ide-dma.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888
  1. /*
  2. * IDE DMA support (including IDE PCI BM-DMA).
  3. *
  4. * Copyright (C) 1995-1998 Mark Lord
  5. * Copyright (C) 1999-2000 Andre Hedrick <andre@linux-ide.org>
  6. * Copyright (C) 2004, 2007 Bartlomiej Zolnierkiewicz
  7. *
  8. * May be copied or modified under the terms of the GNU General Public License
  9. *
  10. * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies).
  11. */
  12. /*
  13. * Special Thanks to Mark for his Six years of work.
  14. */
  15. /*
  16. * Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for
  17. * fixing the problem with the BIOS on some Acer motherboards.
  18. *
  19. * Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing
  20. * "TX" chipset compatibility and for providing patches for the "TX" chipset.
  21. *
  22. * Thanks to Christian Brunner <chb@muc.de> for taking a good first crack
  23. * at generic DMA -- his patches were referred to when preparing this code.
  24. *
  25. * Most importantly, thanks to Robert Bringman <rob@mars.trion.com>
  26. * for supplying a Promise UDMA board & WD UDMA drive for this work!
  27. */
  28. #include <linux/module.h>
  29. #include <linux/types.h>
  30. #include <linux/kernel.h>
  31. #include <linux/timer.h>
  32. #include <linux/mm.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/pci.h>
  35. #include <linux/init.h>
  36. #include <linux/ide.h>
  37. #include <linux/delay.h>
  38. #include <linux/scatterlist.h>
  39. #include <linux/dma-mapping.h>
  40. #include <asm/io.h>
  41. #include <asm/irq.h>
  42. static const struct drive_list_entry drive_whitelist [] = {
  43. { "Micropolis 2112A" , NULL },
  44. { "CONNER CTMA 4000" , NULL },
  45. { "CONNER CTT8000-A" , NULL },
  46. { "ST34342A" , NULL },
  47. { NULL , NULL }
  48. };
  49. static const struct drive_list_entry drive_blacklist [] = {
  50. { "WDC AC11000H" , NULL },
  51. { "WDC AC22100H" , NULL },
  52. { "WDC AC32500H" , NULL },
  53. { "WDC AC33100H" , NULL },
  54. { "WDC AC31600H" , NULL },
  55. { "WDC AC32100H" , "24.09P07" },
  56. { "WDC AC23200L" , "21.10N21" },
  57. { "Compaq CRD-8241B" , NULL },
  58. { "CRD-8400B" , NULL },
  59. { "CRD-8480B", NULL },
  60. { "CRD-8482B", NULL },
  61. { "CRD-84" , NULL },
  62. { "SanDisk SDP3B" , NULL },
  63. { "SanDisk SDP3B-64" , NULL },
  64. { "SANYO CD-ROM CRD" , NULL },
  65. { "HITACHI CDR-8" , NULL },
  66. { "HITACHI CDR-8335" , NULL },
  67. { "HITACHI CDR-8435" , NULL },
  68. { "Toshiba CD-ROM XM-6202B" , NULL },
  69. { "TOSHIBA CD-ROM XM-1702BC", NULL },
  70. { "CD-532E-A" , NULL },
  71. { "E-IDE CD-ROM CR-840", NULL },
  72. { "CD-ROM Drive/F5A", NULL },
  73. { "WPI CDD-820", NULL },
  74. { "SAMSUNG CD-ROM SC-148C", NULL },
  75. { "SAMSUNG CD-ROM SC", NULL },
  76. { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL },
  77. { "_NEC DV5800A", NULL },
  78. { "SAMSUNG CD-ROM SN-124", "N001" },
  79. { "Seagate STT20000A", NULL },
  80. { "CD-ROM CDR_U200", "1.09" },
  81. { NULL , NULL }
  82. };
  83. /**
  84. * ide_dma_intr - IDE DMA interrupt handler
  85. * @drive: the drive the interrupt is for
