lm85.c 47 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534
  1. /*
  2. lm85.c - Part of lm_sensors, Linux kernel modules for hardware
  3. monitoring
  4. Copyright (c) 1998, 1999 Frodo Looijaard <frodol@dds.nl>
  5. Copyright (c) 2002, 2003 Philip Pokorny <ppokorny@penguincomputing.com>
  6. Copyright (c) 2003 Margit Schubert-While <margitsw@t-online.de>
  7. Copyright (c) 2004 Justin Thiessen <jthiessen@penguincomputing.com>
  8. Chip details at <http://www.national.com/ds/LM/LM85.pdf>
  9. This program is free software; you can redistribute it and/or modify
  10. it under the terms of the GNU General Public License as published by
  11. the Free Software Foundation; either version 2 of the License, or
  12. (at your option) any later version.
  13. This program is distributed in the hope that it will be useful,
  14. but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. GNU General Public License for more details.
  17. You should have received a copy of the GNU General Public License
  18. along with this program; if not, write to the Free Software
  19. Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. */
  21. #include <linux/module.h>
  22. #include <linux/init.h>
  23. #include <linux/slab.h>
  24. #include <linux/jiffies.h>
  25. #include <linux/i2c.h>
  26. #include <linux/hwmon.h>
  27. #include <linux/hwmon-vid.h>
  28. #include <linux/hwmon-sysfs.h>
  29. #include <linux/err.h>
  30. #include <linux/mutex.h>
  31. /* Addresses to scan */
  32. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  33. /* Insmod parameters */
  34. I2C_CLIENT_INSMOD_6(lm85b, lm85c, adm1027, adt7463, emc6d100, emc6d102);
  35. /* The LM85 registers */
  36. #define LM85_REG_IN(nr) (0x20 + (nr))
  37. #define LM85_REG_IN_MIN(nr) (0x44 + (nr) * 2)
  38. #define LM85_REG_IN_MAX(nr) (0x45 + (nr) * 2)
  39. #define LM85_REG_TEMP(nr) (0x25 + (nr))
  40. #define LM85_REG_TEMP_MIN(nr) (0x4e + (nr) * 2)
  41. #define LM85_REG_TEMP_MAX(nr) (0x4f + (nr) * 2)
  42. /* Fan speeds are LSB, MSB (2 bytes) */
  43. #define LM85_REG_FAN(nr) (0x28 + (nr) * 2)
  44. #define LM85_REG_FAN_MIN(nr) (0x54 + (nr) * 2)
  45. #define LM85_REG_PWM(nr) (0x30 + (nr))
  46. #define LM85_REG_COMPANY 0x3e
  47. #define LM85_REG_VERSTEP 0x3f
  48. /* These are the recognized values for the above regs */
  49. #define LM85_COMPANY_NATIONAL 0x01
  50. #define LM85_COMPANY_ANALOG_DEV 0x41
  51. #define LM85_COMPANY_SMSC 0x5c
  52. #define LM85_VERSTEP_VMASK 0xf0
  53. #define LM85_VERSTEP_GENERIC 0x60
  54. #define LM85_VERSTEP_LM85C 0x60
  55. #define LM85_VERSTEP_LM85B 0x62
  56. #define LM85_VERSTEP_ADM1027 0x60
  57. #define LM85_VERSTEP_ADT7463 0x62
  58. #define LM85_VERSTEP_ADT7463C 0x6A
  59. #define LM85_VERSTEP_EMC6D100_A0 0x60
  60. #define LM85_VERSTEP_EMC6D100_A1 0x61
  61. #define LM85_VERSTEP_EMC6D102 0x65
  62. #define LM85_REG_CONFIG 0x40
  63. #define LM85_REG_ALARM1 0x41
  64. #define LM85_REG_ALARM2 0x42
  65. #define LM85_REG_VID 0x43
  66. /* Automated FAN control */
  67. #define LM85_REG_AFAN_CONFIG(nr) (0x5c + (nr))
  68. #define LM85_REG_AFAN_RANGE(nr) (0x5f + (nr))
  69. #define LM85_REG_AFAN_SPIKE1 0x62
  70. #define LM85_REG_AFAN_MINPWM(nr) (0x64 + (nr))
  71. #define LM85_REG_AFAN_LIMIT(nr) (0x67 + (nr))
  72. #define LM85_REG_AFAN_CRITICAL(nr) (0x6a + (nr))
  73. #define LM85_REG_AFAN_HYST1 0x6d
  74. #define LM85_REG_AFAN_HYST2 0x6e
  75. #define ADM1027_REG_EXTEND_ADC1 0x76
  76. #define ADM1027_REG_EXTEND_ADC2 0x77
  77. #define EMC6D100_REG_ALARM3 0x7d
  78. /* IN5, IN6 and IN7 */
  79. #define EMC6D100_REG_IN(nr) (0x70 + ((nr) - 5))
  80. #define EMC6D100_REG_IN_MIN(nr) (0x73 + ((nr) - 5) * 2)
  81. #define EMC6D100_REG_IN_MAX(nr) (0x74 + ((nr) - 5) * 2)
  82. #define EMC6D102_REG_EXTEND_ADC1 0x85
  83. #define EMC6D102_REG_EXTEND_ADC2 0x86
  84. #define EMC6D102_REG_EXTEND_ADC3 0x87
  85. #define EMC6D102_REG_EXTEND_ADC4 0x88
  86. /* Conversions. Rounding and limit checking is only done on the TO_REG
  87. variants. Note that you should be a bit careful with which arguments
  88. these macros are called: arguments may be evaluated more than once.
