pmac.c 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779
  1. /*
  2. * Support for IDE interfaces on PowerMacs.
  3. *
  4. * These IDE interfaces are memory-mapped and have a DBDMA channel
  5. * for doing DMA.
  6. *
  7. * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
  8. * Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Some code taken from drivers/ide/ide-dma.c:
  16. *
  17. * Copyright (c) 1995-1998 Mark Lord
  18. *
  19. * TODO: - Use pre-calculated (kauai) timing tables all the time and
  20. * get rid of the "rounded" tables used previously, so we have the
  21. * same table format for all controllers and can then just have one
  22. * big table
  23. *
  24. */
  25. #include <linux/types.h>
  26. #include <linux/kernel.h>
  27. #include <linux/init.h>
  28. #include <linux/delay.h>
  29. #include <linux/ide.h>
  30. #include <linux/notifier.h>
  31. #include <linux/reboot.h>
  32. #include <linux/pci.h>
  33. #include <linux/adb.h>
  34. #include <linux/pmu.h>
  35. #include <linux/scatterlist.h>
  36. #include <asm/prom.h>
  37. #include <asm/io.h>
  38. #include <asm/dbdma.h>
  39. #include <asm/ide.h>
  40. #include <asm/pci-bridge.h>
  41. #include <asm/machdep.h>
  42. #include <asm/pmac_feature.h>
  43. #include <asm/sections.h>
  44. #include <asm/irq.h>
  45. #ifndef CONFIG_PPC64
  46. #include <asm/mediabay.h>
  47. #endif
  48. #define DRV_NAME "ide-pmac"
  49. #undef IDE_PMAC_DEBUG
  50. #define DMA_WAIT_TIMEOUT 50
  51. typedef struct pmac_ide_hwif {
  52. unsigned long regbase;
  53. int irq;
  54. int kind;
  55. int aapl_bus_id;
  56. unsigned mediabay : 1;
  57. unsigned broken_dma : 1;
  58. unsigned broken_dma_warn : 1;
  59. struct device_node* node;
  60. struct macio_dev *mdev;
  61. u32 timings[4];
  62. volatile u32 __iomem * *kauai_fcr;
  63. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  64. /* Those fields are duplicating what is in hwif. We currently
  65. * can't use the hwif ones because of some assumptions that are
  66. * beeing done by the generic code about the kind of dma controller
  67. * and format of the dma table. This will have to be fixed though.
  68. */
  69. volatile struct dbdma_regs __iomem * dma_regs;
  70. struct dbdma_cmd* dma_table_cpu;
  71. #endif
  72. } pmac_ide_hwif_t;
  73. enum {
  74. controller_ohare, /* OHare based */
  75. controller_heathrow, /* Heathrow/Paddington */
  76. controller_kl_ata3, /* KeyLargo ATA-3 */
  77. controller_kl_ata4, /* KeyLargo ATA-4 */
  78. controller_un_ata6, /* UniNorth2 ATA-6 */
  79. controller_k2_ata6, /* K2 ATA-6 */
  80. controller_sh_ata6, /* Shasta ATA-6 */
  81. };
  82. static const char* model_name[] = {
  83. "OHare ATA", /* OHare based */
  84. "Heathrow ATA", /* Heathrow/Paddington */
  85. "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
  86. "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
  87. "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
  88. "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
  89. "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
  90. };
  91. /*
  92. * Extra registers, both 32-bit little-endian
  93. */
  94. #define IDE_TIMING_CONFIG 0x200
  95. #define IDE_INTERRUPT 0x300
  96. /* Kauai (U2) ATA has different register setup */
  97. #define IDE_KAUAI_PIO_CONFIG 0x200
  98. #define IDE_KAUAI_ULTRA_CONFIG 0x210
  99. #define IDE_KAUAI_POLL_CONFIG 0x220
  100. /*
  101. * Timing configuration register definitions
  102. */
  103. /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
  104. #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
  105. #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
  106. #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
  107. #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
  108. /* 133Mhz cell, found in shasta.
  109. * See comments about 100 Mhz Uninorth 2...
  110. * Note that PIO_MASK and MDMA_MASK seem to overlap
  111. */
  112. #define TR_133_PIOREG_PIO_MASK 0xff000fff
  113. #define TR_133_PIOREG_MDMA_MASK 0x00fff800
  114. #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
  115. #define TR_133_UDMAREG_UDMA_EN 0x00000001
  116. /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
  117. * this one yet, it appears as a pci device (106b/0033) on uninorth
  118. * internal PCI bus and it's clock is controlled like gem or fw. It
  119. * appears to be an evolution of keylargo ATA4 with a timing register
  120. * extended to 2 32bits registers and a similar DBDMA channel. Other
  121. * registers seem to exist but I can't tell much about them.
  122. *
  123. * So far, I'm using pre-calculated tables for this extracted from
  124. * the values used by the MacOS X driver.
  125. *
  126. * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
  127. * register controls the UDMA timings. At least, it seems bit 0
  128. * of this one enables UDMA vs. MDMA, and bits 4..7 are the
  129. * cycle time in units of 10ns. Bits 8..15 are used by I don't
  130. * know their meaning yet
  131. */
  132. #define TR_100_PIOREG_PIO_MASK 0xff000fff
  133. #define TR_100_PIOREG_MDMA_MASK 0x00fff000
  134. #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
  135. #define TR_100_UDMAREG_UDMA_EN 0x00000001
  136. /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
  137. * 40 connector cable and to 4 on 80 connector one.
  138. * Clock unit is 15ns (66Mhz)
  139. *
  140. * 3 Values can be programmed:
  141. * - Write data setup, which appears to match the cycle time. They
  142. * also call it DIOW setup.
  143. * - Ready to pause time (from spec)
  144. * - Address setup. That one is weird. I don't see where exactly
  145. * it fits in UDMA cycles, I got it's name from an obscure piece
  146. * of commented out code in Darwin. They leave it to 0, we do as
  147. * well, despite a comment that would lead to think it has a
  148. * min value of 45ns.
  149. * Apple also add 60ns to the write data setup (or cycle time ?) on
  150. * reads.
  151. */
  152. #define TR_66_UDMA_MASK 0xfff00000
  153. #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
  154. #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
  155. #define TR_66_UDMA_ADDRSETUP_SHIFT 29
  156. #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
  157. #define TR_66_UDMA_RDY2PAUS_SHIFT 25
  158. #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
  159. #define TR_66_UDMA_WRDATASETUP_SHIFT 21
  160. #define TR_66_MDMA_MASK 0x000ffc00
  161. #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
  162. #define TR_66_MDMA_RECOVERY_SHIFT 15
  163. #define TR_66_MDMA_ACCESS_MASK 0x00007c00
  164. #define TR_66_MDMA_ACCESS_SHIFT 10
  165. #define TR_66_PIO_MASK 0x000003ff
  166. #define TR_66_PIO_RECOVERY_MASK 0x000003e0
  167. #define TR_66_PIO_RECOVERY_SHIFT 5
  168. #define TR_66_PIO_ACCESS_MASK 0x0000001f
  169. #define TR_66_PIO_ACCESS_SHIFT 0
  170. /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
  171. * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
  172. *
  173. * The access time and recovery time can be programmed. Some older
  174. * Darwin code base limit OHare to 150ns cycle time. I decided to do
  175. * the same here fore safety against broken old hardware ;)
  176. * The HalfTick bit, when set, adds half a clock (15ns) to the access
  177. * time and removes one from recovery. It's not supported on KeyLargo
  178. * implementation afaik. The E bit appears to be set for PIO mode 0 and
  179. * is used to reach long timings used in this mode.
