keyspan_remote.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607
  1. /*
  2. * keyspan_remote: USB driver for the Keyspan DMR
  3. *
  4. * Copyright (C) 2005 Zymeta Corporation - Michael Downey (downey@zymeta.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation, version 2.
  9. *
  10. * This driver has been put together with the support of Innosys, Inc.
  11. * and Keyspan, Inc the manufacturers of the Keyspan USB DMR product.
  12. */
  13. #include <linux/kernel.h>
  14. #include <linux/errno.h>
  15. #include <linux/init.h>
  16. #include <linux/slab.h>
  17. #include <linux/module.h>
  18. #include <linux/usb/input.h>
  19. #define DRIVER_VERSION "v0.1"
  20. #define DRIVER_AUTHOR "Michael Downey <downey@zymeta.com>"
  21. #define DRIVER_DESC "Driver for the USB Keyspan remote control."
  22. #define DRIVER_LICENSE "GPL"
  23. /* Parameters that can be passed to the driver. */
  24. static int debug;
  25. module_param(debug, int, 0444);
  26. MODULE_PARM_DESC(debug, "Enable extra debug messages and information");
  27. /* Vendor and product ids */
  28. #define USB_KEYSPAN_VENDOR_ID 0x06CD
  29. #define USB_KEYSPAN_PRODUCT_UIA11 0x0202
  30. /* Defines for converting the data from the remote. */
  31. #define ZERO 0x18
  32. #define ZERO_MASK 0x1F /* 5 bits for a 0 */
  33. #define ONE 0x3C
  34. #define ONE_MASK 0x3F /* 6 bits for a 1 */
  35. #define SYNC 0x3F80
  36. #define SYNC_MASK 0x3FFF /* 14 bits for a SYNC sequence */
  37. #define STOP 0x00
  38. #define STOP_MASK 0x1F /* 5 bits for the STOP sequence */
  39. #define GAP 0xFF
  40. #define RECV_SIZE 8 /* The UIA-11 type have a 8 byte limit. */
  41. /*
  42. * Table that maps the 31 possible keycodes to input keys.
  43. * Currently there are 15 and 17 button models so RESERVED codes
  44. * are blank areas in the mapping.
  45. */
  46. static const unsigned short keyspan_key_table[] = {
  47. KEY_RESERVED, /* 0 is just a place holder. */
  48. KEY_RESERVED,
  49. KEY_STOP,
  50. KEY_PLAYCD,
  51. KEY_RESERVED,
  52. KEY_PREVIOUSSONG,
  53. KEY_REWIND,
  54. KEY_FORWARD,
  55. KEY_NEXTSONG,
  56. KEY_RESERVED,
  57. KEY_RESERVED,
  58. KEY_RESERVED,
  59. KEY_PAUSE,
  60. KEY_VOLUMEUP,
  61. KEY_RESERVED,
  62. KEY_RESERVED,
  63. KEY_RESERVED,
  64. KEY_VOLUMEDOWN,
  65. KEY_RESERVED,
  66. KEY_UP,
  67. KEY_RESERVED,
  68. KEY_MUTE,
  69. KEY_LEFT,
  70. KEY_ENTER,
  71. KEY_RIGHT,
  72. KEY_RESERVED,
  73. KEY_RESERVED,
  74. KEY_DOWN,
  75. KEY_RESERVED,
  76. KEY_KPASTERISK,
  77. KEY_RESERVED,
  78. KEY_MENU
  79. };
  80. /* table of devices that work with this driver */
  81. static struct usb_device_id keyspan_table[] = {
  82. { USB_DEVICE(USB_KEYSPAN_VENDOR_ID, USB_KEYSPAN_PRODUCT_UIA11) },
  83. { } /* Terminating entry */
  84. };
  85. /* Structure to store all the real stuff that a remote sends to us. */
  86. struct keyspan_message {
  87. u16 system;
  88. u8 button;
  89. u8 toggle;
  90. };
  91. /* Structure used for all the bit testing magic needed to be done. */
  92. struct bit_tester {
  93. u32 tester;
  94. int len;
  95. int pos;
  96. int bits_left;
  97. u8 buffer[32];
  98. };
  99. /* Structure to hold all of our driver specific stuff */
  100. struct usb_keyspan {
  101. char name[128];
  102. char phys[64];
  103. unsigned short keymap[ARRAY_SIZE(keyspan_key_table)];
  104. struct usb_device *udev;
  105. struct input_dev *input;
  106. struct usb_interface *interface;
  107. struct usb_endpoint_descriptor *in_endpoint;
  108. struct urb* irq_urb;
  109. int open;
  110. dma_addr_t in_dma;
  111. unsigned char *in_buffer;
  112. /* variables used to parse messages from remote. */
  113. struct bit_tester data;
  114. int stage;
  115. int toggle;
  116. };
  117. static struct usb_driver keyspan_driver;
  118. /*
  119. * Debug routine that prints out what we've received from the remote.