  86. *
  87. * Handle an interrupt completing a read/write DMA transfer on an
  88. * IDE device
  89. */
  90. ide_startstop_t ide_dma_intr (ide_drive_t *drive)
  91. {
  92. ide_hwif_t *hwif = drive->hwif;
  93. u8 stat = 0, dma_stat = 0;
  94. dma_stat = hwif->dma_ops->dma_end(drive);
  95. stat = hwif->tp_ops->read_status(hwif);
  96. if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) {
  97. if (!dma_stat) {
  98. struct request *rq = HWGROUP(drive)->rq;
  99. task_end_request(drive, rq, stat);
  100. return ide_stopped;
  101. }
  102. printk(KERN_ERR "%s: dma_intr: bad DMA status (dma_stat=%x)\n",
  103. drive->name, dma_stat);
  104. }
  105. return ide_error(drive, "dma_intr", stat);
  106. }
  107. EXPORT_SYMBOL_GPL(ide_dma_intr);
  108. static int ide_dma_good_drive(ide_drive_t *drive)
  109. {
  110. return ide_in_drive_list(drive->id, drive_whitelist);
  111. }
  112. /**
  113. * ide_build_sglist - map IDE scatter gather for DMA I/O
  114. * @drive: the drive to build the DMA table for
  115. * @rq: the request holding the sg list
  116. *
  117. * Perform the DMA mapping magic necessary to access the source or
  118. * target buffers of a request via DMA. The lower layers of the
  119. * kernel provide the necessary cache management so that we can
  120. * operate in a portable fashion.
  121. */
  122. int ide_build_sglist(ide_drive_t *drive, struct request *rq)
  123. {
  124. ide_hwif_t *hwif = HWIF(drive);
  125. struct scatterlist *sg = hwif->sg_table;
  126. ide_map_sg(drive, rq);
  127. if (rq_data_dir(rq) == READ)
  128. hwif->sg_dma_direction = DMA_FROM_DEVICE;
  129. else
  130. hwif->sg_dma_direction = DMA_TO_DEVICE;
  131. return dma_map_sg(hwif->dev, sg, hwif->sg_nents,
  132. hwif->sg_dma_direction);
  133. }
  134. EXPORT_SYMBOL_GPL(ide_build_sglist);
  135. #ifdef CONFIG_BLK_DEV_IDEDMA_SFF
  136. /**
  137. * ide_build_dmatable - build IDE DMA table
  138. *
  139. * ide_build_dmatable() prepares a dma request. We map the command
  140. * to get the pci bus addresses of the buffers and then build up
  141. * the PRD table that the IDE layer wants to be fed. The code
  142. * knows about the 64K wrap bug in the CS5530.
  143. *
  144. * Returns the number of built PRD entries if all went okay,
  145. * returns 0 otherwise.
  146. *
  147. * May also be invoked from trm290.c
  148. */
  149. int ide_build_dmatable (ide_drive_t *drive, struct request *rq)
  150. {
  151. ide_hwif_t *hwif = HWIF(drive);
  152. __le32 *table = (__le32 *)hwif->dmatable_cpu;
  153. unsigned int is_trm290 = (hwif->chipset == ide_trm290) ? 1 : 0;
  154. unsigned int count = 0;
  155. int i;
  156. struct scatterlist *sg;
  157. hwif->sg_nents = i = ide_build_sglist(drive, rq);
  158. if (!i)
  159. return 0;
  160. sg = hwif->sg_table;
  161. while (i) {
  162. u32 cur_addr;
  163. u32 cur_len;
  164. cur_addr = sg_dma_address(sg);
  165. cur_len = sg_dma_len(sg);
  166. /*
  167. * Fill in the dma table, without crossing any 64kB boundaries.
  168. * Most hardware requires 16-bit alignment of all blocks,
  169. * but the trm290 requires 32-bit alignment.