  180. */
  181. #define TR_33_MDMA_MASK 0x003ff800
  182. #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
  183. #define TR_33_MDMA_RECOVERY_SHIFT 16
  184. #define TR_33_MDMA_ACCESS_MASK 0x0000f800
  185. #define TR_33_MDMA_ACCESS_SHIFT 11
  186. #define TR_33_MDMA_HALFTICK 0x00200000
  187. #define TR_33_PIO_MASK 0x000007ff
  188. #define TR_33_PIO_E 0x00000400
  189. #define TR_33_PIO_RECOVERY_MASK 0x000003e0
  190. #define TR_33_PIO_RECOVERY_SHIFT 5
  191. #define TR_33_PIO_ACCESS_MASK 0x0000001f
  192. #define TR_33_PIO_ACCESS_SHIFT 0
  193. /*
  194. * Interrupt register definitions
  195. */
  196. #define IDE_INTR_DMA 0x80000000
  197. #define IDE_INTR_DEVICE 0x40000000
  198. /*
  199. * FCR Register on Kauai. Not sure what bit 0x4 is ...
  200. */
  201. #define KAUAI_FCR_UATA_MAGIC 0x00000004
  202. #define KAUAI_FCR_UATA_RESET_N 0x00000002
  203. #define KAUAI_FCR_UATA_ENABLE 0x00000001
  204. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  205. /* Rounded Multiword DMA timings
  206. *
  207. * I gave up finding a generic formula for all controller
  208. * types and instead, built tables based on timing values
  209. * used by Apple in Darwin's implementation.
  210. */
  211. struct mdma_timings_t {
  212. int accessTime;
  213. int recoveryTime;
  214. int cycleTime;
  215. };
  216. struct mdma_timings_t mdma_timings_33[] =
  217. {
  218. { 240, 240, 480 },
  219. { 180, 180, 360 },
  220. { 135, 135, 270 },
  221. { 120, 120, 240 },
  222. { 105, 105, 210 },
  223. { 90, 90, 180 },
  224. { 75, 75, 150 },
  225. { 75, 45, 120 },
  226. { 0, 0, 0 }
  227. };
  228. struct mdma_timings_t mdma_timings_33k[] =
  229. {
  230. { 240, 240, 480 },
  231. { 180, 180, 360 },
  232. { 150, 150, 300 },
  233. { 120, 120, 240 },
  234. { 90, 120, 210 },
  235. { 90, 90, 180 },
  236. { 90, 60, 150 },
  237. { 90, 30, 120 },
  238. { 0, 0, 0 }
  239. };
  240. struct mdma_timings_t mdma_timings_66[] =
  241. {
  242. { 240, 240, 480 },
  243. { 180, 180, 360 },
  244. { 135, 135, 270 },
  245. { 120, 120, 240 },
  246. { 105, 105, 210 },
  247. { 90, 90, 180 },
  248. { 90, 75, 165 },
  249. { 75, 45, 120 },
  250. { 0, 0, 0 }
  251. };
  252. /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
  253. struct {
  254. int addrSetup; /* ??? */
  255. int rdy2pause;
  256. int wrDataSetup;
  257. } kl66_udma_timings[] =
  258. {
  259. { 0, 180, 120 }, /* Mode 0 */
  260. { 0, 150, 90 }, /* 1 */
  261. { 0, 120, 60 }, /* 2 */
  262. { 0, 90, 45 }, /* 3 */
  263. { 0, 90, 30 } /* 4 */
  264. };
  265. /* UniNorth 2 ATA/100 timings */
  266. struct kauai_timing {
  267. int cycle_time;
  268. u32 timing_reg;
  269. };
  270. static struct kauai_timing kauai_pio_timings[] =
  271. {
  272. { 930 , 0x08000fff },
  273. { 600 , 0x08000a92 },
  274. { 383 , 0x0800060f },
  275. { 360 , 0x08000492 },
  276. { 330 , 0x0800048f },
  277. { 300 , 0x080003cf },
  278. { 270 , 0x080003cc },
  279. { 240 , 0x0800038b },
  280. { 239 , 0x0800030c },
  281. { 180 , 0x05000249 },
  282. { 120 , 0x04000148 },
  283. { 0 , 0 },
  284. };
  285. static struct kauai_timing kauai_mdma_timings[] =
  286. {
  287. { 1260 , 0x00fff000 },
  288. { 480 , 0x00618000 },
  289. { 360 , 0x00492000 },
  290. { 270 , 0x0038e000 },
  291. { 240 , 0x0030c000 },
  292. { 210 , 0x002cb000 },
  293. { 180 , 0x00249000 },
  294. { 150 , 0x00209000 },
  295. { 120 , 0x00148000 },
  296. { 0 , 0 },
  297. };
  298. static struct kauai_timing kauai_udma_timings[] =
  299. {
  300. { 120 , 0x000070c0 },
  301. { 90 , 0x00005d80 },
  302. { 60 , 0x00004a60 },
  303. { 45 , 0x00003a50 },
  304. { 30 , 0x00002a30 },
  305. { 20 , 0x00002921 },
  306. { 0 , 0 },
  307. };
  308. static struct kauai_timing shasta_pio_timings[] =
  309. {
  310. { 930 , 0x08000fff },
  311. { 600 , 0x0A000c97 },
  312. { 383 , 0x07000712 },
  313. { 360 , 0x040003cd },
  314. { 330 , 0x040003cd },
  315. { 300 , 0x040003cd },
  316. { 270 , 0x040003cd },
  317. { 240 , 0x040003cd },
  318. { 239 , 0x040003cd },
  319. { 180 , 0x0400028b },
  320. { 120 , 0x0400010a },
  321. { 0 , 0 },
  322. };
  323. static struct kauai_timing shasta_mdma_timings[] =
  324. {
  325. { 1260 , 0x00fff000 },
  326. { 480 , 0x00820800 },
  327. { 360 , 0x00820800 },
  328. { 270 , 0x00820800 },
  329. { 240 , 0x00820800 },
  330. { 210 , 0x00820800 },
  331. { 180 , 0x00820800 },
  332. { 150 , 0x0028b000 },
  333. { 120 , 0x001ca000 },
  334. { 0 , 0 },
  335. };
  336. static struct kauai_timing shasta_udma133_timings[] =
  337. {
  338. { 120 , 0x00035901, },
  339. { 90 , 0x000348b1, },
  340. { 60 , 0x00033881, },
  341. { 45 , 0x00033861, },
  342. { 30 , 0x00033841, },
  343. { 20 , 0x00033031, },
  344. { 15 , 0x00033021, },
  345. { 0 , 0 },
  346. };
  347. static inline u32
  348. kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
  349. {
  350. int i;
  351. for (i=0; table[i].cycle_time; i++)
  352. if (cycle_time > table[i+1].cycle_time)
  353. return table[i].timing_reg;
  354. BUG();
  355. return 0;
  356. }
  357. /* allow up to 256 DBDMA commands per xfer */
  358. #define MAX_DCMDS 256
  359. /*
  360. * Wait 1s for disk to answer on IDE bus after a hard reset
  361. * of the device (via GPIO/FCR).
