input.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/input.h>
  13. #include <linux/module.h>
  14. #include <linux/random.h>
  15. #include <linux/major.h>
  16. #include <linux/proc_fs.h>
  17. #include <linux/seq_file.h>
  18. #include <linux/poll.h>
  19. #include <linux/device.h>
  20. #include <linux/mutex.h>
  21. #include <linux/rcupdate.h>
  22. #include <linux/smp_lock.h>
  23. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  24. MODULE_DESCRIPTION("Input core");
  25. MODULE_LICENSE("GPL");
  26. #define INPUT_DEVICES 256
  27. static LIST_HEAD(input_dev_list);
  28. static LIST_HEAD(input_handler_list);
  29. /*
  30. * input_mutex protects access to both input_dev_list and input_handler_list.
  31. * This also causes input_[un]register_device and input_[un]register_handler
  32. * be mutually exclusive which simplifies locking in drivers implementing
  33. * input handlers.
  34. */
  35. static DEFINE_MUTEX(input_mutex);
  36. static struct input_handler *input_table[8];
  37. static inline int is_event_supported(unsigned int code,
  38. unsigned long *bm, unsigned int max)
  39. {
  40. return code <= max && test_bit(code, bm);
  41. }
  42. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  43. {
  44. if (fuzz) {
  45. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  46. return old_val;
  47. if (value > old_val - fuzz && value < old_val + fuzz)
  48. return (old_val * 3 + value) / 4;
  49. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  50. return (old_val + value) / 2;
  51. }
  52. return value;
  53. }
  54. /*
  55. * Pass event through all open handles. This function is called with
  56. * dev->event_lock held and interrupts disabled.
  57. */
  58. static void input_pass_event(struct input_dev *dev,
  59. unsigned int type, unsigned int code, int value)
  60. {
  61. struct input_handle *handle;
  62. rcu_read_lock();
  63. handle = rcu_dereference(dev->grab);
  64. if (handle)
  65. handle->handler->event(handle, type, code, value);
  66. else
  67. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  68. if (handle->open)
  69. handle->handler->event(handle,
  70. type, code, value);
  71. rcu_read_unlock();
  72. }
  73. /*
  74. * Generate software autorepeat event. Note that we take
  75. * dev->event_lock here to avoid racing with input_event
  76. * which may cause keys get "stuck".
  77. */
  78. static void input_repeat_key(unsigned long data)
  79. {
  80. struct input_dev *dev = (void *) data;
  81. unsigned long flags;
  82. spin_lock_irqsave(&dev->event_lock, flags);
  83. if (test_bit(dev->repeat_key, dev->key) &&
  84. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  85. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  86. if (dev->sync) {
  87. /*
  88. * Only send SYN_REPORT if we are not in a middle
  89. * of driver parsing a new hardware packet.
  90. * Otherwise assume that the driver will send
  91. * SYN_REPORT once it's done.
  92. */
  93. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  94. }
  95. if (dev->rep[REP_PERIOD])
  96. mod_timer(&dev->timer, jiffies +
  97. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  98. }
  99. spin_unlock_irqrestore(&dev->event_lock, flags);
  100. }
  101. static void input_start_autorepeat(struct input_dev *dev, int code)
  102. {
  103. if (test_bit(EV_REP, dev->evbit) &&
  104. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  105. dev->timer.data) {
  106. dev->repeat_key = code;
  107. mod_timer(&dev->timer,
  108. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  109. }
  110. }
  111. #define INPUT_IGNORE_EVENT 0
  112. #define INPUT_PASS_TO_HANDLERS 1
  113. #define INPUT_PASS_TO_DEVICE 2
  114. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  115. static void input_handle_event(struct input_dev *dev,
  116. unsigned int type, unsigned int code, int value)
  117. {
  118. int disposition = INPUT_IGNORE_EVENT;
  119. switch (type) {
  120. case EV_SYN:
  121. switch (code) {
  122. case SYN_CONFIG:
  123. disposition = INPUT_PASS_TO_ALL;
  124. break;
  125. case SYN_REPORT:
  126. if (!dev->sync) {
  127. dev->sync = 1;
  128. disposition = INPUT_PASS_TO_HANDLERS;
  129. }
  130. break;
  131. }
  132. break;
  133. case EV_KEY:
  134. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  135. !!test_bit(code, dev->key) != value) {
  136. if (value != 2) {
  137. __change_bit(code, dev->key);
  138. if (value)
  139. input_start_autorepeat(dev, code);
  140. }
  141. disposition = INPUT_PASS_TO_HANDLERS;
  142. }
  143. break;
  144. case EV_SW:
  145. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  146. !!test_bit(code, dev->sw) != value) {
  147. __change_bit(code, dev->sw);
  148. disposition = INPUT_PASS_TO_HANDLERS;
  149. }
  150. break;
  151. case EV_ABS:
  152. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  153. value = input_defuzz_abs_event(value,
  154. dev->abs[code], dev->absfuzz[code]);
  155. if (dev->abs[code] != value) {
  156. dev->abs[code] = value;
  157. disposition = INPUT_PASS_TO_HANDLERS;
  158. }
  159. }
  160. break;
  161. case EV_REL:
  162. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  163. disposition = INPUT_PASS_TO_HANDLERS;
  164. break;
  165. case EV_MSC:
  166. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  167. disposition = INPUT_PASS_TO_ALL;
  168. break;
  169. case EV_LED:
  170. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  171. !!test_bit(code, dev->led) != value) {
  172. __change_bit(code, dev->led);
  173. disposition = INPUT_PASS_TO_ALL;
  174. }
  175. break;
  176. case EV_SND:
  177. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  178. if (!!test_bit(code, dev->snd) != !!value)
  179. __change_bit(code, dev->snd);
  180. disposition = INPUT_PASS_TO_ALL;
  181. }
  182. break;
  183. case EV_REP:
  184. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  185. dev->rep[code] = value;
  186. disposition = INPUT_PASS_TO_ALL;
  187. }
  188. break;
  189. case EV_FF:
  190. if (value >= 0)
  191. disposition = INPUT_PASS_TO_ALL;
  192. break;
  193. case EV_PWR:
  194. disposition = INPUT_PASS_TO_ALL;
  195. break;
  196. }
  197. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  198. dev->sync = 0;
  199. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  200. dev->event(dev, type, code, value);
  201. if (disposition & INPUT_PASS_TO_HANDLERS)
  202. input_pass_event(dev, type, code, value);
  203. }
  204. /**
  205. * input_event() - report new input event
  206. * @dev: device that generated the event
  207. * @type: type of the event
  208. * @code: event code
  209. * @value: value of the event
  210. *
  211. * This function should be used by drivers implementing various input
  212. * devices. See also input_inject_event().