  120. */
  121. static void keyspan_print(struct usb_keyspan* dev) /*unsigned char* data)*/
  122. {
  123. char codes[4 * RECV_SIZE];
  124. int i;
  125. for (i = 0; i < RECV_SIZE; i++)
  126. snprintf(codes + i * 3, 4, "%02x ", dev->in_buffer[i]);
  127. dev_info(&dev->udev->dev, "%s\n", codes);
  128. }
  129. /*
  130. * Routine that manages the bit_tester structure. It makes sure that there are
  131. * at least bits_needed bits loaded into the tester.
  132. */
  133. static int keyspan_load_tester(struct usb_keyspan* dev, int bits_needed)
  134. {
  135. if (dev->data.bits_left >= bits_needed)
  136. return 0;
  137. /*
  138. * Somehow we've missed the last message. The message will be repeated
  139. * though so it's not too big a deal
  140. */
  141. if (dev->data.pos >= dev->data.len) {
  142. dev_dbg(&dev->udev->dev,
  143. "%s - Error ran out of data. pos: %d, len: %d\n",
  144. __func__, dev->data.pos, dev->data.len);
  145. return -1;
  146. }
  147. /* Load as much as we can into the tester. */
  148. while ((dev->data.bits_left + 7 < (sizeof(dev->data.tester) * 8)) &&
  149. (dev->data.pos < dev->data.len)) {
  150. dev->data.tester += (dev->data.buffer[dev->data.pos++] << dev->data.bits_left);
  151. dev->data.bits_left += 8;
  152. }
  153. return 0;
  154. }
  155. static void keyspan_report_button(struct usb_keyspan *remote, int button, int press)
  156. {
  157. struct input_dev *input = remote->input;
  158. input_event(input, EV_MSC, MSC_SCAN, button);
  159. input_report_key(input, remote->keymap[button], press);
  160. input_sync(input);
  161. }
  162. /*
  163. * Routine that handles all the logic needed to parse out the message from the remote.
  164. */
  165. static void keyspan_check_data(struct usb_keyspan *remote)
  166. {
  167. int i;
  168. int found = 0;
  169. struct keyspan_message message;
  170. switch(remote->stage) {
  171. case 0:
  172. /*
  173. * In stage 0 we want to find the start of a message. The remote sends a 0xFF as filler.
  174. * So the first byte that isn't a FF should be the start of a new message.
  175. */
  176. for (i = 0; i < RECV_SIZE && remote->in_buffer[i] == GAP; ++i);
  177. if (i < RECV_SIZE) {
  178. memcpy(remote->data.buffer, remote->in_buffer, RECV_SIZE);
  179. remote->data.len = RECV_SIZE;
  180. remote->data.pos = 0;
  181. remote->data.tester = 0;
  182. remote->data.bits_left = 0;
  183. remote->stage = 1;
  184. }
  185. break;
  186. case 1:
  187. /*
  188. * Stage 1 we should have 16 bytes and should be able to detect a
  189. * SYNC. The SYNC is 14 bits, 7 0's and then 7 1's.
  190. */
  191. memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE);
  192. remote->data.len += RECV_SIZE;
  193. found = 0;
  194. while ((remote->data.bits_left >= 14 || remote->data.pos < remote->data.len) && !found) {
  195. for (i = 0; i < 8; ++i) {
  196. if (keyspan_load_tester(remote, 14) != 0) {
  197. remote->stage = 0;
  198. return;
  199. }
  200. if ((remote->data.tester & SYNC_MASK) == SYNC) {
  201. remote->data.tester = remote->data.tester >> 14;
  202. remote->data.bits_left -= 14;
  203. found = 1;
  204. break;
  205. } else {
  206. remote->data.tester = remote->data.tester >> 1;
  207. --remote->data.bits_left;
  208. }
  209. }
  210. }
  211. if (!found) {
  212. remote->stage = 0;
  213. remote->data.len = 0;
  214. } else {
  215. remote->stage = 2;
  216. }
  217. break;
  218. case 2:
  219. /*
  220. * Stage 2 we should have 24 bytes which will be enough for a full
  221. * message. We need to parse out the system code, button code,
  222. * toggle code, and stop.