  170. */
  171. while (cur_len) {
  172. if (count++ >= PRD_ENTRIES) {
  173. printk(KERN_ERR "%s: DMA table too small\n", drive->name);
  174. goto use_pio_instead;
  175. } else {
  176. u32 xcount, bcount = 0x10000 - (cur_addr & 0xffff);
  177. if (bcount > cur_len)
  178. bcount = cur_len;
  179. *table++ = cpu_to_le32(cur_addr);
  180. xcount = bcount & 0xffff;
  181. if (is_trm290)
  182. xcount = ((xcount >> 2) - 1) << 16;
  183. else if (xcount == 0x0000) {
  184. /*
  185. * Most chipsets correctly interpret a length of 0x0000 as 64KB,
  186. * but at least one (e.g. CS5530) misinterprets it as zero (!).
  187. * So here we break the 64KB entry into two 32KB entries instead.
  188. */
  189. if (count++ >= PRD_ENTRIES) {
  190. printk(KERN_ERR "%s: DMA table too small\n", drive->name);
  191. goto use_pio_instead;
  192. }
  193. *table++ = cpu_to_le32(0x8000);
  194. *table++ = cpu_to_le32(cur_addr + 0x8000);
  195. xcount = 0x8000;
  196. }
  197. *table++ = cpu_to_le32(xcount);
  198. cur_addr += bcount;
  199. cur_len -= bcount;
  200. }
  201. }
  202. sg = sg_next(sg);
  203. i--;
  204. }
  205. if (count) {
  206. if (!is_trm290)
  207. *--table |= cpu_to_le32(0x80000000);
  208. return count;
  209. }
  210. printk(KERN_ERR "%s: empty DMA table?\n", drive->name);
  211. use_pio_instead:
  212. ide_destroy_dmatable(drive);
  213. return 0; /* revert to PIO for this request */
  214. }
  215. EXPORT_SYMBOL_GPL(ide_build_dmatable);
  216. #endif
  217. /**
  218. * ide_destroy_dmatable - clean up DMA mapping
  219. * @drive: The drive to unmap
  220. *
  221. * Teardown mappings after DMA has completed. This must be called
  222. * after the completion of each use of ide_build_dmatable and before
  223. * the next use of ide_build_dmatable. Failure to do so will cause
  224. * an oops as only one mapping can be live for each target at a given
  225. * time.
  226. */
  227. void ide_destroy_dmatable (ide_drive_t *drive)
  228. {
  229. ide_hwif_t *hwif = drive->hwif;
  230. dma_unmap_sg(hwif->dev, hwif->sg_table, hwif->sg_nents,
  231. hwif->sg_dma_direction);
  232. }
  233. EXPORT_SYMBOL_GPL(ide_destroy_dmatable);
  234. #ifdef CONFIG_BLK_DEV_IDEDMA_SFF
  235. /**
  236. * config_drive_for_dma - attempt to activate IDE DMA
  237. * @drive: the drive to place in DMA mode
  238. *
  239. * If the drive supports at least mode 2 DMA or UDMA of any kind
  240. * then attempt to place it into DMA mode. Drives that are known to
  241. * support DMA but predate the DMA properties or that are known
  242. * to have DMA handling bugs are also set up appropriately based
  243. * on the good/bad drive lists.
  244. */
  245. static int config_drive_for_dma (ide_drive_t *drive)
  246. {
  247. ide_hwif_t *hwif = drive->hwif;
  248. struct hd_driveid *id = drive->id;
  249. if (drive->media != ide_disk) {
  250. if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA)
  251. return 0;
  252. }
  253. /*
  254. * Enable DMA on any drive that has
  255. * UltraDMA (mode 0/1/2/3/4/5/6) enabled
  256. */
  257. if ((id->field_valid & 4) && ((id->dma_ultra >> 8) & 0x7f))
  258. return 1;
  259. /*
  260. * Enable DMA on any drive that has mode2 DMA
  261. * (multi or single) enabled
  262. */
  263. if (id->field_valid & 2) /* regular DMA */
  264. if ((id->dma_mword & 0x404) == 0x404 ||
  265. (id->dma_1word & 0x404) == 0x404)
  266. return 1;
  267. /* Consult the list of known "good" drives */
  268. if (ide_dma_good_drive(drive))
  269. return 1;
  270. return 0;
  271. }
  272. /**
  273. * dma_timer_expiry - handle a DMA timeout
  274. * @drive: Drive that timed out
  275. *
  276. * An IDE DMA transfer timed out. In the event of an error we ask
  277. * the driver to resolve the problem, if a DMA transfer is still
  278. * in progress we continue to wait (arguably we need to add a
  279. * secondary 'I don't care what the drive thinks' timeout here)
  280. * Finally if we have an interrupt we let it complete the I/O.
