ucb1400_ts.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471
  1. /*
  2. * Philips UCB1400 touchscreen driver
  3. *
  4. * Author: Nicolas Pitre
  5. * Created: September 25, 2006
  6. * Copyright: MontaVista Software, Inc.
  7. *
  8. * Spliting done by: Marek Vasut <marek.vasut@gmail.com>
  9. * If something doesnt work and it worked before spliting, e-mail me,
  10. * dont bother Nicolas please ;-)
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License version 2 as
  14. * published by the Free Software Foundation.
  15. *
  16. * This code is heavily based on ucb1x00-*.c copyrighted by Russell King
  17. * covering the UCB1100, UCB1200 and UCB1300.. Support for the UCB1400 has
  18. * been made separate from ucb1x00-core/ucb1x00-ts on Russell's request.
  19. */
  20. #include <linux/module.h>
  21. #include <linux/init.h>
  22. #include <linux/completion.h>
  23. #include <linux/delay.h>
  24. #include <linux/input.h>
  25. #include <linux/device.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/suspend.h>
  28. #include <linux/slab.h>
  29. #include <linux/kthread.h>
  30. #include <linux/freezer.h>
  31. #include <linux/ucb1400.h>
  32. static int adcsync;
  33. static int ts_delay = 55; /* us */
  34. static int ts_delay_pressure; /* us */
  35. /* Switch to interrupt mode. */
  36. static inline void ucb1400_ts_mode_int(struct snd_ac97 *ac97)
  37. {
  38. ucb1400_reg_write(ac97, UCB_TS_CR,
  39. UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
  40. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
  41. UCB_TS_CR_MODE_INT);
  42. }
  43. /*
  44. * Switch to pressure mode, and read pressure. We don't need to wait
  45. * here, since both plates are being driven.
  46. */
  47. static inline unsigned int ucb1400_ts_read_pressure(struct ucb1400_ts *ucb)
  48. {
  49. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  50. UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
  51. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
  52. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  53. udelay(ts_delay_pressure);
  54. return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
  55. }
  56. /*
  57. * Switch to X position mode and measure Y plate. We switch the plate
  58. * configuration in pressure mode, then switch to position mode. This
  59. * gives a faster response time. Even so, we need to wait about 55us
  60. * for things to stabilise.
  61. */
  62. static inline unsigned int ucb1400_ts_read_xpos(struct ucb1400_ts *ucb)
  63. {
  64. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  65. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  66. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  67. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  68. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  69. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  70. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  71. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  72. UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
  73. udelay(ts_delay);
  74. return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
  75. }
  76. /*
  77. * Switch to Y position mode and measure X plate. We switch the plate
  78. * configuration in pressure mode, then switch to position mode. This
  79. * gives a faster response time. Even so, we need to wait about 55us
  80. * for things to stabilise.
  81. */
  82. static inline unsigned int ucb1400_ts_read_ypos(struct ucb1400_ts *ucb)
  83. {
  84. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  85. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  86. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  87. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  88. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  89. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  90. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  91. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  92. UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
  93. udelay(ts_delay);
  94. return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPX, adcsync);
  95. }
  96. /*
  97. * Switch to X plate resistance mode. Set MX to ground, PX to
  98. * supply. Measure current.
  99. */
  100. static inline unsigned int ucb1400_ts_read_xres(struct ucb1400_ts *ucb)
  101. {
  102. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  103. UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
  104. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  105. return ucb1400_adc_read(ucb->ac97, 0, adcsync);
  106. }
  107. /*
  108. * Switch to Y plate resistance mode. Set MY to ground, PY to
  109. * supply. Measure current.