  213. */
  214. void input_event(struct input_dev *dev,
  215. unsigned int type, unsigned int code, int value)
  216. {
  217. unsigned long flags;
  218. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  219. spin_lock_irqsave(&dev->event_lock, flags);
  220. add_input_randomness(type, code, value);
  221. input_handle_event(dev, type, code, value);
  222. spin_unlock_irqrestore(&dev->event_lock, flags);
  223. }
  224. }
  225. EXPORT_SYMBOL(input_event);
  226. /**
  227. * input_inject_event() - send input event from input handler
  228. * @handle: input handle to send event through
  229. * @type: type of the event
  230. * @code: event code
  231. * @value: value of the event
  232. *
  233. * Similar to input_event() but will ignore event if device is
  234. * "grabbed" and handle injecting event is not the one that owns
  235. * the device.
  236. */
  237. void input_inject_event(struct input_handle *handle,
  238. unsigned int type, unsigned int code, int value)
  239. {
  240. struct input_dev *dev = handle->dev;
  241. struct input_handle *grab;
  242. unsigned long flags;
  243. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  244. spin_lock_irqsave(&dev->event_lock, flags);
  245. rcu_read_lock();
  246. grab = rcu_dereference(dev->grab);
  247. if (!grab || grab == handle)
  248. input_handle_event(dev, type, code, value);
  249. rcu_read_unlock();
  250. spin_unlock_irqrestore(&dev->event_lock, flags);
  251. }
  252. }
  253. EXPORT_SYMBOL(input_inject_event);
  254. /**
  255. * input_grab_device - grabs device for exclusive use
  256. * @handle: input handle that wants to own the device
  257. *
  258. * When a device is grabbed by an input handle all events generated by
  259. * the device are delivered only to this handle. Also events injected
  260. * by other input handles are ignored while device is grabbed.
  261. */
  262. int input_grab_device(struct input_handle *handle)
  263. {
  264. struct input_dev *dev = handle->dev;
  265. int retval;
  266. retval = mutex_lock_interruptible(&dev->mutex);
  267. if (retval)
  268. return retval;
  269. if (dev->grab) {
  270. retval = -EBUSY;
  271. goto out;
  272. }
  273. rcu_assign_pointer(dev->grab, handle);
  274. synchronize_rcu();
  275. out:
  276. mutex_unlock(&dev->mutex);
  277. return retval;
  278. }
  279. EXPORT_SYMBOL(input_grab_device);
  280. static void __input_release_device(struct input_handle *handle)
  281. {
  282. struct input_dev *dev = handle->dev;
  283. if (dev->grab == handle) {
  284. rcu_assign_pointer(dev->grab, NULL);
  285. /* Make sure input_pass_event() notices that grab is gone */
  286. synchronize_rcu();
  287. list_for_each_entry(handle, &dev->h_list, d_node)
  288. if (handle->open && handle->handler->start)
  289. handle->handler->start(handle);
  290. }
  291. }
  292. /**
  293. * input_release_device - release previously grabbed device
  294. * @handle: input handle that owns the device
  295. *
  296. * Releases previously grabbed device so that other input handles can
  297. * start receiving input events. Upon release all handlers attached
  298. * to the device have their start() method called so they have a change
  299. * to synchronize device state with the rest of the system.
  300. */
  301. void input_release_device(struct input_handle *handle)
  302. {
  303. struct input_dev *dev = handle->dev;
  304. mutex_lock(&dev->mutex);
  305. __input_release_device(handle);
  306. mutex_unlock(&dev->mutex);
  307. }
  308. EXPORT_SYMBOL(input_release_device);
  309. /**
  310. * input_open_device - open input device
  311. * @handle: handle through which device is being accessed
  312. *
  313. * This function should be called by input handlers when they
  314. * want to start receive events from given input device.
  315. */
  316. int input_open_device(struct input_handle *handle)
  317. {
  318. struct input_dev *dev = handle->dev;
  319. int retval;
  320. retval = mutex_lock_interruptible(&dev->mutex);
  321. if (retval)
  322. return retval;
  323. if (dev->going_away) {
  324. retval = -ENODEV;
  325. goto out;
  326. }
  327. handle->open++;
  328. if (!dev->users++ && dev->open)
  329. retval = dev->open(dev);
  330. if (retval) {
  331. dev->users--;
  332. if (!--handle->open) {
  333. /*
  334. * Make sure we are not delivering any more events
  335. * through this handle
  336. */
  337. synchronize_rcu();
  338. }
  339. }
  340. out:
  341. mutex_unlock(&dev->mutex);
  342. return retval;
  343. }
  344. EXPORT_SYMBOL(input_open_device);
  345. int input_flush_device(struct input_handle *handle, struct file *file)
  346. {
  347. struct input_dev *dev = handle->dev;
  348. int retval;
  349. retval = mutex_lock_interruptible(&dev->mutex);
  350. if (retval)
  351. return retval;
  352. if (dev->flush)
  353. retval = dev->flush(dev, file);
  354. mutex_unlock(&dev->mutex);
  355. return retval;
  356. }
  357. EXPORT_SYMBOL(input_flush_device);
  358. /**
  359. * input_close_device - close input device
  360. * @handle: handle through which device is being accessed
  361. *
  362. * This function should be called by input handlers when they
  363. * want to stop receive events from given input device.