  362. *
  363. * Some devices seem to "pollute" the bus even after dropping
  364. * the BSY bit (typically some combo drives slave on the UDMA
  365. * bus) after a hard reset. Since we hard reset all drives on
  366. * KeyLargo ATA66, we have to keep that delay around. I may end
  367. * up not hard resetting anymore on these and keep the delay only
  368. * for older interfaces instead (we have to reset when coming
  369. * from MacOS...) --BenH.
  370. */
  371. #define IDE_WAKEUP_DELAY (1*HZ)
  372. static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
  373. static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
  374. static void pmac_ide_selectproc(ide_drive_t *drive);
  375. static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
  376. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  377. #define PMAC_IDE_REG(x) \
  378. ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
  379. /*
  380. * Apply the timings of the proper unit (master/slave) to the shared
  381. * timing register when selecting that unit. This version is for
  382. * ASICs with a single timing register
  383. */
  384. static void
  385. pmac_ide_selectproc(ide_drive_t *drive)
  386. {
  387. ide_hwif_t *hwif = drive->hwif;
  388. pmac_ide_hwif_t *pmif =
  389. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  390. if (pmif == NULL)
  391. return;
  392. if (drive->select.b.unit & 0x01)
  393. writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  394. else
  395. writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  396. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  397. }
  398. /*
  399. * Apply the timings of the proper unit (master/slave) to the shared
  400. * timing register when selecting that unit. This version is for
  401. * ASICs with a dual timing register (Kauai)
  402. */
  403. static void
  404. pmac_ide_kauai_selectproc(ide_drive_t *drive)
  405. {
  406. ide_hwif_t *hwif = drive->hwif;
  407. pmac_ide_hwif_t *pmif =
  408. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  409. if (pmif == NULL)
  410. return;
  411. if (drive->select.b.unit & 0x01) {
  412. writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  413. writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  414. } else {
  415. writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  416. writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  417. }
  418. (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  419. }
  420. /*
  421. * Force an update of controller timing values for a given drive
  422. */
  423. static void
  424. pmac_ide_do_update_timings(ide_drive_t *drive)
  425. {
  426. ide_hwif_t *hwif = drive->hwif;
  427. pmac_ide_hwif_t *pmif =
  428. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  429. if (pmif == NULL)
  430. return;
  431. if (pmif->kind == controller_sh_ata6 ||
  432. pmif->kind == controller_un_ata6 ||
  433. pmif->kind == controller_k2_ata6)
  434. pmac_ide_kauai_selectproc(drive);
  435. else
  436. pmac_ide_selectproc(drive);
  437. }
  438. static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
  439. {
  440. writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
  441. (void)readl((void __iomem *)(hwif->io_ports.data_addr
  442. + IDE_TIMING_CONFIG));
  443. }
  444. static void pmac_set_irq(ide_hwif_t *hwif, int on)
  445. {
  446. u8 ctl = ATA_DEVCTL_OBS;
  447. if (on == 4) { /* hack for SRST */
  448. ctl |= 4;
  449. on &= ~4;
  450. }
  451. ctl |= on ? 0 : 2;
  452. writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
  453. (void)readl((void __iomem *)(hwif->io_ports.data_addr
  454. + IDE_TIMING_CONFIG));
  455. }
  456. /*
  457. * Old tuning functions (called on hdparm -p), sets up drive PIO timings
  458. */
  459. static void
  460. pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
  461. {
  462. ide_hwif_t *hwif = drive->hwif;
  463. pmac_ide_hwif_t *pmif =
  464. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  465. struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
  466. u32 *timings, t;
  467. unsigned accessTicks, recTicks;
  468. unsigned accessTime, recTime;
  469. unsigned int cycle_time;
  470. if (pmif == NULL)
  471. return;
  472. /* which drive is it ? */
  473. timings = &pmif->timings[drive->select.b.unit & 0x01];
  474. t = *timings;
  475. cycle_time = ide_pio_cycle_time(drive, pio);
  476. switch (pmif->kind) {
  477. case controller_sh_ata6: {
  478. /* 133Mhz cell */
  479. u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
  480. t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
  481. break;
  482. }
  483. case controller_un_ata6:
  484. case controller_k2_ata6: {
  485. /* 100Mhz cell */
  486. u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
  487. t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
  488. break;
  489. }
  490. case controller_kl_ata4:
  491. /* 66Mhz cell */
  492. recTime = cycle_time - tim->active - tim->setup;
  493. recTime = max(recTime, 150U);
  494. accessTime = tim->active;
  495. accessTime = max(accessTime, 150U);
  496. accessTicks = SYSCLK_TICKS_66(accessTime);
  497. accessTicks = min(accessTicks, 0x1fU);
  498. recTicks = SYSCLK_TICKS_66(recTime);
  499. recTicks = min(recTicks, 0x1fU);
  500. t = (t & ~TR_66_PIO_MASK) |
  501. (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
  502. (recTicks << TR_66_PIO_RECOVERY_SHIFT);
  503. break;
  504. default: {
  505. /* 33Mhz cell */
  506. int ebit = 0;
  507. recTime = cycle_time - tim->active - tim->setup;
  508. recTime = max(recTime, 150U);
  509. accessTime = tim->active;
  510. accessTime = max(accessTime, 150U);
  511. accessTicks = SYSCLK_TICKS(accessTime);
  512. accessTicks = min(accessTicks, 0x1fU);
  513. accessTicks = max(accessTicks, 4U);
  514. recTicks = SYSCLK_TICKS(recTime);
  515. recTicks = min(recTicks, 0x1fU);
  516. recTicks = max(recTicks, 5U) - 4;
  517. if (recTicks > 9) {
  518. recTicks--; /* guess, but it's only for PIO0, so... */
  519. ebit = 1;
  520. }
  521. t = (t & ~TR_33_PIO_MASK) |
  522. (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
  523. (recTicks << TR_33_PIO_RECOVERY_SHIFT);
  524. if (ebit)
  525. t |= TR_33_PIO_E;
  526. break;
  527. }
  528. }
  529. #ifdef IDE_PMAC_DEBUG
  530. printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
  531. drive->name, pio, *timings);
  532. #endif
  533. *timings = t;
  534. pmac_ide_do_update_timings(drive);
  535. }
  536. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  537. /*
  538. * Calculate KeyLargo ATA/66 UDMA timings
  539. */
  540. static int
  541. set_timings_udma_ata4(u32 *timings, u8 speed)
  542. {
  543. unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
  544. if (speed > XFER_UDMA_4)
  545. return 1;
  546. rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
  547. wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
  548. addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
  549. *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
  550. (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
  551. (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
  552. (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
  553. TR_66_UDMA_EN;
  554. #ifdef IDE_PMAC_DEBUG
  555. printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
  556. speed & 0xf, *timings);
  557. #endif
  558. return 0;
  559. }
  560. /*
  561. * Calculate Kauai ATA/100 UDMA timings
  562. */
  563. static int
  564. set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  565. {
  566. struct ide_timing *t = ide_timing_find_mode(speed);
  567. u32 tr;
  568. if (speed > XFER_UDMA_5 || t == NULL)
  569. return 1;
  570. tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
  571. *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
  572. *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
  573. return 0;
  574. }
  575. /*
  576. * Calculate Shasta ATA/133 UDMA timings
  577. */
  578. static int
  579. set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  580. {
  581. struct ide_timing *t = ide_timing_find_mode(speed);
  582. u32 tr;
  583. if (speed > XFER_UDMA_6 || t == NULL)
  584. return 1;
  585. tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
  586. *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
  587. *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
  588. return 0;
  589. }
  590. /*
  591. * Calculate MDMA timings for all cells
  592. */
  593. static void
  594. set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
  595. u8 speed)
  596. {
  597. int cycleTime, accessTime = 0, recTime = 0;
  598. unsigned accessTicks, recTicks;
  599. struct hd_driveid *id = drive->id;
  600. struct mdma_timings_t* tm = NULL;