  89. */
  90. /* IN are scaled acording to built-in resistors */
  91. static const int lm85_scaling[] = { /* .001 Volts */
  92. 2500, 2250, 3300, 5000, 12000,
  93. 3300, 1500, 1800 /*EMC6D100*/
  94. };
  95. #define SCALE(val, from, to) (((val) * (to) + ((from) / 2)) / (from))
  96. #define INS_TO_REG(n, val) \
  97. SENSORS_LIMIT(SCALE(val, lm85_scaling[n], 192), 0, 255)
  98. #define INSEXT_FROM_REG(n, val, ext) \
  99. SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
  100. #define INS_FROM_REG(n, val) SCALE((val), 192, lm85_scaling[n])
  101. /* FAN speed is measured using 90kHz clock */
  102. static inline u16 FAN_TO_REG(unsigned long val)
  103. {
  104. if (!val)
  105. return 0xffff;
  106. return SENSORS_LIMIT(5400000 / val, 1, 0xfffe);
  107. }
  108. #define FAN_FROM_REG(val) ((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
  109. 5400000 / (val))
  110. /* Temperature is reported in .001 degC increments */
  111. #define TEMP_TO_REG(val) \
  112. SENSORS_LIMIT(SCALE(val, 1000, 1), -127, 127)
  113. #define TEMPEXT_FROM_REG(val, ext) \
  114. SCALE(((val) << 4) + (ext), 16, 1000)
  115. #define TEMP_FROM_REG(val) ((val) * 1000)
  116. #define PWM_TO_REG(val) SENSORS_LIMIT(val, 0, 255)
  117. #define PWM_FROM_REG(val) (val)
  118. /* ZONEs have the following parameters:
  119. * Limit (low) temp, 1. degC
  120. * Hysteresis (below limit), 1. degC (0-15)
  121. * Range of speed control, .1 degC (2-80)
  122. * Critical (high) temp, 1. degC
  123. *
  124. * FAN PWMs have the following parameters:
  125. * Reference Zone, 1, 2, 3, etc.
  126. * Spinup time, .05 sec
  127. * PWM value at limit/low temp, 1 count
  128. * PWM Frequency, 1. Hz
  129. * PWM is Min or OFF below limit, flag
  130. * Invert PWM output, flag
  131. *
  132. * Some chips filter the temp, others the fan.
  133. * Filter constant (or disabled) .1 seconds
  134. */
  135. /* These are the zone temperature range encodings in .001 degree C */
  136. static const int lm85_range_map[] = {
  137. 2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
  138. 13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
  139. };
  140. static int RANGE_TO_REG(int range)
  141. {
  142. int i;
  143. if (range >= lm85_range_map[15])
  144. return 15;
  145. /* Find the closest match */
  146. for (i = 14; i >= 0; --i) {
  147. if (range >= lm85_range_map[i]) {
  148. if ((lm85_range_map[i + 1] - range) <
  149. (range - lm85_range_map[i]))
  150. return i + 1;
  151. return i;
  152. }
  153. }
  154. return 0;
  155. }
  156. #define RANGE_FROM_REG(val) lm85_range_map[(val) & 0x0f]
  157. /* These are the PWM frequency encodings */
  158. static const int lm85_freq_map[] = { /* .1 Hz */
  159. 100, 150, 230, 300, 380, 470, 620, 940
  160. };
  161. static int FREQ_TO_REG(int freq)
  162. {
  163. int i;
  164. if (freq >= lm85_freq_map[7])
  165. return 7;
  166. for (i = 0; i < 7; ++i)
  167. if (freq <= lm85_freq_map[i])
  168. break;
  169. return i;
  170. }
  171. #define FREQ_FROM_REG(val) lm85_freq_map[(val) & 0x07]
  172. /* Since we can't use strings, I'm abusing these numbers
  173. * to stand in for the following meanings:
  174. * 1 -- PWM responds to Zone 1
  175. * 2 -- PWM responds to Zone 2
  176. * 3 -- PWM responds to Zone 3
  177. * 23 -- PWM responds to the higher temp of Zone 2 or 3
  178. * 123 -- PWM responds to highest of Zone 1, 2, or 3
  179. * 0 -- PWM is always at 0% (ie, off)
  180. * -1 -- PWM is always at 100%
  181. * -2 -- PWM responds to manual control
  182. */
  183. static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
  184. #define ZONE_FROM_REG(val) lm85_zone_map[(val) >> 5]
  185. static int ZONE_TO_REG(int zone)
  186. {
  187. int i;
  188. for (i = 0; i <= 7; ++i)
  189. if (zone == lm85_zone_map[i])
  190. break;
  191. if (i > 7) /* Not found. */
  192. i = 3; /* Always 100% */
  193. return i << 5;
  194. }
  195. #define HYST_TO_REG(val) SENSORS_LIMIT(((val) + 500) / 1000, 0, 15)
  196. #define HYST_FROM_REG(val) ((val) * 1000)
  197. /* Chip sampling rates
  198. *
  199. * Some sensors are not updated more frequently than once per second
  200. * so it doesn't make sense to read them more often than that.