  364. */
  365. void input_close_device(struct input_handle *handle)
  366. {
  367. struct input_dev *dev = handle->dev;
  368. mutex_lock(&dev->mutex);
  369. __input_release_device(handle);
  370. if (!--dev->users && dev->close)
  371. dev->close(dev);
  372. if (!--handle->open) {
  373. /*
  374. * synchronize_rcu() makes sure that input_pass_event()
  375. * completed and that no more input events are delivered
  376. * through this handle
  377. */
  378. synchronize_rcu();
  379. }
  380. mutex_unlock(&dev->mutex);
  381. }
  382. EXPORT_SYMBOL(input_close_device);
  383. /*
  384. * Prepare device for unregistering
  385. */
  386. static void input_disconnect_device(struct input_dev *dev)
  387. {
  388. struct input_handle *handle;
  389. int code;
  390. /*
  391. * Mark device as going away. Note that we take dev->mutex here
  392. * not to protect access to dev->going_away but rather to ensure
  393. * that there are no threads in the middle of input_open_device()
  394. */
  395. mutex_lock(&dev->mutex);
  396. dev->going_away = 1;
  397. mutex_unlock(&dev->mutex);
  398. spin_lock_irq(&dev->event_lock);
  399. /*
  400. * Simulate keyup events for all pressed keys so that handlers
  401. * are not left with "stuck" keys. The driver may continue
  402. * generate events even after we done here but they will not
  403. * reach any handlers.
  404. */
  405. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  406. for (code = 0; code <= KEY_MAX; code++) {
  407. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  408. __test_and_clear_bit(code, dev->key)) {
  409. input_pass_event(dev, EV_KEY, code, 0);
  410. }
  411. }
  412. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  413. }
  414. list_for_each_entry(handle, &dev->h_list, d_node)
  415. handle->open = 0;
  416. spin_unlock_irq(&dev->event_lock);
  417. }
  418. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  419. {
  420. switch (dev->keycodesize) {
  421. case 1:
  422. return ((u8 *)dev->keycode)[scancode];
  423. case 2:
  424. return ((u16 *)dev->keycode)[scancode];
  425. default:
  426. return ((u32 *)dev->keycode)[scancode];
  427. }
  428. }
  429. static int input_default_getkeycode(struct input_dev *dev,
  430. int scancode, int *keycode)
  431. {
  432. if (!dev->keycodesize)
  433. return -EINVAL;
  434. if (scancode >= dev->keycodemax)
  435. return -EINVAL;
  436. *keycode = input_fetch_keycode(dev, scancode);
  437. return 0;
  438. }
  439. static int input_default_setkeycode(struct input_dev *dev,
  440. int scancode, int keycode)
  441. {
  442. int old_keycode;
  443. int i;
  444. if (scancode >= dev->keycodemax)
  445. return -EINVAL;
  446. if (!dev->keycodesize)
  447. return -EINVAL;
  448. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  449. return -EINVAL;
  450. switch (dev->keycodesize) {
  451. case 1: {
  452. u8 *k = (u8 *)dev->keycode;
  453. old_keycode = k[scancode];
  454. k[scancode] = keycode;
  455. break;
  456. }
  457. case 2: {
  458. u16 *k = (u16 *)dev->keycode;
  459. old_keycode = k[scancode];
  460. k[scancode] = keycode;
  461. break;
  462. }
  463. default: {
  464. u32 *k = (u32 *)dev->keycode;
  465. old_keycode = k[scancode];
  466. k[scancode] = keycode;
  467. break;
  468. }
  469. }
  470. clear_bit(old_keycode, dev->keybit);
  471. set_bit(keycode, dev->keybit);
  472. for (i = 0; i < dev->keycodemax; i++) {
  473. if (input_fetch_keycode(dev, i) == old_keycode) {
  474. set_bit(old_keycode, dev->keybit);
  475. break; /* Setting the bit twice is useless, so break */
  476. }
  477. }
  478. return 0;
  479. }
  480. /**
  481. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  482. * @dev: input device which keymap is being queried
  483. * @scancode: scancode (or its equivalent for device in question) for which
  484. * keycode is needed
  485. * @keycode: result
  486. *
  487. * This function should be called by anyone interested in retrieving current
  488. * keymap. Presently keyboard and evdev handlers use it.
  489. */
  490. int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
  491. {
  492. if (scancode < 0)
  493. return -EINVAL;
  494. return dev->getkeycode(dev, scancode, keycode);
  495. }
  496. EXPORT_SYMBOL(input_get_keycode);
  497. /**
  498. * input_get_keycode - assign new keycode to a given scancode
  499. * @dev: input device which keymap is being updated
  500. * @scancode: scancode (or its equivalent for device in question)
  501. * @keycode: new keycode to be assigned to the scancode
  502. *
  503. * This function should be called by anyone needing to update current
  504. * keymap. Presently keyboard and evdev handlers use it.