  601. int i;
  602. /* Get default cycle time for mode */
  603. switch(speed & 0xf) {
  604. case 0: cycleTime = 480; break;
  605. case 1: cycleTime = 150; break;
  606. case 2: cycleTime = 120; break;
  607. default:
  608. BUG();
  609. break;
  610. }
  611. /* Check if drive provides explicit DMA cycle time */
  612. if ((id->field_valid & 2) && id->eide_dma_time)
  613. cycleTime = max_t(int, id->eide_dma_time, cycleTime);
  614. /* OHare limits according to some old Apple sources */
  615. if ((intf_type == controller_ohare) && (cycleTime < 150))
  616. cycleTime = 150;
  617. /* Get the proper timing array for this controller */
  618. switch(intf_type) {
  619. case controller_sh_ata6:
  620. case controller_un_ata6:
  621. case controller_k2_ata6:
  622. break;
  623. case controller_kl_ata4:
  624. tm = mdma_timings_66;
  625. break;
  626. case controller_kl_ata3:
  627. tm = mdma_timings_33k;
  628. break;
  629. default:
  630. tm = mdma_timings_33;
  631. break;
  632. }
  633. if (tm != NULL) {
  634. /* Lookup matching access & recovery times */
  635. i = -1;
  636. for (;;) {
  637. if (tm[i+1].cycleTime < cycleTime)
  638. break;
  639. i++;
  640. }
  641. cycleTime = tm[i].cycleTime;
  642. accessTime = tm[i].accessTime;
  643. recTime = tm[i].recoveryTime;
  644. #ifdef IDE_PMAC_DEBUG
  645. printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
  646. drive->name, cycleTime, accessTime, recTime);
  647. #endif
  648. }
  649. switch(intf_type) {
  650. case controller_sh_ata6: {
  651. /* 133Mhz cell */
  652. u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
  653. *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
  654. *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
  655. }
  656. case controller_un_ata6:
  657. case controller_k2_ata6: {
  658. /* 100Mhz cell */
  659. u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
  660. *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
  661. *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
  662. }
  663. break;
  664. case controller_kl_ata4:
  665. /* 66Mhz cell */
  666. accessTicks = SYSCLK_TICKS_66(accessTime);
  667. accessTicks = min(accessTicks, 0x1fU);
  668. accessTicks = max(accessTicks, 0x1U);
  669. recTicks = SYSCLK_TICKS_66(recTime);
  670. recTicks = min(recTicks, 0x1fU);
  671. recTicks = max(recTicks, 0x3U);
  672. /* Clear out mdma bits and disable udma */
  673. *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
  674. (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
  675. (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
  676. break;
  677. case controller_kl_ata3:
  678. /* 33Mhz cell on KeyLargo */
  679. accessTicks = SYSCLK_TICKS(accessTime);
  680. accessTicks = max(accessTicks, 1U);
  681. accessTicks = min(accessTicks, 0x1fU);
  682. accessTime = accessTicks * IDE_SYSCLK_NS;
  683. recTicks = SYSCLK_TICKS(recTime);
  684. recTicks = max(recTicks, 1U);
  685. recTicks = min(recTicks, 0x1fU);
  686. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  687. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  688. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  689. break;
  690. default: {
  691. /* 33Mhz cell on others */
  692. int halfTick = 0;
  693. int origAccessTime = accessTime;
  694. int origRecTime = recTime;
  695. accessTicks = SYSCLK_TICKS(accessTime);
  696. accessTicks = max(accessTicks, 1U);
  697. accessTicks = min(accessTicks, 0x1fU);
  698. accessTime = accessTicks * IDE_SYSCLK_NS;
  699. recTicks = SYSCLK_TICKS(recTime);
  700. recTicks = max(recTicks, 2U) - 1;
  701. recTicks = min(recTicks, 0x1fU);
  702. recTime = (recTicks + 1) * IDE_SYSCLK_NS;
  703. if ((accessTicks > 1) &&
  704. ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
  705. ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
  706. halfTick = 1;
  707. accessTicks--;
  708. }
  709. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  710. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  711. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  712. if (halfTick)
  713. *timings |= TR_33_MDMA_HALFTICK;
  714. }
  715. }
  716. #ifdef IDE_PMAC_DEBUG
  717. printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
  718. drive->name, speed & 0xf, *timings);
  719. #endif
  720. }
  721. #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
  722. static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
  723. {
  724. ide_hwif_t *hwif = drive->hwif;
  725. pmac_ide_hwif_t *pmif =
  726. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  727. int unit = (drive->select.b.unit & 0x01);
  728. int ret = 0;
  729. u32 *timings, *timings2, tl[2];
  730. timings = &pmif->timings[unit];
  731. timings2 = &pmif->timings[unit+2];
  732. /* Copy timings to local image */
  733. tl[0] = *timings;
  734. tl[1] = *timings2;
  735. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  736. if (speed >= XFER_UDMA_0) {
  737. if (pmif->kind == controller_kl_ata4)
  738. ret = set_timings_udma_ata4(&tl[0], speed);
  739. else if (pmif->kind == controller_un_ata6
  740. || pmif->kind == controller_k2_ata6)
  741. ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
  742. else if (pmif->kind == controller_sh_ata6)
  743. ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
  744. else
  745. ret = -1;
  746. } else
  747. set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
  748. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  749. if (ret)
  750. return;
  751. /* Apply timings to controller */
  752. *timings = tl[0];
  753. *timings2 = tl[1];
  754. pmac_ide_do_update_timings(drive);
  755. }
  756. /*
  757. * Blast some well known "safe" values to the timing registers at init or
  758. * wakeup from sleep time, before we do real calculation
  759. */
  760. static void
  761. sanitize_timings(pmac_ide_hwif_t *pmif)
  762. {
  763. unsigned int value, value2 = 0;
  764. switch(pmif->kind) {
  765. case controller_sh_ata6:
  766. value = 0x0a820c97;
  767. value2 = 0x00033031;
  768. break;
  769. case controller_un_ata6:
  770. case controller_k2_ata6:
  771. value = 0x08618a92;
  772. value2 = 0x00002921;
  773. break;
  774. case controller_kl_ata4:
  775. value = 0x0008438c;
  776. break;
  777. case controller_kl_ata3:
  778. value = 0x00084526;
  779. break;
  780. case controller_heathrow:
  781. case controller_ohare:
  782. default:
  783. value = 0x00074526;
  784. break;
  785. }
  786. pmif->timings[0] = pmif->timings[1] = value;
  787. pmif->timings[2] = pmif->timings[3] = value2;
  788. }
  789. /* Suspend call back, should be called after the child devices
  790. * have actually been suspended
  791. */
  792. static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
  793. {
  794. /* We clear the timings */
  795. pmif->timings[0] = 0;
  796. pmif->timings[1] = 0;
  797. disable_irq(pmif->irq);
  798. /* The media bay will handle itself just fine */
  799. if (pmif->mediabay)
  800. return 0;
  801. /* Kauai has bus control FCRs directly here */
  802. if (pmif->kauai_fcr) {
  803. u32 fcr = readl(pmif->kauai_fcr);
  804. fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
  805. writel(fcr, pmif->kauai_fcr);
  806. }
  807. /* Disable the bus on older machines and the cell on kauai */
  808. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
  809. 0);
  810. return 0;
  811. }
  812. /* Resume call back, should be called before the child devices
  813. * are resumed
  814. */
  815. static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
  816. {
  817. /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
  818. if (!pmif->mediabay) {
  819. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
  820. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
  821. msleep(10);
  822. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
  823. /* Kauai has it different */
  824. if (pmif->kauai_fcr) {
  825. u32 fcr = readl(pmif->kauai_fcr);
  826. fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
  827. writel(fcr, pmif->kauai_fcr);
  828. }
  829. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  830. }
  831. /* Sanitize drive timings */
  832. sanitize_timings(pmif);
  833. enable_irq(pmif->irq);
  834. return 0;
  835. }
  836. static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
  837. {
  838. pmac_ide_hwif_t *pmif =
  839. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  840. struct device_node *np = pmif->node;
  841. const char *cable = of_get_property(np, "cable-type", NULL);
  842. /* Get cable type from device-tree. */
  843. if (cable && !strncmp(cable, "80-", 3))
  844. return ATA_CBL_PATA80;
  845. /*
  846. * G5's seem to have incorrect cable type in device-tree.