  201. * We cache the results and return the saved data if the driver
  202. * is called again before a second has elapsed.
  203. *
  204. * Also, there is significant configuration data for this chip
  205. * given the automatic PWM fan control that is possible. There
  206. * are about 47 bytes of config data to only 22 bytes of actual
  207. * readings. So, we keep the config data up to date in the cache
  208. * when it is written and only sample it once every 1 *minute*
  209. */
  210. #define LM85_DATA_INTERVAL (HZ + HZ / 2)
  211. #define LM85_CONFIG_INTERVAL (1 * 60 * HZ)
  212. /* LM85 can automatically adjust fan speeds based on temperature
  213. * This structure encapsulates an entire Zone config. There are
  214. * three zones (one for each temperature input) on the lm85
  215. */
  216. struct lm85_zone {
  217. s8 limit; /* Low temp limit */
  218. u8 hyst; /* Low limit hysteresis. (0-15) */
  219. u8 range; /* Temp range, encoded */
  220. s8 critical; /* "All fans ON" temp limit */
  221. u8 off_desired; /* Actual "off" temperature specified. Preserved
  222. * to prevent "drift" as other autofan control
  223. * values change.
  224. */
  225. u8 max_desired; /* Actual "max" temperature specified. Preserved
  226. * to prevent "drift" as other autofan control
  227. * values change.
  228. */
  229. };
  230. struct lm85_autofan {
  231. u8 config; /* Register value */
  232. u8 freq; /* PWM frequency, encoded */
  233. u8 min_pwm; /* Minimum PWM value, encoded */
  234. u8 min_off; /* Min PWM or OFF below "limit", flag */
  235. };
  236. /* For each registered chip, we need to keep some data in memory.
  237. The structure is dynamically allocated. */
  238. struct lm85_data {
  239. struct i2c_client client;
  240. struct device *hwmon_dev;
  241. enum chips type;
  242. struct mutex update_lock;
  243. int valid; /* !=0 if following fields are valid */
  244. unsigned long last_reading; /* In jiffies */
  245. unsigned long last_config; /* In jiffies */
  246. u8 in[8]; /* Register value */
  247. u8 in_max[8]; /* Register value */
  248. u8 in_min[8]; /* Register value */
  249. s8 temp[3]; /* Register value */
  250. s8 temp_min[3]; /* Register value */
  251. s8 temp_max[3]; /* Register value */
  252. u16 fan[4]; /* Register value */
  253. u16 fan_min[4]; /* Register value */
  254. u8 pwm[3]; /* Register value */
  255. u8 temp_ext[3]; /* Decoded values */
  256. u8 in_ext[8]; /* Decoded values */
  257. u8 vid; /* Register value */
  258. u8 vrm; /* VRM version */
  259. u32 alarms; /* Register encoding, combined */
  260. struct lm85_autofan autofan[3];
  261. struct lm85_zone zone[3];
  262. };
  263. static int lm85_attach_adapter(struct i2c_adapter *adapter);
  264. static int lm85_detect(struct i2c_adapter *adapter, int address,
  265. int kind);
  266. static int lm85_detach_client(struct i2c_client *client);
  267. static int lm85_read_value(struct i2c_client *client, u8 reg);
  268. static void lm85_write_value(struct i2c_client *client, u8 reg, int value);
  269. static struct lm85_data *lm85_update_device(struct device *dev);
  270. static struct i2c_driver lm85_driver = {
  271. .driver = {
  272. .name = "lm85",
  273. },
  274. .attach_adapter = lm85_attach_adapter,
  275. .detach_client = lm85_detach_client,
  276. };
  277. /* 4 Fans */
  278. static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
  279. char *buf)
  280. {
  281. int nr = to_sensor_dev_attr(attr)->index;
  282. struct lm85_data *data = lm85_update_device(dev);
  283. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
  284. }
  285. static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
  286. char *buf)
  287. {
  288. int nr = to_sensor_dev_attr(attr)->index;
  289. struct lm85_data *data = lm85_update_device(dev);
  290. return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
  291. }
  292. static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
  293. const char *buf, size_t count)
  294. {
  295. int nr = to_sensor_dev_attr(attr)->index;
  296. struct i2c_client *client = to_i2c_client(dev);
  297. struct lm85_data *data = i2c_get_clientdata(client);
  298. unsigned long val = simple_strtoul(buf, NULL, 10);
  299. mutex_lock(&data->update_lock);
  300. data->fan_min[nr] = FAN_TO_REG(val);
  301. lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
  302. mutex_unlock(&data->update_lock);
  303. return count;
  304. }
  305. #define show_fan_offset(offset) \
  306. static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO, \
  307. show_fan, NULL, offset - 1); \
  308. static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR, \
  309. show_fan_min, set_fan_min, offset - 1)