  223. */
  224. memcpy(remote->data.buffer + remote->data.len, remote->in_buffer, RECV_SIZE);
  225. remote->data.len += RECV_SIZE;
  226. message.system = 0;
  227. for (i = 0; i < 9; i++) {
  228. keyspan_load_tester(remote, 6);
  229. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  230. message.system = message.system << 1;
  231. remote->data.tester = remote->data.tester >> 5;
  232. remote->data.bits_left -= 5;
  233. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  234. message.system = (message.system << 1) + 1;
  235. remote->data.tester = remote->data.tester >> 6;
  236. remote->data.bits_left -= 6;
  237. } else {
  238. err("%s - Unknown sequence found in system data.\n", __func__);
  239. remote->stage = 0;
  240. return;
  241. }
  242. }
  243. message.button = 0;
  244. for (i = 0; i < 5; i++) {
  245. keyspan_load_tester(remote, 6);
  246. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  247. message.button = message.button << 1;
  248. remote->data.tester = remote->data.tester >> 5;
  249. remote->data.bits_left -= 5;
  250. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  251. message.button = (message.button << 1) + 1;
  252. remote->data.tester = remote->data.tester >> 6;
  253. remote->data.bits_left -= 6;
  254. } else {
  255. err("%s - Unknown sequence found in button data.\n", __func__);
  256. remote->stage = 0;
  257. return;
  258. }
  259. }
  260. keyspan_load_tester(remote, 6);
  261. if ((remote->data.tester & ZERO_MASK) == ZERO) {
  262. message.toggle = 0;
  263. remote->data.tester = remote->data.tester >> 5;
  264. remote->data.bits_left -= 5;
  265. } else if ((remote->data.tester & ONE_MASK) == ONE) {
  266. message.toggle = 1;
  267. remote->data.tester = remote->data.tester >> 6;
  268. remote->data.bits_left -= 6;
  269. } else {
  270. err("%s - Error in message, invalid toggle.\n", __func__);
  271. remote->stage = 0;
  272. return;
  273. }
  274. keyspan_load_tester(remote, 5);
  275. if ((remote->data.tester & STOP_MASK) == STOP) {
  276. remote->data.tester = remote->data.tester >> 5;
  277. remote->data.bits_left -= 5;
  278. } else {
  279. err("Bad message recieved, no stop bit found.\n");
  280. }
  281. dev_dbg(&remote->udev->dev,
  282. "%s found valid message: system: %d, button: %d, toggle: %d\n",
  283. __func__, message.system, message.button, message.toggle);
  284. if (message.toggle != remote->toggle) {
  285. keyspan_report_button(remote, message.button, 1);
  286. keyspan_report_button(remote, message.button, 0);
  287. remote->toggle = message.toggle;
  288. }
  289. remote->stage = 0;
  290. break;
  291. }
  292. }
  293. /*
  294. * Routine for sending all the initialization messages to the remote.
  295. */
  296. static int keyspan_setup(struct usb_device* dev)
  297. {
  298. int retval = 0;
  299. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  300. 0x11, 0x40, 0x5601, 0x0, NULL, 0, 0);
  301. if (retval) {
  302. dev_dbg(&dev->dev, "%s - failed to set bit rate due to error: %d\n",
  303. __func__, retval);
  304. return(retval);
  305. }
  306. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  307. 0x44, 0x40, 0x0, 0x0, NULL, 0, 0);
  308. if (retval) {
  309. dev_dbg(&dev->dev, "%s - failed to set resume sensitivity due to error: %d\n",
  310. __func__, retval);
  311. return(retval);
  312. }
  313. retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
  314. 0x22, 0x40, 0x0, 0x0, NULL, 0, 0);
  315. if (retval) {
  316. dev_dbg(&dev->dev, "%s - failed to turn receive on due to error: %d\n",
  317. __func__, retval);
  318. return(retval);
  319. }
  320. dev_dbg(&dev->dev, "%s - Setup complete.\n", __func__);
  321. return(retval);
  322. }
  323. /*
  324. * Routine used to handle a new message that has come in.