  110. */
  111. static inline unsigned int ucb1400_ts_read_yres(struct ucb1400_ts *ucb)
  112. {
  113. ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
  114. UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
  115. UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
  116. return ucb1400_adc_read(ucb->ac97, 0, adcsync);
  117. }
  118. static inline int ucb1400_ts_pen_down(struct snd_ac97 *ac97)
  119. {
  120. unsigned short val = ucb1400_reg_read(ac97, UCB_TS_CR);
  121. return val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW);
  122. }
  123. static inline void ucb1400_ts_irq_enable(struct snd_ac97 *ac97)
  124. {
  125. ucb1400_reg_write(ac97, UCB_IE_CLEAR, UCB_IE_TSPX);
  126. ucb1400_reg_write(ac97, UCB_IE_CLEAR, 0);
  127. ucb1400_reg_write(ac97, UCB_IE_FAL, UCB_IE_TSPX);
  128. }
  129. static inline void ucb1400_ts_irq_disable(struct snd_ac97 *ac97)
  130. {
  131. ucb1400_reg_write(ac97, UCB_IE_FAL, 0);
  132. }
  133. static void ucb1400_ts_evt_add(struct input_dev *idev, u16 pressure, u16 x, u16 y)
  134. {
  135. input_report_abs(idev, ABS_X, x);
  136. input_report_abs(idev, ABS_Y, y);
  137. input_report_abs(idev, ABS_PRESSURE, pressure);
  138. input_sync(idev);
  139. }
  140. static void ucb1400_ts_event_release(struct input_dev *idev)
  141. {
  142. input_report_abs(idev, ABS_PRESSURE, 0);
  143. input_sync(idev);
  144. }
  145. static void ucb1400_handle_pending_irq(struct ucb1400_ts *ucb)
  146. {
  147. unsigned int isr;
  148. isr = ucb1400_reg_read(ucb->ac97, UCB_IE_STATUS);
  149. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, isr);
  150. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
  151. if (isr & UCB_IE_TSPX) {
  152. ucb1400_ts_irq_disable(ucb->ac97);
  153. enable_irq(ucb->irq);
  154. } else
  155. printk(KERN_ERR "ucb1400: unexpected IE_STATUS = %#x\n", isr);
  156. }
  157. static int ucb1400_ts_thread(void *_ucb)
  158. {
  159. struct ucb1400_ts *ucb = _ucb;
  160. struct task_struct *tsk = current;
  161. int valid = 0;
  162. struct sched_param param = { .sched_priority = 1 };
  163. sched_setscheduler(tsk, SCHED_FIFO, &param);
  164. set_freezable();
  165. while (!kthread_should_stop()) {
  166. unsigned int x, y, p;
  167. long timeout;
  168. ucb->ts_restart = 0;
  169. if (ucb->irq_pending) {
  170. ucb->irq_pending = 0;
  171. ucb1400_handle_pending_irq(ucb);
  172. }
  173. ucb1400_adc_enable(ucb->ac97);
  174. x = ucb1400_ts_read_xpos(ucb);
  175. y = ucb1400_ts_read_ypos(ucb);
  176. p = ucb1400_ts_read_pressure(ucb);
  177. ucb1400_adc_disable(ucb->ac97);
  178. /* Switch back to interrupt mode. */
  179. ucb1400_ts_mode_int(ucb->ac97);
  180. msleep(10);
  181. if (ucb1400_ts_pen_down(ucb->ac97)) {
  182. ucb1400_ts_irq_enable(ucb->ac97);
  183. /*
  184. * If we spat out a valid sample set last time,
  185. * spit out a "pen off" sample here.
  186. */
  187. if (valid) {
  188. ucb1400_ts_event_release(ucb->ts_idev);
  189. valid = 0;
  190. }
  191. timeout = MAX_SCHEDULE_TIMEOUT;
  192. } else {
  193. valid = 1;
  194. ucb1400_ts_evt_add(ucb->ts_idev, p, x, y);
  195. timeout = msecs_to_jiffies(10);
  196. }
  197. wait_event_freezable_timeout(ucb->ts_wait,
  198. ucb->irq_pending || ucb->ts_restart ||
  199. kthread_should_stop(), timeout);
  200. }
  201. /* Send the "pen off" if we are stopping with the pen still active */
  202. if (valid)
  203. ucb1400_ts_event_release(ucb->ts_idev);
  204. ucb->ts_task = NULL;
  205. return 0;
  206. }
  207. /*
  208. * A restriction with interrupts exists when using the ucb1400, as
  209. * the codec read/write routines may sleep while waiting for codec
  210. * access completion and uses semaphores for access control to the
  211. * AC97 bus. A complete codec read cycle could take anywhere from
  212. * 60 to 100uSec so we *definitely* don't want to spin inside the
  213. * interrupt handler waiting for codec access. So, we handle the
  214. * interrupt by scheduling a RT kernel thread to run in process
  215. * context instead of interrupt context.