  310. show_fan_offset(1);
  311. show_fan_offset(2);
  312. show_fan_offset(3);
  313. show_fan_offset(4);
  314. /* vid, vrm, alarms */
  315. static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
  316. char *buf)
  317. {
  318. struct lm85_data *data = lm85_update_device(dev);
  319. int vid;
  320. if (data->type == adt7463 && (data->vid & 0x80)) {
  321. /* 6-pin VID (VRM 10) */
  322. vid = vid_from_reg(data->vid & 0x3f, data->vrm);
  323. } else {
  324. /* 5-pin VID (VRM 9) */
  325. vid = vid_from_reg(data->vid & 0x1f, data->vrm);
  326. }
  327. return sprintf(buf, "%d\n", vid);
  328. }
  329. static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
  330. static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
  331. char *buf)
  332. {
  333. struct lm85_data *data = dev_get_drvdata(dev);
  334. return sprintf(buf, "%ld\n", (long) data->vrm);
  335. }
  336. static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
  337. const char *buf, size_t count)
  338. {
  339. struct lm85_data *data = dev_get_drvdata(dev);
  340. data->vrm = simple_strtoul(buf, NULL, 10);
  341. return count;
  342. }
  343. static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
  344. static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
  345. *attr, char *buf)
  346. {
  347. struct lm85_data *data = lm85_update_device(dev);
  348. return sprintf(buf, "%u\n", data->alarms);
  349. }
  350. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
  351. static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
  352. char *buf)
  353. {
  354. int nr = to_sensor_dev_attr(attr)->index;
  355. struct lm85_data *data = lm85_update_device(dev);
  356. return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
  357. }
  358. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  359. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  360. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  361. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  362. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
  363. static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
  364. static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
  365. static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
  366. static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
  367. static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
  368. static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
  369. static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
  370. static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
  371. static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
  372. static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
  373. static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
  374. static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
  375. /* pwm */
  376. static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
  377. char *buf)
  378. {
  379. int nr = to_sensor_dev_attr(attr)->index;
  380. struct lm85_data *data = lm85_update_device(dev);
  381. return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
  382. }
  383. static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
  384. const char *buf, size_t count)
  385. {
  386. int nr = to_sensor_dev_attr(attr)->index;
  387. struct i2c_client *client = to_i2c_client(dev);
  388. struct lm85_data *data = i2c_get_clientdata(client);
  389. long val = simple_strtol(buf, NULL, 10);
  390. mutex_lock(&data->update_lock);
  391. data->pwm[nr] = PWM_TO_REG(val);
  392. lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
  393. mutex_unlock(&data->update_lock);
  394. return count;
  395. }
  396. static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
  397. *attr, char *buf)
  398. {
  399. int nr = to_sensor_dev_attr(attr)->index;
  400. struct lm85_data *data = lm85_update_device(dev);
  401. int pwm_zone, enable;
  402. pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
  403. switch (pwm_zone) {
  404. case -1: /* PWM is always at 100% */
  405. enable = 0;
  406. break;
  407. case 0: /* PWM is always at 0% */
  408. case -2: /* PWM responds to manual control */
  409. enable = 1;
  410. break;
  411. default: /* PWM in automatic mode */
  412. enable = 2;
  413. }
  414. return sprintf(buf, "%d\n", enable);
  415. }
  416. static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
  417. *attr, const char *buf, size_t count)
  418. {
  419. int nr = to_sensor_dev_attr(attr)->index;
  420. struct i2c_client *client = to_i2c_client(dev);
  421. struct lm85_data *data = i2c_get_clientdata(client);
  422. long val = simple_strtol(buf, NULL, 10);