  847. * Let's assume they have a 80 conductor cable, this seem
  848. * to be always the case unless the user mucked around.
  849. */
  850. if (of_device_is_compatible(np, "K2-UATA") ||
  851. of_device_is_compatible(np, "shasta-ata"))
  852. return ATA_CBL_PATA80;
  853. return ATA_CBL_PATA40;
  854. }
  855. static void pmac_ide_init_dev(ide_drive_t *drive)
  856. {
  857. ide_hwif_t *hwif = drive->hwif;
  858. pmac_ide_hwif_t *pmif =
  859. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  860. if (pmif->mediabay) {
  861. #ifdef CONFIG_PMAC_MEDIABAY
  862. if (check_media_bay_by_base(pmif->regbase, MB_CD) == 0) {
  863. drive->noprobe = 0;
  864. return;
  865. }
  866. #endif
  867. drive->noprobe = 1;
  868. }
  869. }
  870. static const struct ide_tp_ops pmac_tp_ops = {
  871. .exec_command = pmac_exec_command,
  872. .read_status = ide_read_status,
  873. .read_altstatus = ide_read_altstatus,
  874. .read_sff_dma_status = ide_read_sff_dma_status,
  875. .set_irq = pmac_set_irq,
  876. .tf_load = ide_tf_load,
  877. .tf_read = ide_tf_read,
  878. .input_data = ide_input_data,
  879. .output_data = ide_output_data,
  880. };
  881. static const struct ide_port_ops pmac_ide_ata6_port_ops = {
  882. .init_dev = pmac_ide_init_dev,
  883. .set_pio_mode = pmac_ide_set_pio_mode,
  884. .set_dma_mode = pmac_ide_set_dma_mode,
  885. .selectproc = pmac_ide_kauai_selectproc,
  886. .cable_detect = pmac_ide_cable_detect,
  887. };
  888. static const struct ide_port_ops pmac_ide_ata4_port_ops = {
  889. .init_dev = pmac_ide_init_dev,
  890. .set_pio_mode = pmac_ide_set_pio_mode,
  891. .set_dma_mode = pmac_ide_set_dma_mode,
  892. .selectproc = pmac_ide_selectproc,
  893. .cable_detect = pmac_ide_cable_detect,
  894. };
  895. static const struct ide_port_ops pmac_ide_port_ops = {
  896. .init_dev = pmac_ide_init_dev,
  897. .set_pio_mode = pmac_ide_set_pio_mode,
  898. .set_dma_mode = pmac_ide_set_dma_mode,
  899. .selectproc = pmac_ide_selectproc,
  900. };
  901. static const struct ide_dma_ops pmac_dma_ops;
  902. static const struct ide_port_info pmac_port_info = {
  903. .name = DRV_NAME,
  904. .init_dma = pmac_ide_init_dma,
  905. .chipset = ide_pmac,
  906. .tp_ops = &pmac_tp_ops,
  907. .port_ops = &pmac_ide_port_ops,
  908. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  909. .dma_ops = &pmac_dma_ops,
  910. #endif
  911. .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
  912. IDE_HFLAG_POST_SET_MODE |
  913. IDE_HFLAG_MMIO |
  914. IDE_HFLAG_UNMASK_IRQS,
  915. .pio_mask = ATA_PIO4,
  916. .mwdma_mask = ATA_MWDMA2,
  917. };
  918. /*
  919. * Setup, register & probe an IDE channel driven by this driver, this is
  920. * called by one of the 2 probe functions (macio or PCI).
  921. */
  922. static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif, hw_regs_t *hw)
  923. {
  924. struct device_node *np = pmif->node;
  925. const int *bidp;
  926. struct ide_host *host;
  927. ide_hwif_t *hwif;
  928. hw_regs_t *hws[] = { hw, NULL, NULL, NULL };
  929. struct ide_port_info d = pmac_port_info;
  930. int rc;
  931. pmif->broken_dma = pmif->broken_dma_warn = 0;
  932. if (of_device_is_compatible(np, "shasta-ata")) {
  933. pmif->kind = controller_sh_ata6;
  934. d.port_ops = &pmac_ide_ata6_port_ops;
  935. d.udma_mask = ATA_UDMA6;
  936. } else if (of_device_is_compatible(np, "kauai-ata")) {
  937. pmif->kind = controller_un_ata6;
  938. d.port_ops = &pmac_ide_ata6_port_ops;
  939. d.udma_mask = ATA_UDMA5;
  940. } else if (of_device_is_compatible(np, "K2-UATA")) {
  941. pmif->kind = controller_k2_ata6;
  942. d.port_ops = &pmac_ide_ata6_port_ops;
  943. d.udma_mask = ATA_UDMA5;
  944. } else if (of_device_is_compatible(np, "keylargo-ata")) {
  945. if (strcmp(np->name, "ata-4") == 0) {
  946. pmif->kind = controller_kl_ata4;
  947. d.port_ops = &pmac_ide_ata4_port_ops;
  948. d.udma_mask = ATA_UDMA4;
  949. } else
  950. pmif->kind = controller_kl_ata3;
  951. } else if (of_device_is_compatible(np, "heathrow-ata")) {
  952. pmif->kind = controller_heathrow;
  953. } else {
  954. pmif->kind = controller_ohare;
  955. pmif->broken_dma = 1;
  956. }
  957. bidp = of_get_property(np, "AAPL,bus-id", NULL);
  958. pmif->aapl_bus_id = bidp ? *bidp : 0;
  959. /* On Kauai-type controllers, we make sure the FCR is correct */
  960. if (pmif->kauai_fcr)
  961. writel(KAUAI_FCR_UATA_MAGIC |
  962. KAUAI_FCR_UATA_RESET_N |
  963. KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
  964. pmif->mediabay = 0;
  965. /* Make sure we have sane timings */
  966. sanitize_timings(pmif);
  967. host = ide_host_alloc(&d, hws);
  968. if (host == NULL)
  969. return -ENOMEM;
  970. hwif = host->ports[0];
  971. #ifndef CONFIG_PPC64
  972. /* XXX FIXME: Media bay stuff need re-organizing */
  973. if (np->parent && np->parent->name
  974. && strcasecmp(np->parent->name, "media-bay") == 0) {
  975. #ifdef CONFIG_PMAC_MEDIABAY
  976. media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq,
  977. hwif);
  978. #endif /* CONFIG_PMAC_MEDIABAY */
  979. pmif->mediabay = 1;
  980. if (!bidp)
  981. pmif->aapl_bus_id = 1;
  982. } else if (pmif->kind == controller_ohare) {
  983. /* The code below is having trouble on some ohare machines
  984. * (timing related ?). Until I can put my hand on one of these
  985. * units, I keep the old way
  986. */
  987. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
  988. } else
  989. #endif
  990. {
  991. /* This is necessary to enable IDE when net-booting */
  992. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
  993. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
  994. msleep(10);
  995. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
  996. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  997. }
  998. printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
  999. "bus ID %d%s, irq %d\n", model_name[pmif->kind],
  1000. pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
  1001. pmif->mediabay ? " (mediabay)" : "", hw->irq);
  1002. rc = ide_host_register(host, &d, hws);
  1003. if (rc) {
  1004. ide_host_free(host);
  1005. return rc;
  1006. }
  1007. return 0;
  1008. }
  1009. static void __devinit pmac_ide_init_ports(hw_regs_t *hw, unsigned long base)
  1010. {
  1011. int i;
  1012. for (i = 0; i < 8; ++i)
  1013. hw->io_ports_array[i] = base + i * 0x10;
  1014. hw->io_ports.ctl_addr = base + 0x160;
  1015. }
  1016. /*
  1017. * Attach to a macio probed interface
  1018. */