  216. */
  217. static irqreturn_t ucb1400_hard_irq(int irqnr, void *devid)
  218. {
  219. struct ucb1400_ts *ucb = devid;
  220. if (irqnr == ucb->irq) {
  221. disable_irq(ucb->irq);
  222. ucb->irq_pending = 1;
  223. wake_up(&ucb->ts_wait);
  224. return IRQ_HANDLED;
  225. }
  226. return IRQ_NONE;
  227. }
  228. static int ucb1400_ts_open(struct input_dev *idev)
  229. {
  230. struct ucb1400_ts *ucb = input_get_drvdata(idev);
  231. int ret = 0;
  232. BUG_ON(ucb->ts_task);
  233. ucb->ts_task = kthread_run(ucb1400_ts_thread, ucb, "UCB1400_ts");
  234. if (IS_ERR(ucb->ts_task)) {
  235. ret = PTR_ERR(ucb->ts_task);
  236. ucb->ts_task = NULL;
  237. }
  238. return ret;
  239. }
  240. static void ucb1400_ts_close(struct input_dev *idev)
  241. {
  242. struct ucb1400_ts *ucb = input_get_drvdata(idev);
  243. if (ucb->ts_task)
  244. kthread_stop(ucb->ts_task);
  245. ucb1400_ts_irq_disable(ucb->ac97);
  246. ucb1400_reg_write(ucb->ac97, UCB_TS_CR, 0);
  247. }
  248. #ifndef NO_IRQ
  249. #define NO_IRQ 0
  250. #endif
  251. /*
  252. * Try to probe our interrupt, rather than relying on lots of
  253. * hard-coded machine dependencies.
  254. */
  255. static int ucb1400_ts_detect_irq(struct ucb1400_ts *ucb)
  256. {
  257. unsigned long mask, timeout;
  258. mask = probe_irq_on();
  259. /* Enable the ADC interrupt. */
  260. ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, UCB_IE_ADC);
  261. ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, UCB_IE_ADC);
  262. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
  263. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
  264. /* Cause an ADC interrupt. */
  265. ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA);
  266. ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA | UCB_ADC_START);
  267. /* Wait for the conversion to complete. */
  268. timeout = jiffies + HZ/2;
  269. while (!(ucb1400_reg_read(ucb->ac97, UCB_ADC_DATA) &
  270. UCB_ADC_DAT_VALID)) {
  271. cpu_relax();
  272. if (time_after(jiffies, timeout)) {
  273. printk(KERN_ERR "ucb1400: timed out in IRQ probe\n");
  274. probe_irq_off(mask);
  275. return -ENODEV;
  276. }
  277. }
  278. ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, 0);
  279. /* Disable and clear interrupt. */
  280. ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, 0);
  281. ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, 0);
  282. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
  283. ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
  284. /* Read triggered interrupt. */
  285. ucb->irq = probe_irq_off(mask);
  286. if (ucb->irq < 0 || ucb->irq == NO_IRQ)
  287. return -ENODEV;
  288. return 0;
  289. }
  290. static int ucb1400_ts_probe(struct platform_device *dev)
  291. {
  292. int error, x_res, y_res;
  293. struct ucb1400_ts *ucb = dev->dev.platform_data;
  294. ucb->ts_idev = input_allocate_device();
  295. if (!ucb->ts_idev) {
  296. error = -ENOMEM;
  297. goto err;
  298. }
  299. error = ucb1400_ts_detect_irq(ucb);
  300. if (error) {
  301. printk(KERN_ERR "UCB1400: IRQ probe failed\n");
  302. goto err_free_devs;
  303. }
  304. init_waitqueue_head(&ucb->ts_wait);