  423. u8 config;
  424. switch (val) {
  425. case 0:
  426. config = 3;
  427. break;
  428. case 1:
  429. config = 7;
  430. break;
  431. case 2:
  432. /* Here we have to choose arbitrarily one of the 5 possible
  433. configurations; I go for the safest */
  434. config = 6;
  435. break;
  436. default:
  437. return -EINVAL;
  438. }
  439. mutex_lock(&data->update_lock);
  440. data->autofan[nr].config = lm85_read_value(client,
  441. LM85_REG_AFAN_CONFIG(nr));
  442. data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
  443. | (config << 5);
  444. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  445. data->autofan[nr].config);
  446. mutex_unlock(&data->update_lock);
  447. return count;
  448. }
  449. #define show_pwm_reg(offset) \
  450. static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR, \
  451. show_pwm, set_pwm, offset - 1); \
  452. static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR, \
  453. show_pwm_enable, set_pwm_enable, offset - 1)
  454. show_pwm_reg(1);
  455. show_pwm_reg(2);
  456. show_pwm_reg(3);
  457. /* Voltages */
  458. static ssize_t show_in(struct device *dev, struct device_attribute *attr,
  459. char *buf)
  460. {
  461. int nr = to_sensor_dev_attr(attr)->index;
  462. struct lm85_data *data = lm85_update_device(dev);
  463. return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
  464. data->in_ext[nr]));
  465. }
  466. static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
  467. char *buf)
  468. {
  469. int nr = to_sensor_dev_attr(attr)->index;
  470. struct lm85_data *data = lm85_update_device(dev);
  471. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
  472. }
  473. static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
  474. const char *buf, size_t count)
  475. {
  476. int nr = to_sensor_dev_attr(attr)->index;
  477. struct i2c_client *client = to_i2c_client(dev);
  478. struct lm85_data *data = i2c_get_clientdata(client);
  479. long val = simple_strtol(buf, NULL, 10);
  480. mutex_lock(&data->update_lock);
  481. data->in_min[nr] = INS_TO_REG(nr, val);
  482. lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
  483. mutex_unlock(&data->update_lock);
  484. return count;
  485. }
  486. static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
  487. char *buf)
  488. {
  489. int nr = to_sensor_dev_attr(attr)->index;
  490. struct lm85_data *data = lm85_update_device(dev);
  491. return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
  492. }
  493. static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
  494. const char *buf, size_t count)
  495. {
  496. int nr = to_sensor_dev_attr(attr)->index;
  497. struct i2c_client *client = to_i2c_client(dev);
  498. struct lm85_data *data = i2c_get_clientdata(client);
  499. long val = simple_strtol(buf, NULL, 10);
  500. mutex_lock(&data->update_lock);
  501. data->in_max[nr] = INS_TO_REG(nr, val);
  502. lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
  503. mutex_unlock(&data->update_lock);
  504. return count;
  505. }
  506. #define show_in_reg(offset) \
  507. static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
  508. show_in, NULL, offset); \
  509. static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR, \
  510. show_in_min, set_in_min, offset); \
  511. static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR, \
  512. show_in_max, set_in_max, offset)
  513. show_in_reg(0);
  514. show_in_reg(1);
  515. show_in_reg(2);
  516. show_in_reg(3);
  517. show_in_reg(4);
  518. show_in_reg(5);
  519. show_in_reg(6);
  520. show_in_reg(7);
  521. /* Temps */
  522. static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
  523. char *buf)
  524. {
  525. int nr = to_sensor_dev_attr(attr)->index;
  526. struct lm85_data *data = lm85_update_device(dev);
  527. return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
  528. data->temp_ext[nr]));
  529. }
  530. static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
  531. char *buf)
  532. {
  533. int nr = to_sensor_dev_attr(attr)->index;
  534. struct lm85_data *data = lm85_update_device(dev);
  535. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
  536. }
  537. static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
  538. const char *buf, size_t count)
  539. {
  540. int nr = to_sensor_dev_attr(attr)->index;
  541. struct i2c_client *client = to_i2c_client(dev);
  542. struct lm85_data *data = i2c_get_clientdata(client);
  543. long val = simple_strtol(buf, NULL, 10);
  544. mutex_lock(&data->update_lock);
  545. data->temp_min[nr] = TEMP_TO_REG(val);
  546. lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