  1019. static int __devinit
  1020. pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
  1021. {
  1022. void __iomem *base;
  1023. unsigned long regbase;
  1024. pmac_ide_hwif_t *pmif;
  1025. int irq, rc;
  1026. hw_regs_t hw;
  1027. pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
  1028. if (pmif == NULL)
  1029. return -ENOMEM;
  1030. if (macio_resource_count(mdev) == 0) {
  1031. printk(KERN_WARNING "ide-pmac: no address for %s\n",
  1032. mdev->ofdev.node->full_name);
  1033. rc = -ENXIO;
  1034. goto out_free_pmif;
  1035. }
  1036. /* Request memory resource for IO ports */
  1037. if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
  1038. printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
  1039. "%s!\n", mdev->ofdev.node->full_name);
  1040. rc = -EBUSY;
  1041. goto out_free_pmif;
  1042. }
  1043. /* XXX This is bogus. Should be fixed in the registry by checking
  1044. * the kind of host interrupt controller, a bit like gatwick
  1045. * fixes in irq.c. That works well enough for the single case
  1046. * where that happens though...
  1047. */
  1048. if (macio_irq_count(mdev) == 0) {
  1049. printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
  1050. "13\n", mdev->ofdev.node->full_name);
  1051. irq = irq_create_mapping(NULL, 13);
  1052. } else
  1053. irq = macio_irq(mdev, 0);
  1054. base = ioremap(macio_resource_start(mdev, 0), 0x400);
  1055. regbase = (unsigned long) base;
  1056. pmif->mdev = mdev;
  1057. pmif->node = mdev->ofdev.node;
  1058. pmif->regbase = regbase;
  1059. pmif->irq = irq;
  1060. pmif->kauai_fcr = NULL;
  1061. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1062. if (macio_resource_count(mdev) >= 2) {
  1063. if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
  1064. printk(KERN_WARNING "ide-pmac: can't request DMA "
  1065. "resource for %s!\n",
  1066. mdev->ofdev.node->full_name);
  1067. else
  1068. pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
  1069. } else
  1070. pmif->dma_regs = NULL;
  1071. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1072. dev_set_drvdata(&mdev->ofdev.dev, pmif);
  1073. memset(&hw, 0, sizeof(hw));
  1074. pmac_ide_init_ports(&hw, pmif->regbase);
  1075. hw.irq = irq;
  1076. hw.dev = &mdev->bus->pdev->dev;
  1077. hw.parent = &mdev->ofdev.dev;
  1078. rc = pmac_ide_setup_device(pmif, &hw);
  1079. if (rc != 0) {
  1080. /* The inteface is released to the common IDE layer */
  1081. dev_set_drvdata(&mdev->ofdev.dev, NULL);
  1082. iounmap(base);
  1083. if (pmif->dma_regs) {
  1084. iounmap(pmif->dma_regs);
  1085. macio_release_resource(mdev, 1);
  1086. }
  1087. macio_release_resource(mdev, 0);
  1088. kfree(pmif);
  1089. }
  1090. return rc;
  1091. out_free_pmif:
  1092. kfree(pmif);
  1093. return rc;
  1094. }
  1095. static int
  1096. pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
  1097. {
  1098. pmac_ide_hwif_t *pmif =
  1099. (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1100. int rc = 0;
  1101. if (mesg.event != mdev->ofdev.dev.power.power_state.event
  1102. && (mesg.event & PM_EVENT_SLEEP)) {
  1103. rc = pmac_ide_do_suspend(pmif);
  1104. if (rc == 0)
  1105. mdev->ofdev.dev.power.power_state = mesg;
  1106. }
  1107. return rc;
  1108. }
  1109. static int
  1110. pmac_ide_macio_resume(struct macio_dev *mdev)
  1111. {
  1112. pmac_ide_hwif_t *pmif =
  1113. (pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1114. int rc = 0;
  1115. if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
  1116. rc = pmac_ide_do_resume(pmif);
  1117. if (rc == 0)
  1118. mdev->ofdev.dev.power.power_state = PMSG_ON;
  1119. }
  1120. return rc;
  1121. }
  1122. /*
  1123. * Attach to a PCI probed interface
  1124. */
  1125. static int __devinit
  1126. pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
  1127. {
  1128. struct device_node *np;
  1129. pmac_ide_hwif_t *pmif;
  1130. void __iomem *base;
  1131. unsigned long rbase, rlen;
  1132. int rc;
  1133. hw_regs_t hw;
  1134. np = pci_device_to_OF_node(pdev);
  1135. if (np == NULL) {
  1136. printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
  1137. return -ENODEV;
  1138. }
  1139. pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
  1140. if (pmif == NULL)
  1141. return -ENOMEM;
  1142. if (pci_enable_device(pdev)) {
  1143. printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
  1144. "%s\n", np->full_name);
  1145. rc = -ENXIO;
  1146. goto out_free_pmif;
  1147. }
  1148. pci_set_master(pdev);
  1149. if (pci_request_regions(pdev, "Kauai ATA")) {
  1150. printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
  1151. "%s\n", np->full_name);
  1152. rc = -ENXIO;
  1153. goto out_free_pmif;
  1154. }
  1155. pmif->mdev = NULL;
  1156. pmif->node = np;
  1157. rbase = pci_resource_start(pdev, 0);
  1158. rlen = pci_resource_len(pdev, 0);
  1159. base = ioremap(rbase, rlen);
  1160. pmif->regbase = (unsigned long) base + 0x2000;
  1161. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1162. pmif->dma_regs = base + 0x1000;
  1163. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1164. pmif->kauai_fcr = base;
  1165. pmif->irq = pdev->irq;
  1166. pci_set_drvdata(pdev, pmif);
  1167. memset(&hw, 0, sizeof(hw));
  1168. pmac_ide_init_ports(&hw, pmif->regbase);
  1169. hw.irq = pdev->irq;
  1170. hw.dev = &pdev->dev;
  1171. rc = pmac_ide_setup_device(pmif, &hw);
  1172. if (rc != 0) {
  1173. /* The inteface is released to the common IDE layer */
  1174. pci_set_drvdata(pdev, NULL);
  1175. iounmap(base);
  1176. pci_release_regions(pdev);
  1177. kfree(pmif);
  1178. }
  1179. return rc;
  1180. out_free_pmif:
  1181. kfree(pmif);
  1182. return rc;
  1183. }
  1184. static int
  1185. pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
  1186. {
  1187. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
  1188. int rc = 0;
  1189. if (mesg.event != pdev->dev.power.power_state.event
  1190. && (mesg.event & PM_EVENT_SLEEP)) {
  1191. rc = pmac_ide_do_suspend(pmif);
  1192. if (rc == 0)
  1193. pdev->dev.power.power_state = mesg;
  1194. }
  1195. return rc;
  1196. }
  1197. static int
  1198. pmac_ide_pci_resume(struct pci_dev *pdev)
  1199. {
  1200. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)pci_get_drvdata(pdev);
  1201. int rc = 0;
  1202. if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
  1203. rc = pmac_ide_do_resume(pmif);
  1204. if (rc == 0)
  1205. pdev->dev.power.power_state = PMSG_ON;
  1206. }
  1207. return rc;