  505. */
  506. int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
  507. {
  508. unsigned long flags;
  509. int old_keycode;
  510. int retval;
  511. if (scancode < 0)
  512. return -EINVAL;
  513. if (keycode < 0 || keycode > KEY_MAX)
  514. return -EINVAL;
  515. spin_lock_irqsave(&dev->event_lock, flags);
  516. retval = dev->getkeycode(dev, scancode, &old_keycode);
  517. if (retval)
  518. goto out;
  519. retval = dev->setkeycode(dev, scancode, keycode);
  520. if (retval)
  521. goto out;
  522. /*
  523. * Simulate keyup event if keycode is not present
  524. * in the keymap anymore
  525. */
  526. if (test_bit(EV_KEY, dev->evbit) &&
  527. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  528. __test_and_clear_bit(old_keycode, dev->key)) {
  529. input_pass_event(dev, EV_KEY, old_keycode, 0);
  530. if (dev->sync)
  531. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  532. }
  533. out:
  534. spin_unlock_irqrestore(&dev->event_lock, flags);
  535. return retval;
  536. }
  537. EXPORT_SYMBOL(input_set_keycode);
  538. #define MATCH_BIT(bit, max) \
  539. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  540. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  541. break; \
  542. if (i != BITS_TO_LONGS(max)) \
  543. continue;
  544. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  545. struct input_dev *dev)
  546. {
  547. int i;
  548. for (; id->flags || id->driver_info; id++) {
  549. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  550. if (id->bustype != dev->id.bustype)
  551. continue;
  552. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  553. if (id->vendor != dev->id.vendor)
  554. continue;
  555. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  556. if (id->product != dev->id.product)
  557. continue;
  558. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  559. if (id->version != dev->id.version)
  560. continue;
  561. MATCH_BIT(evbit, EV_MAX);
  562. MATCH_BIT(keybit, KEY_MAX);
  563. MATCH_BIT(relbit, REL_MAX);
  564. MATCH_BIT(absbit, ABS_MAX);
  565. MATCH_BIT(mscbit, MSC_MAX);
  566. MATCH_BIT(ledbit, LED_MAX);
  567. MATCH_BIT(sndbit, SND_MAX);
  568. MATCH_BIT(ffbit, FF_MAX);
  569. MATCH_BIT(swbit, SW_MAX);
  570. return id;
  571. }
  572. return NULL;
  573. }
  574. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  575. {
  576. const struct input_device_id *id;
  577. int error;
  578. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  579. return -ENODEV;
  580. id = input_match_device(handler->id_table, dev);
  581. if (!id)
  582. return -ENODEV;
  583. error = handler->connect(handler, dev, id);
  584. if (error && error != -ENODEV)
  585. printk(KERN_ERR
  586. "input: failed to attach handler %s to device %s, "
  587. "error: %d\n",
  588. handler->name, kobject_name(&dev->dev.kobj), error);
  589. return error;
  590. }
  591. #ifdef CONFIG_PROC_FS
  592. static struct proc_dir_entry *proc_bus_input_dir;
  593. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  594. static int input_devices_state;
  595. static inline void input_wakeup_procfs_readers(void)
  596. {
  597. input_devices_state++;
  598. wake_up(&input_devices_poll_wait);
  599. }
  600. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  601. {
  602. int state = input_devices_state;
  603. poll_wait(file, &input_devices_poll_wait, wait);
  604. if (state != input_devices_state)
  605. return POLLIN | POLLRDNORM;
  606. return 0;
  607. }
  608. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  609. {
  610. if (mutex_lock_interruptible(&input_mutex))
  611. return NULL;
  612. return seq_list_start(&input_dev_list, *pos);
  613. }
  614. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  615. {
  616. return seq_list_next(v, &input_dev_list, pos);
  617. }
  618. static void input_devices_seq_stop(struct seq_file *seq, void *v)
  619. {
  620. mutex_unlock(&input_mutex);
  621. }
  622. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  623. unsigned long *bitmap, int max)
  624. {
  625. int i;
  626. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  627. if (bitmap[i])
  628. break;
  629. seq_printf(seq, "B: %s=", name);
  630. for (; i >= 0; i--)
  631. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  632. seq_putc(seq, '\n');
  633. }
  634. static int input_devices_seq_show(struct seq_file *seq, void *v)
  635. {
  636. struct input_dev *dev = container_of(v, struct input_dev, node);
  637. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  638. struct input_handle *handle;
  639. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  640. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  641. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  642. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  643. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  644. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  645. seq_printf(seq, "H: Handlers=");
  646. list_for_each_entry(handle, &dev->h_list, d_node)
  647. seq_printf(seq, "%s ", handle->name);
  648. seq_putc(seq, '\n');
  649. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  650. if (test_bit(EV_KEY, dev->evbit))
  651. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  652. if (test_bit(EV_REL, dev->evbit))
  653. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  654. if (test_bit(EV_ABS, dev->evbit))
  655. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  656. if (test_bit(EV_MSC, dev->evbit))
  657. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  658. if (test_bit(EV_LED, dev->evbit))
  659. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  660. if (test_bit(EV_SND, dev->evbit))
  661. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  662. if (test_bit(EV_FF, dev->evbit))
  663. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  664. if (test_bit(EV_SW, dev->evbit))
  665. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  666. seq_putc(seq, '\n');
  667. kfree(path);
  668. return 0;
  669. }
  670. static const struct seq_operations input_devices_seq_ops = {
  671. .start = input_devices_seq_start,
  672. .next = input_devices_seq_next,
  673. .stop = input_devices_seq_stop,
  674. .show = input_devices_seq_show,
  675. };
  676. static int input_proc_devices_open(struct inode *inode, struct file *file)
  677. {
  678. return seq_open(file, &input_devices_seq_ops);
  679. }
  680. static const struct file_operations input_devices_fileops = {
  681. .owner = THIS_MODULE,
  682. .open = input_proc_devices_open,
  683. .poll = input_proc_devices_poll,
  684. .read = seq_read,
  685. .llseek = seq_lseek,