  547. mutex_unlock(&data->update_lock);
  548. return count;
  549. }
  550. static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
  551. char *buf)
  552. {
  553. int nr = to_sensor_dev_attr(attr)->index;
  554. struct lm85_data *data = lm85_update_device(dev);
  555. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
  556. }
  557. static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
  558. const char *buf, size_t count)
  559. {
  560. int nr = to_sensor_dev_attr(attr)->index;
  561. struct i2c_client *client = to_i2c_client(dev);
  562. struct lm85_data *data = i2c_get_clientdata(client);
  563. long val = simple_strtol(buf, NULL, 10);
  564. mutex_lock(&data->update_lock);
  565. data->temp_max[nr] = TEMP_TO_REG(val);
  566. lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
  567. mutex_unlock(&data->update_lock);
  568. return count;
  569. }
  570. #define show_temp_reg(offset) \
  571. static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
  572. show_temp, NULL, offset - 1); \
  573. static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR, \
  574. show_temp_min, set_temp_min, offset - 1); \
  575. static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR, \
  576. show_temp_max, set_temp_max, offset - 1);
  577. show_temp_reg(1);
  578. show_temp_reg(2);
  579. show_temp_reg(3);
  580. /* Automatic PWM control */
  581. static ssize_t show_pwm_auto_channels(struct device *dev,
  582. struct device_attribute *attr, char *buf)
  583. {
  584. int nr = to_sensor_dev_attr(attr)->index;
  585. struct lm85_data *data = lm85_update_device(dev);
  586. return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
  587. }
  588. static ssize_t set_pwm_auto_channels(struct device *dev,
  589. struct device_attribute *attr, const char *buf, size_t count)
  590. {
  591. int nr = to_sensor_dev_attr(attr)->index;
  592. struct i2c_client *client = to_i2c_client(dev);
  593. struct lm85_data *data = i2c_get_clientdata(client);
  594. long val = simple_strtol(buf, NULL, 10);
  595. mutex_lock(&data->update_lock);
  596. data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
  597. | ZONE_TO_REG(val);
  598. lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
  599. data->autofan[nr].config);
  600. mutex_unlock(&data->update_lock);
  601. return count;
  602. }
  603. static ssize_t show_pwm_auto_pwm_min(struct device *dev,
  604. struct device_attribute *attr, char *buf)
  605. {
  606. int nr = to_sensor_dev_attr(attr)->index;
  607. struct lm85_data *data = lm85_update_device(dev);
  608. return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
  609. }
  610. static ssize_t set_pwm_auto_pwm_min(struct device *dev,
  611. struct device_attribute *attr, const char *buf, size_t count)
  612. {
  613. int nr = to_sensor_dev_attr(attr)->index;
  614. struct i2c_client *client = to_i2c_client(dev);
  615. struct lm85_data *data = i2c_get_clientdata(client);
  616. long val = simple_strtol(buf, NULL, 10);
  617. mutex_lock(&data->update_lock);
  618. data->autofan[nr].min_pwm = PWM_TO_REG(val);
  619. lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
  620. data->autofan[nr].min_pwm);
  621. mutex_unlock(&data->update_lock);
  622. return count;
  623. }
  624. static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
  625. struct device_attribute *attr, char *buf)
  626. {
  627. int nr = to_sensor_dev_attr(attr)->index;
  628. struct lm85_data *data = lm85_update_device(dev);
  629. return sprintf(buf, "%d\n", data->autofan[nr].min_off);
  630. }
  631. static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
  632. struct device_attribute *attr, const char *buf, size_t count)
  633. {
  634. int nr = to_sensor_dev_attr(attr)->index;
  635. struct i2c_client *client = to_i2c_client(dev);
  636. struct lm85_data *data = i2c_get_clientdata(client);
  637. long val = simple_strtol(buf, NULL, 10);
  638. u8 tmp;
  639. mutex_lock(&data->update_lock);
  640. data->autofan[nr].min_off = val;
  641. tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  642. tmp &= ~(0x20 << nr);
  643. if (data->autofan[nr].min_off)
  644. tmp |= 0x20 << nr;
  645. lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
  646. mutex_unlock(&data->update_lock);
  647. return count;
  648. }
  649. static ssize_t show_pwm_auto_pwm_freq(struct device *dev,
  650. struct device_attribute *attr, char *buf)
  651. {
  652. int nr = to_sensor_dev_attr(attr)->index;
  653. struct lm85_data *data = lm85_update_device(dev);
  654. return sprintf(buf, "%d\n", FREQ_FROM_REG(data->autofan[nr].freq));
  655. }
  656. static ssize_t set_pwm_auto_pwm_freq(struct device *dev,
