ide-timings.c 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. /*
  2. * Copyright (c) 1999-2001 Vojtech Pavlik
  3. * Copyright (c) 2007-2008 Bartlomiej Zolnierkiewicz
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Should you need to contact me, the author, you can do so either by
  20. * e-mail - mail your message to <vojtech@ucw.cz>, or by paper mail:
  21. * Vojtech Pavlik, Simunkova 1594, Prague 8, 182 00 Czech Republic
  22. */
  23. #include <linux/kernel.h>
  24. #include <linux/hdreg.h>
  25. #include <linux/ide.h>
  26. #include <linux/module.h>
  27. /*
  28. * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
  29. * These were taken from ATA/ATAPI-6 standard, rev 0a, except
  30. * for PIO 5, which is a nonstandard extension and UDMA6, which
  31. * is currently supported only by Maxtor drives.
  32. */
  33. static struct ide_timing ide_timing[] = {
  34. { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
  35. { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
  36. { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
  37. { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
  38. { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
  39. { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
  40. { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
  41. { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
  42. { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
  43. { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
  44. { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
  45. { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
  46. { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
  47. { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 },
  48. { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
  49. { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
  50. { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
  51. { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
  52. { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
  53. { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 },
  54. { 0xff }
  55. };
  56. struct ide_timing *ide_timing_find_mode(u8 speed)
  57. {
  58. struct ide_timing *t;
  59. for (t = ide_timing; t->mode != speed; t++)
  60. if (t->mode == 0xff)
  61. return NULL;
  62. return t;
  63. }
  64. EXPORT_SYMBOL_GPL(ide_timing_find_mode);
  65. u16 ide_pio_cycle_time(ide_drive_t *drive, u8 pio)
  66. {
  67. struct hd_driveid *id = drive->id;
  68. struct ide_timing *t = ide_timing_find_mode(XFER_PIO_0 + pio);
  69. u16 cycle = 0;
  70. if (id->field_valid & 2) {
  71. if (id->capability & 8)
  72. cycle = id->eide_pio_iordy;
  73. else
  74. cycle = id->eide_pio;
  75. /* conservative "downgrade" for all pre-ATA2 drives */
  76. if (pio < 3 && cycle < t->cycle)
  77. cycle = 0; /* use standard timing */
  78. }
  79. return cycle ? cycle : t->cycle;
  80. }
  81. EXPORT_SYMBOL_GPL(ide_pio_cycle_time);
  82. #define ENOUGH(v, unit) (((v) - 1) / (unit) + 1)
  83. #define EZ(v, unit) ((v) ? ENOUGH(v, unit) : 0)
  84. static void ide_timing_quantize(struct ide_timing *t, struct ide_timing *q,
  85. int T, int UT)
  86. {
  87. q->setup = EZ(t->setup * 1000, T);
  88. q->act8b = EZ(t->act8b * 1000, T);
  89. q->rec8b = EZ(t->rec8b * 1000, T);
  90. q->cyc8b = EZ(t->cyc8b * 1000, T);
  91. q->active = EZ(t->active * 1000, T);
  92. q->recover = EZ(t->recover * 1000, T);
  93. q->cycle = EZ(t->cycle * 1000, T);
  94. q->udma = EZ(t->udma * 1000, UT);
  95. }
  96. void ide_timing_merge(struct ide_timing *a, struct ide_timing *b,
  97. struct ide_timing *m, unsigned int what)
  98. {
  99. if (what & IDE_TIMING_SETUP)
  100. m->setup = max(a->setup, b->setup);
  101. if (what & IDE_TIMING_ACT8B)
  102. m->act8b = max(a->act8b, b->act8b);
  103. if (what & IDE_TIMING_REC8B)
  104. m->rec8b = max(a->rec8b, b->rec8b);
  105. if (what & IDE_TIMING_CYC8B)
  106. m->cyc8b = max(a->cyc8b, b->cyc8b);
  107. if (what & IDE_TIMING_ACTIVE)
  108. m->active = max(a->active, b->active);
  109. if (what & IDE_TIMING_RECOVER)
  110. m->recover = max(a->recover, b->recover);
  111. if (what & IDE_TIMING_CYCLE)
  112. m->cycle = max(a->cycle, b->cycle);
  113. if (what & IDE_TIMING_UDMA)
  114. m->udma = max(a->udma, b->udma);
  115. }
  116. EXPORT_SYMBOL_GPL(ide_timing_merge);
  117. int ide_timing_compute(ide_drive_t *drive, u8 speed,
  118. struct ide_timing *t, int T, int UT)
  119. {
  120. struct hd_driveid *id = drive->id;
  121. struct ide_timing *s, p;
  122. /*
  123. * Find the mode.
  124. */
  125. s = ide_timing_find_mode(speed);
  126. if (s == NULL)
  127. return -EINVAL;
  128. /*
  129. * Copy the timing from the table.
  130. */
  131. *t = *s;
  132. /*
  133. * If the drive is an EIDE drive, it can tell us it needs extended
  134. * PIO/MWDMA cycle timing.
  135. */
  136. if (id && id->field_valid & 2) { /* EIDE drive */
  137. memset(&p, 0, sizeof(p));
  138. if (speed <= XFER_PIO_2)
  139. p.cycle = p.cyc8b = id->eide_pio;
  140. else if (speed <= XFER_PIO_5)
  141. p.cycle = p.cyc8b = id->eide_pio_iordy;
  142. else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
  143. p.cycle = id->eide_dma_min;
  144. ide_timing_merge(&p, t, t, IDE_TIMING_CYCLE | IDE_TIMING_CYC8B);
  145. }
  146. /*
  147. * Convert the timing to bus clock counts.
  148. */
  149. ide_timing_quantize(t, t, T, UT);
  150. /*
  151. * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
  152. * S.M.A.R.T and some other commands. We have to ensure that the
  153. * DMA cycle timing is slower/equal than the fastest PIO timing.
  154. */
  155. if (speed >= XFER_SW_DMA_0) {
  156. u8 pio = ide_get_best_pio_mode(drive, 255, 5);
  157. ide_timing_compute(drive, XFER_PIO_0 + pio, &p, T, UT);
  158. ide_timing_merge(&p, t, t, IDE_TIMING_ALL);
  159. }
  160. /*
  161. * Lengthen active & recovery time so that cycle time is correct.
  162. */
  163. if (t->act8b + t->rec8b < t->cyc8b) {
  164. t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
  165. t->rec8b = t->cyc8b - t->act8b;
  166. }
  167. if (t->active + t->recover < t->cycle) {
  168. t->active += (t->cycle - (t->active + t->recover)) / 2;
  169. t->recover = t->cycle - t->active;
  170. }
  171. return 0;
  172. }
  173. EXPORT_SYMBOL_GPL(ide_timing_compute);