  686. .release = seq_release,
  687. };
  688. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  689. {
  690. if (mutex_lock_interruptible(&input_mutex))
  691. return NULL;
  692. seq->private = (void *)(unsigned long)*pos;
  693. return seq_list_start(&input_handler_list, *pos);
  694. }
  695. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  696. {
  697. seq->private = (void *)(unsigned long)(*pos + 1);
  698. return seq_list_next(v, &input_handler_list, pos);
  699. }
  700. static void input_handlers_seq_stop(struct seq_file *seq, void *v)
  701. {
  702. mutex_unlock(&input_mutex);
  703. }
  704. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  705. {
  706. struct input_handler *handler = container_of(v, struct input_handler, node);
  707. seq_printf(seq, "N: Number=%ld Name=%s",
  708. (unsigned long)seq->private, handler->name);
  709. if (handler->fops)
  710. seq_printf(seq, " Minor=%d", handler->minor);
  711. seq_putc(seq, '\n');
  712. return 0;
  713. }
  714. static const struct seq_operations input_handlers_seq_ops = {
  715. .start = input_handlers_seq_start,
  716. .next = input_handlers_seq_next,
  717. .stop = input_handlers_seq_stop,
  718. .show = input_handlers_seq_show,
  719. };
  720. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  721. {
  722. return seq_open(file, &input_handlers_seq_ops);
  723. }
  724. static const struct file_operations input_handlers_fileops = {
  725. .owner = THIS_MODULE,
  726. .open = input_proc_handlers_open,
  727. .read = seq_read,
  728. .llseek = seq_lseek,
  729. .release = seq_release,
  730. };
  731. static int __init input_proc_init(void)
  732. {
  733. struct proc_dir_entry *entry;
  734. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  735. if (!proc_bus_input_dir)
  736. return -ENOMEM;
  737. proc_bus_input_dir->owner = THIS_MODULE;
  738. entry = proc_create("devices", 0, proc_bus_input_dir,
  739. &input_devices_fileops);
  740. if (!entry)
  741. goto fail1;
  742. entry = proc_create("handlers", 0, proc_bus_input_dir,
  743. &input_handlers_fileops);
  744. if (!entry)
  745. goto fail2;
  746. return 0;
  747. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  748. fail1: remove_proc_entry("bus/input", NULL);
  749. return -ENOMEM;
  750. }
  751. static void input_proc_exit(void)
  752. {
  753. remove_proc_entry("devices", proc_bus_input_dir);
  754. remove_proc_entry("handlers", proc_bus_input_dir);
  755. remove_proc_entry("bus/input", NULL);
  756. }
  757. #else /* !CONFIG_PROC_FS */
  758. static inline void input_wakeup_procfs_readers(void) { }
  759. static inline int input_proc_init(void) { return 0; }
  760. static inline void input_proc_exit(void) { }
  761. #endif
  762. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  763. static ssize_t input_dev_show_##name(struct device *dev, \
  764. struct device_attribute *attr, \
  765. char *buf) \
  766. { \
  767. struct input_dev *input_dev = to_input_dev(dev); \
  768. \
  769. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  770. input_dev->name ? input_dev->name : ""); \
  771. } \
  772. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  773. INPUT_DEV_STRING_ATTR_SHOW(name);
  774. INPUT_DEV_STRING_ATTR_SHOW(phys);
  775. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  776. static int input_print_modalias_bits(char *buf, int size,
  777. char name, unsigned long *bm,
  778. unsigned int min_bit, unsigned int max_bit)
  779. {
  780. int len = 0, i;
  781. len += snprintf(buf, max(size, 0), "%c", name);
  782. for (i = min_bit; i < max_bit; i++)
  783. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  784. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  785. return len;
  786. }
  787. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  788. int add_cr)
  789. {
  790. int len;
  791. len = snprintf(buf, max(size, 0),
  792. "input:b%04Xv%04Xp%04Xe%04X-",
  793. id->id.bustype, id->id.vendor,
  794. id->id.product, id->id.version);
  795. len += input_print_modalias_bits(buf + len, size - len,
  796. 'e', id->evbit, 0, EV_MAX);
  797. len += input_print_modalias_bits(buf + len, size - len,
  798. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  799. len += input_print_modalias_bits(buf + len, size - len,
  800. 'r', id->relbit, 0, REL_MAX);
  801. len += input_print_modalias_bits(buf + len, size - len,
  802. 'a', id->absbit, 0, ABS_MAX);
  803. len += input_print_modalias_bits(buf + len, size - len,
  804. 'm', id->mscbit, 0, MSC_MAX);
  805. len += input_print_modalias_bits(buf + len, size - len,
  806. 'l', id->ledbit, 0, LED_MAX);
  807. len += input_print_modalias_bits(buf + len, size - len,
  808. 's', id->sndbit, 0, SND_MAX);
  809. len += input_print_modalias_bits(buf + len, size - len,
  810. 'f', id->ffbit, 0, FF_MAX);
  811. len += input_print_modalias_bits(buf + len, size - len,
  812. 'w', id->swbit, 0, SW_MAX);
  813. if (add_cr)
  814. len += snprintf(buf + len, max(size - len, 0), "\n");
  815. return len;
  816. }
  817. static ssize_t input_dev_show_modalias(struct device *dev,
  818. struct device_attribute *attr,
  819. char *buf)
  820. {
  821. struct input_dev *id = to_input_dev(dev);
  822. ssize_t len;
  823. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  824. return min_t(int, len, PAGE_SIZE);
  825. }
  826. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  827. static struct attribute *input_dev_attrs[] = {
  828. &dev_attr_name.attr,
  829. &dev_attr_phys.attr,
  830. &dev_attr_uniq.attr,
  831. &dev_attr_modalias.attr,
  832. NULL
  833. };
  834. static struct attribute_group input_dev_attr_group = {
  835. .attrs = input_dev_attrs,
  836. };
  837. #define INPUT_DEV_ID_ATTR(name) \
  838. static ssize_t input_dev_show_id_##name(struct device *dev, \
  839. struct device_attribute *attr, \
  840. char *buf) \
  841. { \
  842. struct input_dev *input_dev = to_input_dev(dev); \
  843. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  844. } \
  845. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  846. INPUT_DEV_ID_ATTR(bustype);
  847. INPUT_DEV_ID_ATTR(vendor);
  848. INPUT_DEV_ID_ATTR(product);
  849. INPUT_DEV_ID_ATTR(version);
  850. static struct attribute *input_dev_id_attrs[] = {
  851. &dev_attr_bustype.attr,
  852. &dev_attr_vendor.attr,
  853. &dev_attr_product.attr,
  854. &dev_attr_version.attr,
  855. NULL
  856. };
  857. static struct attribute_group input_dev_id_attr_group = {
  858. .name = "id",
  859. .attrs = input_dev_id_attrs,
  860. };
  861. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  862. int max, int add_cr)