  657. struct device_attribute *attr, const char *buf, size_t count)
  658. {
  659. int nr = to_sensor_dev_attr(attr)->index;
  660. struct i2c_client *client = to_i2c_client(dev);
  661. struct lm85_data *data = i2c_get_clientdata(client);
  662. long val = simple_strtol(buf, NULL, 10);
  663. mutex_lock(&data->update_lock);
  664. data->autofan[nr].freq = FREQ_TO_REG(val);
  665. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  666. (data->zone[nr].range << 4)
  667. | data->autofan[nr].freq);
  668. mutex_unlock(&data->update_lock);
  669. return count;
  670. }
  671. #define pwm_auto(offset) \
  672. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels, \
  673. S_IRUGO | S_IWUSR, show_pwm_auto_channels, \
  674. set_pwm_auto_channels, offset - 1); \
  675. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min, \
  676. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min, \
  677. set_pwm_auto_pwm_min, offset - 1); \
  678. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl, \
  679. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl, \
  680. set_pwm_auto_pwm_minctl, offset - 1); \
  681. static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_freq, \
  682. S_IRUGO | S_IWUSR, show_pwm_auto_pwm_freq, \
  683. set_pwm_auto_pwm_freq, offset - 1);
  684. pwm_auto(1);
  685. pwm_auto(2);
  686. pwm_auto(3);
  687. /* Temperature settings for automatic PWM control */
  688. static ssize_t show_temp_auto_temp_off(struct device *dev,
  689. struct device_attribute *attr, char *buf)
  690. {
  691. int nr = to_sensor_dev_attr(attr)->index;
  692. struct lm85_data *data = lm85_update_device(dev);
  693. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
  694. HYST_FROM_REG(data->zone[nr].hyst));
  695. }
  696. static ssize_t set_temp_auto_temp_off(struct device *dev,
  697. struct device_attribute *attr, const char *buf, size_t count)
  698. {
  699. int nr = to_sensor_dev_attr(attr)->index;
  700. struct i2c_client *client = to_i2c_client(dev);
  701. struct lm85_data *data = i2c_get_clientdata(client);
  702. int min;
  703. long val = simple_strtol(buf, NULL, 10);
  704. mutex_lock(&data->update_lock);
  705. min = TEMP_FROM_REG(data->zone[nr].limit);
  706. data->zone[nr].off_desired = TEMP_TO_REG(val);
  707. data->zone[nr].hyst = HYST_TO_REG(min - val);
  708. if (nr == 0 || nr == 1) {
  709. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  710. (data->zone[0].hyst << 4)
  711. | data->zone[1].hyst);
  712. } else {
  713. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  714. (data->zone[2].hyst << 4));
  715. }
  716. mutex_unlock(&data->update_lock);
  717. return count;
  718. }
  719. static ssize_t show_temp_auto_temp_min(struct device *dev,
  720. struct device_attribute *attr, char *buf)
  721. {
  722. int nr = to_sensor_dev_attr(attr)->index;
  723. struct lm85_data *data = lm85_update_device(dev);
  724. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
  725. }
  726. static ssize_t set_temp_auto_temp_min(struct device *dev,
  727. struct device_attribute *attr, const char *buf, size_t count)
  728. {
  729. int nr = to_sensor_dev_attr(attr)->index;
  730. struct i2c_client *client = to_i2c_client(dev);
  731. struct lm85_data *data = i2c_get_clientdata(client);
  732. long val = simple_strtol(buf, NULL, 10);
  733. mutex_lock(&data->update_lock);
  734. data->zone[nr].limit = TEMP_TO_REG(val);
  735. lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
  736. data->zone[nr].limit);
  737. /* Update temp_auto_max and temp_auto_range */
  738. data->zone[nr].range = RANGE_TO_REG(
  739. TEMP_FROM_REG(data->zone[nr].max_desired) -
  740. TEMP_FROM_REG(data->zone[nr].limit));
  741. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  742. ((data->zone[nr].range & 0x0f) << 4)
  743. | (data->autofan[nr].freq & 0x07));
  744. /* Update temp_auto_hyst and temp_auto_off */
  745. data->zone[nr].hyst = HYST_TO_REG(TEMP_FROM_REG(
  746. data->zone[nr].limit) - TEMP_FROM_REG(
  747. data->zone[nr].off_desired));
  748. if (nr == 0 || nr == 1) {
  749. lm85_write_value(client, LM85_REG_AFAN_HYST1,
  750. (data->zone[0].hyst << 4)
  751. | data->zone[1].hyst);
  752. } else {
  753. lm85_write_value(client, LM85_REG_AFAN_HYST2,
  754. (data->zone[2].hyst << 4));
  755. }
  756. mutex_unlock(&data->update_lock);
  757. return count;
  758. }
  759. static ssize_t show_temp_auto_temp_max(struct device *dev,
  760. struct device_attribute *attr, char *buf)
  761. {
  762. int nr = to_sensor_dev_attr(attr)->index;
  763. struct lm85_data *data = lm85_update_device(dev);
  764. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
  765. RANGE_FROM_REG(data->zone[nr].range));