  281. * But only one time - we clear expiry and if it's still not
  282. * completed after WAIT_CMD, we error and retry in PIO.
  283. * This can occur if an interrupt is lost or due to hang or bugs.
  284. */
  285. static int dma_timer_expiry (ide_drive_t *drive)
  286. {
  287. ide_hwif_t *hwif = HWIF(drive);
  288. u8 dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
  289. printk(KERN_WARNING "%s: dma_timer_expiry: dma status == 0x%02x\n",
  290. drive->name, dma_stat);
  291. if ((dma_stat & 0x18) == 0x18) /* BUSY Stupid Early Timer !! */
  292. return WAIT_CMD;
  293. HWGROUP(drive)->expiry = NULL; /* one free ride for now */
  294. /* 1 dmaing, 2 error, 4 intr */
  295. if (dma_stat & 2) /* ERROR */
  296. return -1;
  297. if (dma_stat & 1) /* DMAing */
  298. return WAIT_CMD;
  299. if (dma_stat & 4) /* Got an Interrupt */
  300. return WAIT_CMD;
  301. return 0; /* Status is unknown -- reset the bus */
  302. }
  303. /**
  304. * ide_dma_host_set - Enable/disable DMA on a host
  305. * @drive: drive to control
  306. *
  307. * Enable/disable DMA on an IDE controller following generic
  308. * bus-mastering IDE controller behaviour.
  309. */
  310. void ide_dma_host_set(ide_drive_t *drive, int on)
  311. {
  312. ide_hwif_t *hwif = HWIF(drive);
  313. u8 unit = (drive->select.b.unit & 0x01);
  314. u8 dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
  315. if (on)
  316. dma_stat |= (1 << (5 + unit));
  317. else
  318. dma_stat &= ~(1 << (5 + unit));
  319. if (hwif->host_flags & IDE_HFLAG_MMIO)
  320. writeb(dma_stat,
  321. (void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
  322. else
  323. outb(dma_stat, hwif->dma_base + ATA_DMA_STATUS);
  324. }
  325. EXPORT_SYMBOL_GPL(ide_dma_host_set);
  326. #endif /* CONFIG_BLK_DEV_IDEDMA_SFF */
  327. /**
  328. * ide_dma_off_quietly - Generic DMA kill
  329. * @drive: drive to control
  330. *
  331. * Turn off the current DMA on this IDE controller.
  332. */
  333. void ide_dma_off_quietly(ide_drive_t *drive)
  334. {
  335. drive->using_dma = 0;
  336. ide_toggle_bounce(drive, 0);
  337. drive->hwif->dma_ops->dma_host_set(drive, 0);
  338. }
  339. EXPORT_SYMBOL(ide_dma_off_quietly);
  340. /**
  341. * ide_dma_off - disable DMA on a device
  342. * @drive: drive to disable DMA on
  343. *
  344. * Disable IDE DMA for a device on this IDE controller.
  345. * Inform the user that DMA has been disabled.
  346. */
  347. void ide_dma_off(ide_drive_t *drive)
  348. {
  349. printk(KERN_INFO "%s: DMA disabled\n", drive->name);
  350. ide_dma_off_quietly(drive);
  351. }
  352. EXPORT_SYMBOL(ide_dma_off);
  353. /**
  354. * ide_dma_on - Enable DMA on a device
  355. * @drive: drive to enable DMA on
  356. *
  357. * Enable IDE DMA for a device on this IDE controller.