  863. {
  864. int i;
  865. int len = 0;
  866. for (i = BITS_TO_LONGS(max) - 1; i > 0; i--)
  867. if (bitmap[i])
  868. break;
  869. for (; i >= 0; i--)
  870. len += snprintf(buf + len, max(buf_size - len, 0),
  871. "%lx%s", bitmap[i], i > 0 ? " " : "");
  872. if (add_cr)
  873. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  874. return len;
  875. }
  876. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  877. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  878. struct device_attribute *attr, \
  879. char *buf) \
  880. { \
  881. struct input_dev *input_dev = to_input_dev(dev); \
  882. int len = input_print_bitmap(buf, PAGE_SIZE, \
  883. input_dev->bm##bit, ev##_MAX, 1); \
  884. return min_t(int, len, PAGE_SIZE); \
  885. } \
  886. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  887. INPUT_DEV_CAP_ATTR(EV, ev);
  888. INPUT_DEV_CAP_ATTR(KEY, key);
  889. INPUT_DEV_CAP_ATTR(REL, rel);
  890. INPUT_DEV_CAP_ATTR(ABS, abs);
  891. INPUT_DEV_CAP_ATTR(MSC, msc);
  892. INPUT_DEV_CAP_ATTR(LED, led);
  893. INPUT_DEV_CAP_ATTR(SND, snd);
  894. INPUT_DEV_CAP_ATTR(FF, ff);
  895. INPUT_DEV_CAP_ATTR(SW, sw);
  896. static struct attribute *input_dev_caps_attrs[] = {
  897. &dev_attr_ev.attr,
  898. &dev_attr_key.attr,
  899. &dev_attr_rel.attr,
  900. &dev_attr_abs.attr,
  901. &dev_attr_msc.attr,
  902. &dev_attr_led.attr,
  903. &dev_attr_snd.attr,
  904. &dev_attr_ff.attr,
  905. &dev_attr_sw.attr,
  906. NULL
  907. };
  908. static struct attribute_group input_dev_caps_attr_group = {
  909. .name = "capabilities",
  910. .attrs = input_dev_caps_attrs,
  911. };
  912. static struct attribute_group *input_dev_attr_groups[] = {
  913. &input_dev_attr_group,
  914. &input_dev_id_attr_group,
  915. &input_dev_caps_attr_group,
  916. NULL
  917. };
  918. static void input_dev_release(struct device *device)
  919. {
  920. struct input_dev *dev = to_input_dev(device);
  921. input_ff_destroy(dev);
  922. kfree(dev);
  923. module_put(THIS_MODULE);
  924. }
  925. /*
  926. * Input uevent interface - loading event handlers based on
  927. * device bitfields.
  928. */
  929. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  930. const char *name, unsigned long *bitmap, int max)
  931. {
  932. int len;
  933. if (add_uevent_var(env, "%s=", name))
  934. return -ENOMEM;
  935. len = input_print_bitmap(&env->buf[env->buflen - 1],
  936. sizeof(env->buf) - env->buflen,
  937. bitmap, max, 0);
  938. if (len >= (sizeof(env->buf) - env->buflen))
  939. return -ENOMEM;
  940. env->buflen += len;
  941. return 0;
  942. }
  943. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  944. struct input_dev *dev)
  945. {
  946. int len;
  947. if (add_uevent_var(env, "MODALIAS="))
  948. return -ENOMEM;
  949. len = input_print_modalias(&env->buf[env->buflen - 1],
  950. sizeof(env->buf) - env->buflen,
  951. dev, 0);
  952. if (len >= (sizeof(env->buf) - env->buflen))
  953. return -ENOMEM;
  954. env->buflen += len;
  955. return 0;
  956. }
  957. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  958. do { \
  959. int err = add_uevent_var(env, fmt, val); \
  960. if (err) \
  961. return err; \
  962. } while (0)
  963. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  964. do { \
  965. int err = input_add_uevent_bm_var(env, name, bm, max); \
  966. if (err) \
  967. return err; \
  968. } while (0)
  969. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  970. do { \
  971. int err = input_add_uevent_modalias_var(env, dev); \
  972. if (err) \
  973. return err; \
  974. } while (0)
  975. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  976. {
  977. struct input_dev *dev = to_input_dev(device);
  978. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  979. dev->id.bustype, dev->id.vendor,
  980. dev->id.product, dev->id.version);
  981. if (dev->name)
  982. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  983. if (dev->phys)
  984. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  985. if (dev->uniq)
  986. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  987. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  988. if (test_bit(EV_KEY, dev->evbit))
  989. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  990. if (test_bit(EV_REL, dev->evbit))
  991. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  992. if (test_bit(EV_ABS, dev->evbit))
  993. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  994. if (test_bit(EV_MSC, dev->evbit))
  995. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  996. if (test_bit(EV_LED, dev->evbit))
  997. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  998. if (test_bit(EV_SND, dev->evbit))
  999. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1000. if (test_bit(EV_FF, dev->evbit))
  1001. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1002. if (test_bit(EV_SW, dev->evbit))
  1003. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1004. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1005. return 0;
  1006. }
  1007. static struct device_type input_dev_type = {
  1008. .groups = input_dev_attr_groups,
  1009. .release = input_dev_release,
  1010. .uevent = input_dev_uevent,
  1011. };
  1012. struct class input_class = {
  1013. .name = "input",
  1014. };
  1015. EXPORT_SYMBOL_GPL(input_class);
  1016. /**
  1017. * input_allocate_device - allocate memory for new input device
  1018. *
  1019. * Returns prepared struct input_dev or NULL.
  1020. *
  1021. * NOTE: Use input_free_device() to free devices that have not been
  1022. * registered; input_unregister_device() should be used for already
  1023. * registered devices.
  1024. */
  1025. struct input_dev *input_allocate_device(void)
  1026. {
  1027. struct input_dev *dev;
  1028. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1029. if (dev) {
  1030. dev->dev.type = &input_dev_type;
  1031. dev->dev.class = &input_class;
  1032. device_initialize(&dev->dev);
  1033. mutex_init(&dev->mutex);
  1034. spin_lock_init(&dev->event_lock);
  1035. INIT_LIST_HEAD(&dev->h_list);
  1036. INIT_LIST_HEAD(&dev->node);
  1037. __module_get(THIS_MODULE);
  1038. }
  1039. return dev;
  1040. }
  1041. EXPORT_SYMBOL(input_allocate_device);
  1042. /**
  1043. * input_free_device - free memory occupied by input_dev structure
  1044. * @dev: input device to free
  1045. *
  1046. * This function should only be used if input_register_device()
  1047. * was not called yet or if it failed. Once device was registered
  1048. * use input_unregister_device() and memory will be freed once last
  1049. * reference to the device is dropped.