  1208. }
  1209. static struct of_device_id pmac_ide_macio_match[] =
  1210. {
  1211. {
  1212. .name = "IDE",
  1213. },
  1214. {
  1215. .name = "ATA",
  1216. },
  1217. {
  1218. .type = "ide",
  1219. },
  1220. {
  1221. .type = "ata",
  1222. },
  1223. {},
  1224. };
  1225. static struct macio_driver pmac_ide_macio_driver =
  1226. {
  1227. .name = "ide-pmac",
  1228. .match_table = pmac_ide_macio_match,
  1229. .probe = pmac_ide_macio_attach,
  1230. .suspend = pmac_ide_macio_suspend,
  1231. .resume = pmac_ide_macio_resume,
  1232. };
  1233. static const struct pci_device_id pmac_ide_pci_match[] = {
  1234. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
  1235. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
  1236. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
  1237. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
  1238. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
  1239. {},
  1240. };
  1241. static struct pci_driver pmac_ide_pci_driver = {
  1242. .name = "ide-pmac",
  1243. .id_table = pmac_ide_pci_match,
  1244. .probe = pmac_ide_pci_attach,
  1245. .suspend = pmac_ide_pci_suspend,
  1246. .resume = pmac_ide_pci_resume,
  1247. };
  1248. MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
  1249. int __init pmac_ide_probe(void)
  1250. {
  1251. int error;
  1252. if (!machine_is(powermac))
  1253. return -ENODEV;
  1254. #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
  1255. error = pci_register_driver(&pmac_ide_pci_driver);
  1256. if (error)
  1257. goto out;
  1258. error = macio_register_driver(&pmac_ide_macio_driver);
  1259. if (error) {
  1260. pci_unregister_driver(&pmac_ide_pci_driver);
  1261. goto out;
  1262. }
  1263. #else
  1264. error = macio_register_driver(&pmac_ide_macio_driver);
  1265. if (error)
  1266. goto out;
  1267. error = pci_register_driver(&pmac_ide_pci_driver);
  1268. if (error) {
  1269. macio_unregister_driver(&pmac_ide_macio_driver);
  1270. goto out;
  1271. }
  1272. #endif
  1273. out:
  1274. return error;
  1275. }
  1276. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1277. /*
  1278. * pmac_ide_build_dmatable builds the DBDMA command list
  1279. * for a transfer and sets the DBDMA channel to point to it.
  1280. */
  1281. static int
  1282. pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
  1283. {
  1284. ide_hwif_t *hwif = drive->hwif;
  1285. pmac_ide_hwif_t *pmif =
  1286. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1287. struct dbdma_cmd *table;
  1288. int i, count = 0;
  1289. volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
  1290. struct scatterlist *sg;
  1291. int wr = (rq_data_dir(rq) == WRITE);
  1292. /* DMA table is already aligned */
  1293. table = (struct dbdma_cmd *) pmif->dma_table_cpu;
  1294. /* Make sure DMA controller is stopped (necessary ?) */
  1295. writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
  1296. while (readl(&dma->status) & RUN)
  1297. udelay(1);
  1298. hwif->sg_nents = i = ide_build_sglist(drive, rq);
  1299. if (!i)
  1300. return 0;
  1301. /* Build DBDMA commands list */
  1302. sg = hwif->sg_table;
  1303. while (i && sg_dma_len(sg)) {
  1304. u32 cur_addr;
  1305. u32 cur_len;
  1306. cur_addr = sg_dma_address(sg);
  1307. cur_len = sg_dma_len(sg);
  1308. if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
  1309. if (pmif->broken_dma_warn == 0) {
  1310. printk(KERN_WARNING "%s: DMA on non aligned address, "
  1311. "switching to PIO on Ohare chipset\n", drive->name);
  1312. pmif->broken_dma_warn = 1;
  1313. }
  1314. goto use_pio_instead;
  1315. }
  1316. while (cur_len) {
  1317. unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
  1318. if (count++ >= MAX_DCMDS) {
  1319. printk(KERN_WARNING "%s: DMA table too small\n",
  1320. drive->name);
  1321. goto use_pio_instead;
  1322. }
  1323. st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
  1324. st_le16(&table->req_count, tc);
  1325. st_le32(&table->phy_addr, cur_addr);
  1326. table->cmd_dep = 0;
  1327. table->xfer_status = 0;
  1328. table->res_count = 0;
  1329. cur_addr += tc;
  1330. cur_len -= tc;
  1331. ++table;
  1332. }
  1333. sg = sg_next(sg);
  1334. i--;
  1335. }
  1336. /* convert the last command to an input/output last command */
  1337. if (count) {
  1338. st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
  1339. /* add the stop command to the end of the list */
  1340. memset(table, 0, sizeof(struct dbdma_cmd));
  1341. st_le16(&table->command, DBDMA_STOP);
  1342. mb();
  1343. writel(hwif->dmatable_dma, &dma->cmdptr);
  1344. return 1;
  1345. }
  1346. printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
  1347. use_pio_instead:
  1348. ide_destroy_dmatable(drive);
  1349. return 0; /* revert to PIO for this request */
  1350. }
  1351. /* Teardown mappings after DMA has completed. */
  1352. static void
  1353. pmac_ide_destroy_dmatable (ide_drive_t *drive)
  1354. {
  1355. ide_hwif_t *hwif = drive->hwif;
  1356. if (hwif->sg_nents) {
  1357. ide_destroy_dmatable(drive);
  1358. hwif->sg_nents = 0;
  1359. }
  1360. }
  1361. /*
  1362. * Prepare a DMA transfer. We build the DMA table, adjust the timings for
  1363. * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
  1364. */
  1365. static int
  1366. pmac_ide_dma_setup(ide_drive_t *drive)
  1367. {
  1368. ide_hwif_t *hwif = HWIF(drive);
  1369. pmac_ide_hwif_t *pmif =
  1370. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1371. struct request *rq = HWGROUP(drive)->rq;
  1372. u8 unit = (drive->select.b.unit & 0x01);
  1373. u8 ata4;
  1374. if (pmif == NULL)
  1375. return 1;
  1376. ata4 = (pmif->kind == controller_kl_ata4);
  1377. if (!pmac_ide_build_dmatable(drive, rq)) {
  1378. ide_map_sg(drive, rq);
  1379. return 1;
  1380. }
  1381. /* Apple adds 60ns to wrDataSetup on reads */
  1382. if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
  1383. writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
  1384. PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1385. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1386. }
  1387. drive->waiting_for_dma = 1;
  1388. return 0;
  1389. }
  1390. static void
  1391. pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  1392. {
  1393. /* issue cmd to drive */
  1394. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
  1395. }
  1396. /*
  1397. * Kick the DMA controller into life after the DMA command has been issued
  1398. * to the drive.