  358. */
  359. void ide_dma_on(ide_drive_t *drive)
  360. {
  361. drive->using_dma = 1;
  362. ide_toggle_bounce(drive, 1);
  363. drive->hwif->dma_ops->dma_host_set(drive, 1);
  364. }
  365. #ifdef CONFIG_BLK_DEV_IDEDMA_SFF
  366. /**
  367. * ide_dma_setup - begin a DMA phase
  368. * @drive: target device
  369. *
  370. * Build an IDE DMA PRD (IDE speak for scatter gather table)
  371. * and then set up the DMA transfer registers for a device
  372. * that follows generic IDE PCI DMA behaviour. Controllers can
  373. * override this function if they need to
  374. *
  375. * Returns 0 on success. If a PIO fallback is required then 1
  376. * is returned.
  377. */
  378. int ide_dma_setup(ide_drive_t *drive)
  379. {
  380. ide_hwif_t *hwif = drive->hwif;
  381. struct request *rq = HWGROUP(drive)->rq;
  382. unsigned int reading;
  383. u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
  384. u8 dma_stat;
  385. if (rq_data_dir(rq))
  386. reading = 0;
  387. else
  388. reading = 1 << 3;
  389. /* fall back to pio! */
  390. if (!ide_build_dmatable(drive, rq)) {
  391. ide_map_sg(drive, rq);
  392. return 1;
  393. }
  394. /* PRD table */
  395. if (hwif->host_flags & IDE_HFLAG_MMIO)
  396. writel(hwif->dmatable_dma,
  397. (void __iomem *)(hwif->dma_base + ATA_DMA_TABLE_OFS));
  398. else
  399. outl(hwif->dmatable_dma, hwif->dma_base + ATA_DMA_TABLE_OFS);
  400. /* specify r/w */
  401. if (mmio)
  402. writeb(reading, (void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
  403. else
  404. outb(reading, hwif->dma_base + ATA_DMA_CMD);
  405. /* read DMA status for INTR & ERROR flags */
  406. dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
  407. /* clear INTR & ERROR flags */
  408. if (mmio)
  409. writeb(dma_stat | 6,
  410. (void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
  411. else
  412. outb(dma_stat | 6, hwif->dma_base + ATA_DMA_STATUS);
  413. drive->waiting_for_dma = 1;
  414. return 0;
  415. }
  416. EXPORT_SYMBOL_GPL(ide_dma_setup);
  417. void ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  418. {
  419. /* issue cmd to drive */
  420. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, dma_timer_expiry);
  421. }
  422. EXPORT_SYMBOL_GPL(ide_dma_exec_cmd);
  423. void ide_dma_start(ide_drive_t *drive)
  424. {
  425. ide_hwif_t *hwif = drive->hwif;
  426. u8 dma_cmd;
  427. /* Note that this is done *after* the cmd has
  428. * been issued to the drive, as per the BM-IDE spec.
  429. * The Promise Ultra33 doesn't work correctly when
  430. * we do this part before issuing the drive cmd.