  1050. *
  1051. * Device should be allocated by input_allocate_device().
  1052. *
  1053. * NOTE: If there are references to the input device then memory
  1054. * will not be freed until last reference is dropped.
  1055. */
  1056. void input_free_device(struct input_dev *dev)
  1057. {
  1058. if (dev)
  1059. input_put_device(dev);
  1060. }
  1061. EXPORT_SYMBOL(input_free_device);
  1062. /**
  1063. * input_set_capability - mark device as capable of a certain event
  1064. * @dev: device that is capable of emitting or accepting event
  1065. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1066. * @code: event code
  1067. *
  1068. * In addition to setting up corresponding bit in appropriate capability
  1069. * bitmap the function also adjusts dev->evbit.
  1070. */
  1071. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1072. {
  1073. switch (type) {
  1074. case EV_KEY:
  1075. __set_bit(code, dev->keybit);
  1076. break;
  1077. case EV_REL:
  1078. __set_bit(code, dev->relbit);
  1079. break;
  1080. case EV_ABS:
  1081. __set_bit(code, dev->absbit);
  1082. break;
  1083. case EV_MSC:
  1084. __set_bit(code, dev->mscbit);
  1085. break;
  1086. case EV_SW:
  1087. __set_bit(code, dev->swbit);
  1088. break;
  1089. case EV_LED:
  1090. __set_bit(code, dev->ledbit);
  1091. break;
  1092. case EV_SND:
  1093. __set_bit(code, dev->sndbit);
  1094. break;
  1095. case EV_FF:
  1096. __set_bit(code, dev->ffbit);
  1097. break;
  1098. case EV_PWR:
  1099. /* do nothing */
  1100. break;
  1101. default:
  1102. printk(KERN_ERR
  1103. "input_set_capability: unknown type %u (code %u)\n",
  1104. type, code);
  1105. dump_stack();
  1106. return;
  1107. }
  1108. __set_bit(type, dev->evbit);
  1109. }
  1110. EXPORT_SYMBOL(input_set_capability);
  1111. /**
  1112. * input_register_device - register device with input core
  1113. * @dev: device to be registered
  1114. *
  1115. * This function registers device with input core. The device must be
  1116. * allocated with input_allocate_device() and all it's capabilities
  1117. * set up before registering.
  1118. * If function fails the device must be freed with input_free_device().
  1119. * Once device has been successfully registered it can be unregistered
  1120. * with input_unregister_device(); input_free_device() should not be
  1121. * called in this case.
  1122. */
  1123. int input_register_device(struct input_dev *dev)
  1124. {
  1125. static atomic_t input_no = ATOMIC_INIT(0);
  1126. struct input_handler *handler;
  1127. const char *path;
  1128. int error;
  1129. __set_bit(EV_SYN, dev->evbit);
  1130. /*
  1131. * If delay and period are pre-set by the driver, then autorepeating
  1132. * is handled by the driver itself and we don't do it in input.c.
  1133. */
  1134. init_timer(&dev->timer);
  1135. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1136. dev->timer.data = (long) dev;
  1137. dev->timer.function = input_repeat_key;
  1138. dev->rep[REP_DELAY] = 250;
  1139. dev->rep[REP_PERIOD] = 33;
  1140. }
  1141. if (!dev->getkeycode)
  1142. dev->getkeycode = input_default_getkeycode;
  1143. if (!dev->setkeycode)
  1144. dev->setkeycode = input_default_setkeycode;
  1145. snprintf(dev->dev.bus_id, sizeof(dev->dev.bus_id),
  1146. "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
  1147. error = device_add(&dev->dev);
  1148. if (error)
  1149. return error;
  1150. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1151. printk(KERN_INFO "input: %s as %s\n",
  1152. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1153. kfree(path);
  1154. error = mutex_lock_interruptible(&input_mutex);
  1155. if (error) {
  1156. device_del(&dev->dev);
  1157. return error;
  1158. }
  1159. list_add_tail(&dev->node, &input_dev_list);
  1160. list_for_each_entry(handler, &input_handler_list, node)
  1161. input_attach_handler(dev, handler);
  1162. input_wakeup_procfs_readers();
  1163. mutex_unlock(&input_mutex);
  1164. return 0;
  1165. }
  1166. EXPORT_SYMBOL(input_register_device);
  1167. /**
  1168. * input_unregister_device - unregister previously registered device
  1169. * @dev: device to be unregistered
  1170. *
  1171. * This function unregisters an input device. Once device is unregistered
  1172. * the caller should not try to access it as it may get freed at any moment.
  1173. */
  1174. void input_unregister_device(struct input_dev *dev)
  1175. {
  1176. struct input_handle *handle, *next;
  1177. input_disconnect_device(dev);
  1178. mutex_lock(&input_mutex);
  1179. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1180. handle->handler->disconnect(handle);
  1181. WARN_ON(!list_empty(&dev->h_list));
  1182. del_timer_sync(&dev->timer);
  1183. list_del_init(&dev->node);
  1184. input_wakeup_procfs_readers();
  1185. mutex_unlock(&input_mutex);
  1186. device_unregister(&dev->dev);
  1187. }
  1188. EXPORT_SYMBOL(input_unregister_device);
  1189. /**
  1190. * input_register_handler - register a new input handler
  1191. * @handler: handler to be registered
  1192. *
  1193. * This function registers a new input handler (interface) for input
  1194. * devices in the system and attaches it to all input devices that
  1195. * are compatible with the handler.
