive = 1;
  333. }
  334. }
  335. if (receive || (bcs->mode == L1_MODE_TRANS)) {
  336. WaitForBusy(cs);
  337. z1 = ReadZReg(bcs, HFC_Z1 | HFC_REC | HFC_CHANNEL(bcs->channel));
  338. z2 = ReadZReg(bcs, HFC_Z2 | HFC_REC | HFC_CHANNEL(bcs->channel));
  339. rcnt = z1 - z2;
  340. if (rcnt < 0)
  341. rcnt += cs->hw.hfc.fifosize;
  342. if ((bcs->mode == L1_MODE_HDLC) || (rcnt)) {
  343. rcnt++;
  344. if (cs->debug & L1_DEB_HSCX)
  345. debugl1(cs, "hfc rec %d z1(%x) z2(%x) cnt(%d)",
  346. bcs->channel, z1, z2, rcnt);
  347. /* sti(); */
  348. if ((skb = hfc_empty_fifo(bcs, rcnt))) {
  349. skb_queue_tail(&bcs->rqueue, skb);
  350. schedule_event(bcs, B_RCVBUFREADY);
  351. }
  352. }
  353. receive = 1;
  354. }
  355. if (bcs->tx_skb) {
  356. transmit = 1;
  357. test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  358. hfc_fill_fifo(bcs);
  359. if (test_bit(BC_FLG_BUSY, &bcs->Flag))
  360. transmit = 0;
  361. } else {
  362. if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
  363. transmit = 1;
  364. test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  365. hfc_fill_fifo(bcs);
  366. if (test_bit(BC_FLG_BUSY, &bcs->Flag))
  367. transmit = 0;
  368. } else {
  369. transmit = 0;
  370. schedule_event(bcs, B_XMTBUFREADY);
  371. }
  372. }
  373. if ((receive || transmit) && count)
  374. goto Begin;
  375. return;
  376. }
  377. static void
  378. mode_hfc(struct BCState *bcs, int mode, int bc)
  379. {
  380. struct IsdnCardState *cs = bcs->cs;
  381. if (cs->debug & L1_DEB_HSCX)
  382. debugl1(cs, "HFC 2BS0 mode %d bchan %d/%d",
  383. mode, bc, bcs->channel);
  384. bcs->mode = mode;
  385. bcs->channel = bc;
  386. switch (mode) {
  387. case (L1_MODE_NULL):
  388. if (bc) {
  389. cs->hw.hfc.ctmt &= ~1;
  390. cs->hw.hfc.isac_spcr &= ~0x03;
  391. }
  392. else {
  393. cs->hw.hfc.ctmt &= ~2;
  394. cs->hw.hfc.isac_spcr &= ~0x0c;
  395. }
  396. break;
  397. case (L1_MODE_TRANS):
  398. cs->hw.hfc.ctmt &= ~(1 << bc); /* set HDLC mode */
  399. cs->BC_Write_Reg(cs, HFC_STATUS, cs->hw.hfc.ctmt, cs->hw.hfc.ctmt);
  400. hfc_clear_fifo(bcs); /* complete fifo clear */
  401. if (bc) {
  402. cs->hw.hfc.ctmt |= 1;
  403. cs->hw.hfc.isac_spcr &= ~0x03;
  404. cs->hw.hfc.isac_spcr |= 0x02;
  405. } else {
  406. cs->hw.hfc.ctmt |= 2;
  407. cs->hw.hfc.isac_spcr &= ~0x0c;
  408. cs->hw.hfc.isac_spcr |= 0x08;
  409. }
  410. break;
  411. case (L1_MODE_HDLC):
  412. if (bc) {
  413. cs->hw.hfc.ctmt &= ~1;
  414. cs->hw.hfc.isac_spcr &= ~0x03;
  415. cs->hw.hfc.isac_spcr |= 0x02;
  416. } else {
  417. cs->hw.hfc.ctmt &= ~2;
  418. cs->hw.hfc.isac_spcr &= ~0x0c;
  419. cs->hw.hfc.isac_spcr |= 0x08;
  420. }
  421. break;
  422. }
  423. cs->BC_Write_Reg(cs, HFC_STATUS, cs->hw.hfc.ctmt, cs->hw.hfc.ctmt);
  424. cs->writeisac(cs, ISAC_SPCR, cs->hw.hfc.isac_spcr);
  425. if (mode == L1_MODE_HDLC)
  426. hfc_clear_fifo(bcs);
  427. }
  428. static void
  429. hfc_l2l1(struct PStack *st, int pr, void *arg)
  430. {
  431. struct BCState *bcs = st->l1.bcs;
  432. struct sk_buff *skb = arg;
  433. u_long flags;
  434. switch (pr) {
  435. case (PH_DATA | REQUEST):
  436. spin_lock_irqsave(&bcs->cs->lock, flags);
  437. if (bcs->tx_skb) {
  438. skb_queue_tail(&bcs->squeue, skb);
  439. } else {
  440. bcs->tx_skb = skb;
  441. test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  442. bcs->cs->BC_Send_Data(bcs);
  443. }
  444. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  445. break;
  446. case (PH_PULL | INDICATION):
  447. spin_lock_irqsave(&bcs->cs->lock, flags);
  448. if (bcs->tx_skb) {