  325. */
  326. static void keyspan_irq_recv(struct urb *urb)
  327. {
  328. struct usb_keyspan *dev = urb->context;
  329. int retval;
  330. /* Check our status in case we need to bail out early. */
  331. switch (urb->status) {
  332. case 0:
  333. break;
  334. /* Device went away so don't keep trying to read from it. */
  335. case -ECONNRESET:
  336. case -ENOENT:
  337. case -ESHUTDOWN:
  338. return;
  339. default:
  340. goto resubmit;
  341. break;
  342. }
  343. if (debug)
  344. keyspan_print(dev);
  345. keyspan_check_data(dev);
  346. resubmit:
  347. retval = usb_submit_urb(urb, GFP_ATOMIC);
  348. if (retval)
  349. err ("%s - usb_submit_urb failed with result: %d", __func__, retval);
  350. }
  351. static int keyspan_open(struct input_dev *dev)
  352. {
  353. struct usb_keyspan *remote = input_get_drvdata(dev);
  354. remote->irq_urb->dev = remote->udev;
  355. if (usb_submit_urb(remote->irq_urb, GFP_KERNEL))
  356. return -EIO;
  357. return 0;
  358. }
  359. static void keyspan_close(struct input_dev *dev)
  360. {
  361. struct usb_keyspan *remote = input_get_drvdata(dev);
  362. usb_kill_urb(remote->irq_urb);
  363. }
  364. static struct usb_endpoint_descriptor *keyspan_get_in_endpoint(struct usb_host_interface *iface)
  365. {
  366. struct usb_endpoint_descriptor *endpoint;
  367. int i;
  368. for (i = 0; i < iface->desc.bNumEndpoints; ++i) {
  369. endpoint = &iface->endpoint[i].desc;
  370. if (usb_endpoint_is_int_in(endpoint)) {
  371. /* we found our interrupt in endpoint */
  372. return endpoint;
  373. }
  374. }
  375. return NULL;
  376. }
  377. /*
  378. * Routine that sets up the driver to handle a specific USB device detected on the bus.
  379. */
  380. static int keyspan_probe(struct usb_interface *interface, const struct usb_device_id *id)
  381. {
  382. struct usb_device *udev = interface_to_usbdev(interface);
  383. struct usb_endpoint_descriptor *endpoint;
  384. struct usb_keyspan *remote;
  385. struct input_dev *input_dev;
  386. int i, error;
  387. endpoint = keyspan_get_in_endpoint(interface->cur_altsetting);
  388. if (!endpoint)
  389. return -ENODEV;
  390. remote = kzalloc(sizeof(*remote), GFP_KERNEL);
  391. input_dev = input_allocate_device();
  392. if (!remote || !input_dev) {
  393. error = -ENOMEM;
  394. goto fail1;
  395. }
  396. remote->udev = udev;
  397. remote->input = input_dev;
  398. remote->interface = interface;
  399. remote->in_endpoint = endpoint;
  400. remote->toggle = -1; /* Set to -1 so we will always not match the toggle from the first remote message. */
  401. remote->in_buffer = usb_buffer_alloc(udev, RECV_SIZE, GFP_ATOMIC, &remote->in_dma);
  402. if (!remote->in_buffer) {
  403. error = -ENOMEM;
  404. goto fail1;
  405. }
  406. remote->irq_urb = usb_alloc_urb(0, GFP_KERNEL);
  407. if (!remote->irq_urb) {
  408. error = -ENOMEM;
  409. goto fail2;
  410. }
  411. error = keyspan_setup(udev);
  412. if (error) {
  413. error = -ENODEV;
  414. goto fail3;
  415. }
  416. if (udev->manufacturer)
  417. strlcpy(remote->name, udev->manufacturer, sizeof(remote->name));
  418. if (udev->product) {
  419. if (udev->manufacturer)
  420. strlcat(remote->name, " ", sizeof(remote->name));
  421. strlcat(remote->name, udev->product, sizeof(remote->name));
  422. }
  423. if (!strlen(remote->name))
  424. snprintf(remote->name, sizeof(remote->name),
  425. "USB Keyspan Remote %04x:%04x",
  426. le16_to_cpu(udev->descriptor.idVendor),
  427. le16_to_cpu(udev->descriptor.idProduct));