  1196. */
  1197. int input_register_handler(struct input_handler *handler)
  1198. {
  1199. struct input_dev *dev;
  1200. int retval;
  1201. retval = mutex_lock_interruptible(&input_mutex);
  1202. if (retval)
  1203. return retval;
  1204. INIT_LIST_HEAD(&handler->h_list);
  1205. if (handler->fops != NULL) {
  1206. if (input_table[handler->minor >> 5]) {
  1207. retval = -EBUSY;
  1208. goto out;
  1209. }
  1210. input_table[handler->minor >> 5] = handler;
  1211. }
  1212. list_add_tail(&handler->node, &input_handler_list);
  1213. list_for_each_entry(dev, &input_dev_list, node)
  1214. input_attach_handler(dev, handler);
  1215. input_wakeup_procfs_readers();
  1216. out:
  1217. mutex_unlock(&input_mutex);
  1218. return retval;
  1219. }
  1220. EXPORT_SYMBOL(input_register_handler);
  1221. /**
  1222. * input_unregister_handler - unregisters an input handler
  1223. * @handler: handler to be unregistered
  1224. *
  1225. * This function disconnects a handler from its input devices and
  1226. * removes it from lists of known handlers.
  1227. */
  1228. void input_unregister_handler(struct input_handler *handler)
  1229. {
  1230. struct input_handle *handle, *next;
  1231. mutex_lock(&input_mutex);
  1232. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1233. handler->disconnect(handle);
  1234. WARN_ON(!list_empty(&handler->h_list));
  1235. list_del_init(&handler->node);
  1236. if (handler->fops != NULL)
  1237. input_table[handler->minor >> 5] = NULL;
  1238. input_wakeup_procfs_readers();
  1239. mutex_unlock(&input_mutex);
  1240. }
  1241. EXPORT_SYMBOL(input_unregister_handler);
  1242. /**
  1243. * input_register_handle - register a new input handle
  1244. * @handle: handle to register
  1245. *
  1246. * This function puts a new input handle onto device's
  1247. * and handler's lists so that events can flow through
  1248. * it once it is opened using input_open_device().
  1249. *
  1250. * This function is supposed to be called from handler's
  1251. * connect() method.
  1252. */
  1253. int input_register_handle(struct input_handle *handle)
  1254. {
  1255. struct input_handler *handler = handle->handler;
  1256. struct input_dev *dev = handle->dev;
  1257. int error;
  1258. /*
  1259. * We take dev->mutex here to prevent race with
  1260. * input_release_device().
  1261. */
  1262. error = mutex_lock_interruptible(&dev->mutex);
  1263. if (error)
  1264. return error;
  1265. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1266. mutex_unlock(&dev->mutex);
  1267. synchronize_rcu();
  1268. /*
  1269. * Since we are supposed to be called from ->connect()
  1270. * which is mutually exclusive with ->disconnect()
  1271. * we can't be racing with input_unregister_handle()
  1272. * and so separate lock is not needed here.
  1273. */
  1274. list_add_tail(&handle->h_node, &handler->h_list);
  1275. if (handler->start)
  1276. handler->start(handle);
  1277. return 0;
  1278. }
  1279. EXPORT_SYMBOL(input_register_handle);
  1280. /**
  1281. * input_unregister_handle - unregister an input handle
  1282. * @handle: handle to unregister
  1283. *
  1284. * This function removes input handle from device's
  1285. * and handler's lists.
  1286. *
  1287. * This function is supposed to be called from handler's
  1288. * disconnect() method.
  1289. */
  1290. void input_unregister_handle(struct input_handle *handle)
  1291. {
  1292. struct input_dev *dev = handle->dev;
  1293. list_del_init(&handle->h_node);
  1294. /*
  1295. * Take dev->mutex to prevent race with input_release_device().
  1296. */
  1297. mutex_lock(&dev->mutex);
  1298. list_del_rcu(&handle->d_node);
  1299. mutex_unlock(&dev->mutex);
  1300. synchronize_rcu();
  1301. }
  1302. EXPORT_SYMBOL(input_unregister_handle);
  1303. static int input_open_file(struct inode *inode, struct file *file)
  1304. {
  1305. struct input_handler *handler;
  1306. const struct file_operations *old_fops, *new_fops = NULL;
  1307. int err;
  1308. lock_kernel();
  1309. /* No load-on-demand here? */
  1310. handler = input_table[iminor(inode) >> 5];
  1311. if (!handler || !(new_fops = fops_get(handler->fops))) {
  1312. err = -ENODEV;
  1313. goto out;
  1314. }
  1315. /*
  1316. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1317. * not "no device". Oh, well...
  1318. */
  1319. if (!new_fops->open) {
  1320. fops_put(new_fops);
  1321. err = -ENODEV;
  1322. goto out;
  1323. }
  1324. old_fops = file->f_op;
  1325. file->f_op = new_fops;
  1326. err = new_fops->open(inode, file);
  1327. if (err) {
  1328. fops_put(file->f_op);
  1329. file->f_op = fops_get(old_fops);
  1330. }
  1331. fops_put(old_fops);
  1332. out:
  1333. unlock_kernel();
  1334. return err;
  1335. }
  1336. static const struct file_operations input_fops = {
  1337. .owner = THIS_MODULE,
  1338. .open = input_open_file,
  1339. };
  1340. static int __init input_init(void)
  1341. {
  1342. int err;
  1343. err = class_register(&input_class);
  1344. if (err) {
  1345. printk(KERN_ERR "input: unable to register input_dev class\n");
  1346. return err;
  1347. }
  1348. err = input_proc_init();
  1349. if (err)
  1350. goto fail1;
  1351. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1352. if (err) {
  1353. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1354. goto fail2;
  1355. }
  1356. return 0;
  1357. fail2: input_proc_exit();
  1358. fail1: class_unregister(&input_class);
  1359. return err;
  1360. }
  1361. static void __exit input_exit(void)
  1362. {
  1363. input_proc_exit();
  1364. unregister_chrdev(INPUT_MAJOR, "input");
  1365. class_unregister(&input_class);
  1366. }
  1367. subsys_initcall(input_init);
  1368. module_exit(input_exit);