  431. */
  432. if (hwif->host_flags & IDE_HFLAG_MMIO) {
  433. dma_cmd = readb((void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
  434. /* start DMA */
  435. writeb(dma_cmd | 1,
  436. (void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
  437. } else {
  438. dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
  439. outb(dma_cmd | 1, hwif->dma_base + ATA_DMA_CMD);
  440. }
  441. hwif->dma = 1;
  442. wmb();
  443. }
  444. EXPORT_SYMBOL_GPL(ide_dma_start);
  445. /* returns 1 on error, 0 otherwise */
  446. int __ide_dma_end (ide_drive_t *drive)
  447. {
  448. ide_hwif_t *hwif = drive->hwif;
  449. u8 mmio = (hwif->host_flags & IDE_HFLAG_MMIO) ? 1 : 0;
  450. u8 dma_stat = 0, dma_cmd = 0;
  451. drive->waiting_for_dma = 0;
  452. if (mmio) {
  453. /* get DMA command mode */
  454. dma_cmd = readb((void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
  455. /* stop DMA */
  456. writeb(dma_cmd & ~1,
  457. (void __iomem *)(hwif->dma_base + ATA_DMA_CMD));
  458. } else {
  459. dma_cmd = inb(hwif->dma_base + ATA_DMA_CMD);
  460. outb(dma_cmd & ~1, hwif->dma_base + ATA_DMA_CMD);
  461. }
  462. /* get DMA status */
  463. dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
  464. if (mmio)
  465. /* clear the INTR & ERROR bits */
  466. writeb(dma_stat | 6,
  467. (void __iomem *)(hwif->dma_base + ATA_DMA_STATUS));
  468. else
  469. outb(dma_stat | 6, hwif->dma_base + ATA_DMA_STATUS);
  470. /* purge DMA mappings */
  471. ide_destroy_dmatable(drive);
  472. /* verify good DMA status */
  473. hwif->dma = 0;
  474. wmb();
  475. return (dma_stat & 7) != 4 ? (0x10 | dma_stat) : 0;
  476. }
  477. EXPORT_SYMBOL(__ide_dma_end);
  478. /* returns 1 if dma irq issued, 0 otherwise */
  479. int ide_dma_test_irq(ide_drive_t *drive)
  480. {
  481. ide_hwif_t *hwif = HWIF(drive);
  482. u8 dma_stat = hwif->tp_ops->read_sff_dma_status(hwif);
  483. /* return 1 if INTR asserted */
  484. if ((dma_stat & 4) == 4)
  485. return 1;
  486. if (!drive->waiting_for_dma)
  487. printk(KERN_WARNING "%s: (%s) called while not waiting\n",
  488. drive->name, __func__);
  489. return 0;
  490. }
  491. EXPORT_SYMBOL_GPL(ide_dma_test_irq);
  492. #else
  493. static inline int config_drive_for_dma(ide_drive_t *drive) { return 0; }
  494. #endif /* CONFIG_BLK_DEV_IDEDMA_SFF */
  495. int __ide_dma_bad_drive (ide_drive_t *drive)
  496. {
  497. struct hd_driveid *id = drive->id;
  498. int blacklist = ide_in_drive_list(id, drive_blacklist);
  499. if (blacklist) {
  500. printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n",
  501. drive->name, id->model);
  502. return blacklist;
  503. }
  504. return 0;
  505. }
  506. EXPORT_SYMBOL(__ide_dma_bad_drive);
  507. static const u8 xfer_mode_bases[] = {
  508. XFER_UDMA_0,
  509. XFER_MW_DMA_0,
  510. XFER_SW_DMA_0,
  511. };
  512. static unsigned int ide_get_mode_mask(ide_drive_t *drive, u8 base, u8 req_mode)
  513. {
  514. struct hd_driveid *id = drive->id;
  515. ide_hwif_t *hwif = drive->hwif;
  516. const struct ide_port_ops *port_ops = hwif->port_ops;
  517. unsigned int mask = 0;
  518. switch(base) {
  519. case XFER_UDMA_0:
  520. if ((id->field_valid & 4) == 0)
  521. break;
  522. if (port_ops && port_ops->udma_filter)
  523. mask = port_ops->udma_filter(drive);
  524. else
  525. mask = hwif->ultra_mask;
  526. mask &= id->dma_ultra;
  527. /*
  528. * avoid false cable warning from eighty_ninty_three()
  529. */
  530. if (req_mode > XFER_UDMA_2) {
  531. if ((mask & 0x78) && (eighty_ninty_three(drive) == 0))
  532. mask &= 0x07;
  533. }
  534. break;
  535. case XFER_MW_DMA_0:
  536. if ((id->field_valid & 2) == 0)
  537. break;
  538. if (port_ops && port_ops->mdma_filter)
  539. mask = port_ops->mdma_filter(drive);
  540. else
  541. mask = hwif->mwdma_mask;
  542. mask &= id->dma_mword;
  543. break;
  544. case XFER_SW_DMA_0:
  545. if (id->field_valid & 2) {
  546. mask = id->dma_1word & hwif->swdma_mask;
  547. } else if (id->tDMA) {
  548. u8 mode = id->tDMA;
  549. /*
  550. * if the mode is valid convert it to the mask
  551. * (the maximum allowed mode is XFER_SW_DMA_2)
  552. */
  553. if (mode <= 2)
  554. mask = ((2 << mode) - 1) & hwif->swdma_mask;
  555. }
  556. break;
  557. default:
  558. BUG();
  559. break;
  560. }
  561. return mask;
  562. }
  563. /**
  564. * ide_find_dma_mode - compute DMA speed
  565. * @drive: IDE device
  566. * @req_mode: requested mode
  567. *
  568. * Checks the drive/host capabilities and finds the speed to use for
  569. * the DMA transfer. The speed is then limited by the requested mode.