  449. printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
  450. } else {
  451. test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
  452. bcs->tx_skb = skb;
  453. bcs->cs->BC_Send_Data(bcs);
  454. }
  455. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  456. break;
  457. case (PH_PULL | REQUEST):
  458. if (!bcs->tx_skb) {
  459. test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  460. st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
  461. } else
  462. test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
  463. break;
  464. case (PH_ACTIVATE | REQUEST):
  465. spin_lock_irqsave(&bcs->cs->lock, flags);
  466. test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
  467. mode_hfc(bcs, st->l1.mode, st->l1.bc);
  468. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  469. l1_msg_b(st, pr, arg);
  470. break;
  471. case (PH_DEACTIVATE | REQUEST):
  472. l1_msg_b(st, pr, arg);
  473. break;
  474. case (PH_DEACTIVATE | CONFIRM):
  475. spin_lock_irqsave(&bcs->cs->lock, flags);
  476. test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
  477. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  478. mode_hfc(bcs, 0, st->l1.bc);
  479. spin_unlock_irqrestore(&bcs->cs->lock, flags);
  480. st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
  481. break;
  482. }
  483. }
  484. static void
  485. close_hfcstate(struct BCState *bcs)
  486. {
  487. mode_hfc(bcs, 0, bcs->channel);
  488. if (test_bit(BC_FLG_INIT, &bcs->Flag)) {
  489. skb_queue_purge(&bcs->rqueue);
  490. skb_queue_purge(&bcs->squeue);
  491. if (bcs->tx_skb) {
  492. dev_kfree_skb_any(bcs->tx_skb);
  493. bcs->tx_skb = NULL;
  494. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  495. }
  496. }
  497. test_and_clear_bit(BC_FLG_INIT, &bcs->Flag);
  498. }
  499. static int
  500. open_hfcstate(struct IsdnCardState *cs, struct BCState *bcs)
  501. {
  502. if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
  503. skb_queue_head_init(&bcs->rqueue);
  504. skb_queue_head_init(&bcs->squeue);
  505. }
  506. bcs->tx_skb = NULL;
  507. test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
  508. bcs->event = 0;
  509. bcs->tx_cnt = 0;
  510. return (0);
  511. }
  512. static int
  513. setstack_hfc(struct PStack *st, struct BCState *bcs)
  514. {
  515. bcs->channel = st->l1.bc;
  516. if (open_hfcstate(st->l1.hardware, bcs))
  517. return (-1);
  518. st->l1.bcs = bcs;
  519. st->l2.l2l1 = hfc_l2l1;
  520. setstack_manager(st);
  521. bcs->st = st;
  522. setstack_l1_B(st);
  523. return (0);
  524. }
  525. static void
  526. init_send(struct BCState *bcs)
  527. {
  528. int i;
  529. if (!(bcs->hw.hfc.send = kmalloc(32 * sizeof(unsigned int), GFP_ATOMIC))) {
  530. printk(KERN_WARNING
  531. "HiSax: No memory for hfc.send\n");
  532. return;
  533. }
  534. for (i = 0; i < 32; i++)
  535. bcs->hw.hfc.send[i] = 0x1fff;
  536. }
  537. void
  538. inithfc(struct IsdnCardState *cs)
  539. {
  540. init_send(&cs->bcs[0]);
  541. init_send(&cs->bcs[1]);
  542. cs->BC_Send_Data = &hfc_fill_fifo;
  543. cs->bcs[0].BC_SetStack = setstack_hfc;
  544. cs->bcs[1].BC_SetStack = setstack_hfc;
  545. cs->bcs[0].BC_Close = close_hfcstate;
  546. cs->bcs[1].BC_Close = close_hfcstate;
  547. mode_hfc(cs->bcs, 0, 0);
  548. mode_hfc(cs->bcs + 1, 0, 0);
  549. }
  550. void
  551. releasehfc(struct IsdnCardState *cs)
  552. {
  553. kfree(cs->bcs[0].hw.hfc.send);
  554. cs->bcs[0].hw.hfc.send = NULL;
  555. kfree(cs->bcs[1].hw.hfc.send);
  556. cs->bcs[1].hw.hfc.send = NULL;
  557. }