  428. usb_make_path(udev, remote->phys, sizeof(remote->phys));
  429. strlcat(remote->phys, "/input0", sizeof(remote->phys));
  430. memcpy(remote->keymap, keyspan_key_table, sizeof(remote->keymap));
  431. input_dev->name = remote->name;
  432. input_dev->phys = remote->phys;
  433. usb_to_input_id(udev, &input_dev->id);
  434. input_dev->dev.parent = &interface->dev;
  435. input_dev->keycode = remote->keymap;
  436. input_dev->keycodesize = sizeof(unsigned short);
  437. input_dev->keycodemax = ARRAY_SIZE(remote->keymap);
  438. input_set_capability(input_dev, EV_MSC, MSC_SCAN);
  439. __set_bit(EV_KEY, input_dev->evbit);
  440. for (i = 0; i < ARRAY_SIZE(keyspan_key_table); i++)
  441. __set_bit(keyspan_key_table[i], input_dev->keybit);
  442. __clear_bit(KEY_RESERVED, input_dev->keybit);
  443. input_set_drvdata(input_dev, remote);
  444. input_dev->open = keyspan_open;
  445. input_dev->close = keyspan_close;
  446. /*
  447. * Initialize the URB to access the device.
  448. * The urb gets sent to the device in keyspan_open()
  449. */
  450. usb_fill_int_urb(remote->irq_urb,
  451. remote->udev,
  452. usb_rcvintpipe(remote->udev, endpoint->bEndpointAddress),
  453. remote->in_buffer, RECV_SIZE, keyspan_irq_recv, remote,
  454. endpoint->bInterval);
  455. remote->irq_urb->transfer_dma = remote->in_dma;
  456. remote->irq_urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
  457. /* we can register the device now, as it is ready */
  458. error = input_register_device(remote->input);
  459. if (error)
  460. goto fail3;
  461. /* save our data pointer in this interface device */
  462. usb_set_intfdata(interface, remote);
  463. return 0;
  464. fail3: usb_free_urb(remote->irq_urb);
  465. fail2: usb_buffer_free(udev, RECV_SIZE, remote->in_buffer, remote->in_dma);
  466. fail1: kfree(remote);
  467. input_free_device(input_dev);
  468. return error;
  469. }
  470. /*
  471. * Routine called when a device is disconnected from the USB.
  472. */
  473. static void keyspan_disconnect(struct usb_interface *interface)
  474. {
  475. struct usb_keyspan *remote;
  476. remote = usb_get_intfdata(interface);
  477. usb_set_intfdata(interface, NULL);
  478. if (remote) { /* We have a valid driver structure so clean up everything we allocated. */
  479. input_unregister_device(remote->input);
  480. usb_kill_urb(remote->irq_urb);
  481. usb_free_urb(remote->irq_urb);
  482. usb_buffer_free(remote->udev, RECV_SIZE, remote->in_buffer, remote->in_dma);
  483. kfree(remote);
  484. }
  485. }
  486. /*
  487. * Standard driver set up sections
  488. */
  489. static struct usb_driver keyspan_driver =
  490. {
  491. .name = "keyspan_remote",
  492. .probe = keyspan_probe,
  493. .disconnect = keyspan_disconnect,
  494. .id_table = keyspan_table
  495. };
  496. static int __init usb_keyspan_init(void)
  497. {
  498. int result;
  499. /* register this driver with the USB subsystem */
  500. result = usb_register(&keyspan_driver);
  501. if (result)
  502. err("usb_register failed. Error number %d\n", result);
  503. return result;
  504. }
  505. static void __exit usb_keyspan_exit(void)
  506. {
  507. /* deregister this driver with the USB subsystem */
  508. usb_deregister(&keyspan_driver);
  509. }
  510. module_init(usb_keyspan_init);
  511. module_exit(usb_keyspan_exit);
  512. MODULE_DEVICE_TABLE(usb, keyspan_table);
  513. MODULE_AUTHOR(DRIVER_AUTHOR);
  514. MODULE_DESCRIPTION(DRIVER_DESC);
  515. MODULE_LICENSE(DRIVER_LICENSE);