  305. error = request_irq(ucb->irq, ucb1400_hard_irq, IRQF_TRIGGER_RISING,
  306. "UCB1400", ucb);
  307. if (error) {
  308. printk(KERN_ERR "ucb1400: unable to grab irq%d: %d\n",
  309. ucb->irq, error);
  310. goto err_free_devs;
  311. }
  312. printk(KERN_DEBUG "UCB1400: found IRQ %d\n", ucb->irq);
  313. input_set_drvdata(ucb->ts_idev, ucb);
  314. ucb->ts_idev->dev.parent = &dev->dev;
  315. ucb->ts_idev->name = "UCB1400 touchscreen interface";
  316. ucb->ts_idev->id.vendor = ucb1400_reg_read(ucb->ac97,
  317. AC97_VENDOR_ID1);
  318. ucb->ts_idev->id.product = ucb->id;
  319. ucb->ts_idev->open = ucb1400_ts_open;
  320. ucb->ts_idev->close = ucb1400_ts_close;
  321. ucb->ts_idev->evbit[0] = BIT_MASK(EV_ABS);
  322. ucb1400_adc_enable(ucb->ac97);
  323. x_res = ucb1400_ts_read_xres(ucb);
  324. y_res = ucb1400_ts_read_yres(ucb);
  325. ucb1400_adc_disable(ucb->ac97);
  326. printk(KERN_DEBUG "UCB1400: x/y = %d/%d\n", x_res, y_res);
  327. input_set_abs_params(ucb->ts_idev, ABS_X, 0, x_res, 0, 0);
  328. input_set_abs_params(ucb->ts_idev, ABS_Y, 0, y_res, 0, 0);
  329. input_set_abs_params(ucb->ts_idev, ABS_PRESSURE, 0, 0, 0, 0);
  330. error = input_register_device(ucb->ts_idev);
  331. if (error)
  332. goto err_free_irq;
  333. return 0;
  334. err_free_irq:
  335. free_irq(ucb->irq, ucb);
  336. err_free_devs:
  337. input_free_device(ucb->ts_idev);
  338. err:
  339. return error;
  340. }
  341. static int ucb1400_ts_remove(struct platform_device *dev)
  342. {
  343. struct ucb1400_ts *ucb = dev->dev.platform_data;
  344. free_irq(ucb->irq, ucb);
  345. input_unregister_device(ucb->ts_idev);
  346. return 0;
  347. }
  348. #ifdef CONFIG_PM
  349. static int ucb1400_ts_resume(struct platform_device *dev)
  350. {
  351. struct ucb1400_ts *ucb = platform_get_drvdata(dev);
  352. if (ucb->ts_task) {
  353. /*
  354. * Restart the TS thread to ensure the
  355. * TS interrupt mode is set up again
  356. * after sleep.
  357. */
  358. ucb->ts_restart = 1;
  359. wake_up(&ucb->ts_wait);
  360. }
  361. return 0;
  362. }
  363. #else
  364. #define ucb1400_ts_resume NULL
  365. #endif
  366. static struct platform_driver ucb1400_ts_driver = {
  367. .probe = ucb1400_ts_probe,
  368. .remove = ucb1400_ts_remove,
  369. .resume = ucb1400_ts_resume,
  370. .driver = {
  371. .name = "ucb1400_ts",
  372. },
  373. };
  374. static int __init ucb1400_ts_init(void)
  375. {
  376. return platform_driver_register(&ucb1400_ts_driver);
  377. }
  378. static void __exit ucb1400_ts_exit(void)
  379. {
  380. platform_driver_unregister(&ucb1400_ts_driver);
  381. }
  382. module_param(adcsync, bool, 0444);
  383. MODULE_PARM_DESC(adcsync, "Synchronize touch readings with ADCSYNC pin.");
  384. module_param(ts_delay, int, 0444);
  385. MODULE_PARM_DESC(ts_delay, "Delay between panel setup and"
  386. " position read. Default = 55us.");
  387. module_param(ts_delay_pressure, int, 0444);
  388. MODULE_PARM_DESC(ts_delay_pressure,
  389. "delay between panel setup and pressure read."
  390. " Default = 0us.");
  391. module_init(ucb1400_ts_init);
  392. module_exit(ucb1400_ts_exit);
  393. MODULE_DESCRIPTION("Philips UCB1400 touchscreen driver");
  394. MODULE_LICENSE("GPL");