  570. *
  571. * Returns 0 if the drive/host combination is incapable of DMA transfers
  572. * or if the requested mode is not a DMA mode.
  573. */
  574. u8 ide_find_dma_mode(ide_drive_t *drive, u8 req_mode)
  575. {
  576. ide_hwif_t *hwif = drive->hwif;
  577. unsigned int mask;
  578. int x, i;
  579. u8 mode = 0;
  580. if (drive->media != ide_disk) {
  581. if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA)
  582. return 0;
  583. }
  584. for (i = 0; i < ARRAY_SIZE(xfer_mode_bases); i++) {
  585. if (req_mode < xfer_mode_bases[i])
  586. continue;
  587. mask = ide_get_mode_mask(drive, xfer_mode_bases[i], req_mode);
  588. x = fls(mask) - 1;
  589. if (x >= 0) {
  590. mode = xfer_mode_bases[i] + x;
  591. break;
  592. }
  593. }
  594. if (hwif->chipset == ide_acorn && mode == 0) {
  595. /*
  596. * is this correct?
  597. */
  598. if (ide_dma_good_drive(drive) && drive->id->eide_dma_time < 150)
  599. mode = XFER_MW_DMA_1;
  600. }
  601. mode = min(mode, req_mode);
  602. printk(KERN_INFO "%s: %s mode selected\n", drive->name,
  603. mode ? ide_xfer_verbose(mode) : "no DMA");
  604. return mode;
  605. }
  606. EXPORT_SYMBOL_GPL(ide_find_dma_mode);
  607. static int ide_tune_dma(ide_drive_t *drive)
  608. {
  609. ide_hwif_t *hwif = drive->hwif;
  610. u8 speed;
  611. if (drive->nodma || (drive->id->capability & 1) == 0)
  612. return 0;
  613. /* consult the list of known "bad" drives */
  614. if (__ide_dma_bad_drive(drive))
  615. return 0;
  616. if (ide_id_dma_bug(drive))
  617. return 0;
  618. if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA)
  619. return config_drive_for_dma(drive);
  620. speed = ide_max_dma_mode(drive);
  621. if (!speed)
  622. return 0;
  623. if (ide_set_dma_mode(drive, speed))
  624. return 0;
  625. return 1;
  626. }
  627. static int ide_dma_check(ide_drive_t *drive)
  628. {
  629. ide_hwif_t *hwif = drive->hwif;
  630. if (ide_tune_dma(drive))
  631. return 0;
  632. /* TODO: always do PIO fallback */
  633. if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA)
  634. return -1;
  635. ide_set_max_pio(drive);
  636. return -1;
  637. }
  638. int ide_id_dma_bug(ide_drive_t *drive)
  639. {
  640. struct hd_driveid *id = drive->id;
  641. if (id->field_valid & 4) {
  642. if ((id->dma_ultra >> 8) && (id->dma_mword >> 8))
  643. goto err_out;
  644. } else if (id->field_valid & 2) {
  645. if ((id->dma_mword >> 8) && (id->dma_1word >> 8))
  646. goto err_out;
  647. }
  648. return 0;
  649. err_out:
  650. printk(KERN_ERR "%s: bad DMA info in identify block\n", drive->name);
  651. return 1;
  652. }
  653. int ide_set_dma(ide_drive_t *drive)
  654. {
  655. int rc;
  656. /*
  657. * Force DMAing for the beginning of the check.