  1399. */
  1400. static void
  1401. pmac_ide_dma_start(ide_drive_t *drive)
  1402. {
  1403. ide_hwif_t *hwif = drive->hwif;
  1404. pmac_ide_hwif_t *pmif =
  1405. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1406. volatile struct dbdma_regs __iomem *dma;
  1407. dma = pmif->dma_regs;
  1408. writel((RUN << 16) | RUN, &dma->control);
  1409. /* Make sure it gets to the controller right now */
  1410. (void)readl(&dma->control);
  1411. }
  1412. /*
  1413. * After a DMA transfer, make sure the controller is stopped
  1414. */
  1415. static int
  1416. pmac_ide_dma_end (ide_drive_t *drive)
  1417. {
  1418. ide_hwif_t *hwif = drive->hwif;
  1419. pmac_ide_hwif_t *pmif =
  1420. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1421. volatile struct dbdma_regs __iomem *dma;
  1422. u32 dstat;
  1423. if (pmif == NULL)
  1424. return 0;
  1425. dma = pmif->dma_regs;
  1426. drive->waiting_for_dma = 0;
  1427. dstat = readl(&dma->status);
  1428. writel(((RUN|WAKE|DEAD) << 16), &dma->control);
  1429. pmac_ide_destroy_dmatable(drive);
  1430. /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
  1431. * in theory, but with ATAPI decices doing buffer underruns, that would
  1432. * cause us to disable DMA, which isn't what we want
  1433. */
  1434. return (dstat & (RUN|DEAD)) != RUN;
  1435. }
  1436. /*
  1437. * Check out that the interrupt we got was for us. We can't always know this
  1438. * for sure with those Apple interfaces (well, we could on the recent ones but
  1439. * that's not implemented yet), on the other hand, we don't have shared interrupts
  1440. * so it's not really a problem
  1441. */
  1442. static int
  1443. pmac_ide_dma_test_irq (ide_drive_t *drive)
  1444. {
  1445. ide_hwif_t *hwif = drive->hwif;
  1446. pmac_ide_hwif_t *pmif =
  1447. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1448. volatile struct dbdma_regs __iomem *dma;
  1449. unsigned long status, timeout;
  1450. if (pmif == NULL)
  1451. return 0;
  1452. dma = pmif->dma_regs;
  1453. /* We have to things to deal with here:
  1454. *
  1455. * - The dbdma won't stop if the command was started
  1456. * but completed with an error without transferring all
  1457. * datas. This happens when bad blocks are met during
  1458. * a multi-block transfer.
  1459. *
  1460. * - The dbdma fifo hasn't yet finished flushing to
  1461. * to system memory when the disk interrupt occurs.
  1462. *
  1463. */
  1464. /* If ACTIVE is cleared, the STOP command have passed and
  1465. * transfer is complete.
  1466. */
  1467. status = readl(&dma->status);
  1468. if (!(status & ACTIVE))
  1469. return 1;
  1470. if (!drive->waiting_for_dma)
  1471. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1472. called while not waiting\n", HWIF(drive)->index);
  1473. /* If dbdma didn't execute the STOP command yet, the
  1474. * active bit is still set. We consider that we aren't
  1475. * sharing interrupts (which is hopefully the case with
  1476. * those controllers) and so we just try to flush the
  1477. * channel for pending data in the fifo
  1478. */
  1479. udelay(1);
  1480. writel((FLUSH << 16) | FLUSH, &dma->control);
  1481. timeout = 0;
  1482. for (;;) {
  1483. udelay(1);
  1484. status = readl(&dma->status);
  1485. if ((status & FLUSH) == 0)
  1486. break;
  1487. if (++timeout > 100) {
  1488. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1489. timeout flushing channel\n", HWIF(drive)->index);
  1490. break;
  1491. }
  1492. }
  1493. return 1;
  1494. }
  1495. static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
  1496. {
  1497. }
  1498. static void
  1499. pmac_ide_dma_lost_irq (ide_drive_t *drive)
  1500. {
  1501. ide_hwif_t *hwif = drive->hwif;
  1502. pmac_ide_hwif_t *pmif =
  1503. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1504. volatile struct dbdma_regs __iomem *dma;
  1505. unsigned long status;
  1506. if (pmif == NULL)
  1507. return;
  1508. dma = pmif->dma_regs;
  1509. status = readl(&dma->status);
  1510. printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
  1511. }
  1512. static const struct ide_dma_ops pmac_dma_ops = {
  1513. .dma_host_set = pmac_ide_dma_host_set,
  1514. .dma_setup = pmac_ide_dma_setup,
  1515. .dma_exec_cmd = pmac_ide_dma_exec_cmd,
  1516. .dma_start = pmac_ide_dma_start,
  1517. .dma_end = pmac_ide_dma_end,
  1518. .dma_test_irq = pmac_ide_dma_test_irq,
  1519. .dma_timeout = ide_dma_timeout,
  1520. .dma_lost_irq = pmac_ide_dma_lost_irq,
  1521. };
  1522. /*
  1523. * Allocate the data structures needed for using DMA with an interface
  1524. * and fill the proper list of functions pointers
  1525. */
  1526. static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
  1527. const struct ide_port_info *d)
  1528. {
  1529. pmac_ide_hwif_t *pmif =
  1530. (pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
  1531. struct pci_dev *dev = to_pci_dev(hwif->dev);
  1532. /* We won't need pci_dev if we switch to generic consistent
  1533. * DMA routines ...
  1534. */
  1535. if (dev == NULL || pmif->dma_regs == 0)
  1536. return -ENODEV;
  1537. /*
  1538. * Allocate space for the DBDMA commands.
  1539. * The +2 is +1 for the stop command and +1 to allow for
  1540. * aligning the start address to a multiple of 16 bytes.
  1541. */
  1542. pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
  1543. dev,
  1544. (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
  1545. &hwif->dmatable_dma);
  1546. if (pmif->dma_table_cpu == NULL) {
  1547. printk(KERN_ERR "%s: unable to allocate DMA command list\n",
  1548. hwif->name);
  1549. return -ENOMEM;
  1550. }
  1551. hwif->sg_max_nents = MAX_DCMDS;
  1552. return 0;
  1553. }
  1554. #else
  1555. static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
  1556. const struct ide_port_info *d)
  1557. {
  1558. return -EOPNOTSUPP;
  1559. }
  1560. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1561. module_init(pmac_ide_probe);
  1562. MODULE_LICENSE("GPL");