  658. * Some chipsets appear to do interesting
  659. * things, if not checked and cleared.
  660. * PARANOIA!!!
  661. */
  662. ide_dma_off_quietly(drive);
  663. rc = ide_dma_check(drive);
  664. if (rc)
  665. return rc;
  666. ide_dma_on(drive);
  667. return 0;
  668. }
  669. void ide_check_dma_crc(ide_drive_t *drive)
  670. {
  671. u8 mode;
  672. ide_dma_off_quietly(drive);
  673. drive->crc_count = 0;
  674. mode = drive->current_speed;
  675. /*
  676. * Don't try non Ultra-DMA modes without iCRC's. Force the
  677. * device to PIO and make the user enable SWDMA/MWDMA modes.
  678. */
  679. if (mode > XFER_UDMA_0 && mode <= XFER_UDMA_7)
  680. mode--;
  681. else
  682. mode = XFER_PIO_4;
  683. ide_set_xfer_rate(drive, mode);
  684. if (drive->current_speed >= XFER_SW_DMA_0)
  685. ide_dma_on(drive);
  686. }
  687. #ifdef CONFIG_BLK_DEV_IDEDMA_SFF
  688. void ide_dma_lost_irq (ide_drive_t *drive)
  689. {
  690. printk("%s: DMA interrupt recovery\n", drive->name);
  691. }
  692. EXPORT_SYMBOL(ide_dma_lost_irq);
  693. void ide_dma_timeout (ide_drive_t *drive)
  694. {
  695. ide_hwif_t *hwif = HWIF(drive);
  696. printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name);
  697. if (hwif->dma_ops->dma_test_irq(drive))
  698. return;
  699. hwif->dma_ops->dma_end(drive);
  700. }
  701. EXPORT_SYMBOL(ide_dma_timeout);
  702. void ide_release_dma_engine(ide_hwif_t *hwif)
  703. {
  704. if (hwif->dmatable_cpu) {
  705. struct pci_dev *pdev = to_pci_dev(hwif->dev);
  706. pci_free_consistent(pdev, PRD_ENTRIES * PRD_BYTES,
  707. hwif->dmatable_cpu, hwif->dmatable_dma);
  708. hwif->dmatable_cpu = NULL;
  709. }
  710. }
  711. int ide_allocate_dma_engine(ide_hwif_t *hwif)
  712. {
  713. struct pci_dev *pdev = to_pci_dev(hwif->dev);
  714. hwif->dmatable_cpu = pci_alloc_consistent(pdev,
  715. PRD_ENTRIES * PRD_BYTES,
  716. &hwif->dmatable_dma);
  717. if (hwif->dmatable_cpu)
  718. return 0;
  719. printk(KERN_ERR "%s: -- Error, unable to allocate DMA table.\n",
  720. hwif->name);
  721. return 1;
  722. }
  723. EXPORT_SYMBOL_GPL(ide_allocate_dma_engine);
  724. const struct ide_dma_ops sff_dma_ops = {
  725. .dma_host_set = ide_dma_host_set,
  726. .dma_setup = ide_dma_setup,
  727. .dma_exec_cmd = ide_dma_exec_cmd,
  728. .dma_start = ide_dma_start,
  729. .dma_end = __ide_dma_end,
  730. .dma_test_irq = ide_dma_test_irq,
  731. .dma_timeout = ide_dma_timeout,
  732. .dma_lost_irq = ide_dma_lost_irq,
  733. };
  734. EXPORT_SYMBOL_GPL(sff_dma_ops);
  735. #endif /* CONFIG_BLK_DEV_IDEDMA_SFF */