  766. }
  767. static ssize_t set_temp_auto_temp_max(struct device *dev,
  768. struct device_attribute *attr, const char *buf, size_t count)
  769. {
  770. int nr = to_sensor_dev_attr(attr)->index;
  771. struct i2c_client *client = to_i2c_client(dev);
  772. struct lm85_data *data = i2c_get_clientdata(client);
  773. int min;
  774. long val = simple_strtol(buf, NULL, 10);
  775. mutex_lock(&data->update_lock);
  776. min = TEMP_FROM_REG(data->zone[nr].limit);
  777. data->zone[nr].max_desired = TEMP_TO_REG(val);
  778. data->zone[nr].range = RANGE_TO_REG(
  779. val - min);
  780. lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
  781. ((data->zone[nr].range & 0x0f) << 4)
  782. | (data->autofan[nr].freq & 0x07));
  783. mutex_unlock(&data->update_lock);
  784. return count;
  785. }
  786. static ssize_t show_temp_auto_temp_crit(struct device *dev,
  787. struct device_attribute *attr, char *buf)
  788. {
  789. int nr = to_sensor_dev_attr(attr)->index;
  790. struct lm85_data *data = lm85_update_device(dev);
  791. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
  792. }
  793. static ssize_t set_temp_auto_temp_crit(struct device *dev,
  794. struct device_attribute *attr, const char *buf, size_t count)
  795. {
  796. int nr = to_sensor_dev_attr(attr)->index;
  797. struct i2c_client *client = to_i2c_client(dev);
  798. struct lm85_data *data = i2c_get_clientdata(client);
  799. long val = simple_strtol(buf, NULL, 10);
  800. mutex_lock(&data->update_lock);
  801. data->zone[nr].critical = TEMP_TO_REG(val);
  802. lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
  803. data->zone[nr].critical);
  804. mutex_unlock(&data->update_lock);
  805. return count;
  806. }
  807. #define temp_auto(offset) \
  808. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off, \
  809. S_IRUGO | S_IWUSR, show_temp_auto_temp_off, \
  810. set_temp_auto_temp_off, offset - 1); \
  811. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min, \
  812. S_IRUGO | S_IWUSR, show_temp_auto_temp_min, \
  813. set_temp_auto_temp_min, offset - 1); \
  814. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max, \
  815. S_IRUGO | S_IWUSR, show_temp_auto_temp_max, \
  816. set_temp_auto_temp_max, offset - 1); \
  817. static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit, \
  818. S_IRUGO | S_IWUSR, show_temp_auto_temp_crit, \
  819. set_temp_auto_temp_crit, offset - 1);
  820. temp_auto(1);
  821. temp_auto(2);
  822. temp_auto(3);
  823. static int lm85_attach_adapter(struct i2c_adapter *adapter)
  824. {
  825. if (!(adapter->class & I2C_CLASS_HWMON))
  826. return 0;
  827. return i2c_probe(adapter, &addr_data, lm85_detect);
  828. }
  829. static struct attribute *lm85_attributes[] = {
  830. &sensor_dev_attr_fan1_input.dev_attr.attr,
  831. &sensor_dev_attr_fan2_input.dev_attr.attr,
  832. &sensor_dev_attr_fan3_input.dev_attr.attr,
  833. &sensor_dev_attr_fan4_input.dev_attr.attr,
  834. &sensor_dev_attr_fan1_min.dev_attr.attr,
  835. &sensor_dev_attr_fan2_min.dev_attr.attr,
  836. &sensor_dev_attr_fan3_min.dev_attr.attr,
  837. &sensor_dev_attr_fan4_min.dev_attr.attr,
  838. &sensor_dev_attr_fan1_alarm.dev_attr.attr,
  839. &sensor_dev_attr_fan2_alarm.dev_attr.attr,
  840. &sensor_dev_attr_fan3_alarm.dev_attr.attr,
  841. &sensor_dev_attr_fan4_alarm.dev_attr.attr,
  842. &sensor_dev_attr_pwm1.dev_attr.attr,
  843. &sensor_dev_attr_pwm2.dev_attr.attr,
  844. &sensor_dev_attr_pwm3.dev_attr.attr,
  845. &sensor_dev_attr_pwm1_enable.dev_attr.attr,
  846. &sensor_dev_attr_pwm2_enable.dev_attr.attr,
  847. &sensor_dev_attr_pwm3_enable.dev_attr.attr,
  848. &sensor_dev_attr_in0_input.dev_attr.attr,
  849. &sensor_dev_attr_in1_input.dev_attr.attr,
  850. &sensor_dev_attr_in2_input.dev_attr.attr,
  851. &sensor_dev_attr_in3_input.dev_attr.attr,
  852. &sensor_dev_attr_in0_min.dev_attr.attr,
  853. &sensor_dev_attr_in1_min.dev_attr.attr,
  854. &sensor_dev_attr_in2_min.dev_attr.attr,
  855. &sensor_dev_attr_in3_min.dev_attr.attr,
  856. &sensor_dev_attr_in0_max.dev_attr.attr,
  857. &sensor_dev_attr_in1_max.dev_attr.attr,
  858. &sensor_dev_attr_in2_max.dev_attr.attr,
  859. &sensor_dev_attr_in3_max.dev_attr.attr,
  860. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  861. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  862. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  863. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  864. &sensor_dev_attr_temp1_input.dev_attr.attr,
  865. &sensor_dev_attr_temp2_input.dev_attr.attr,
  866. &sensor_dev_attr_temp3_input.dev_attr.attr,
  867. &sensor_dev_attr_temp1_min.dev_attr.attr,
  868. &sensor_dev_attr_temp2_min.dev_attr.attr,
  869. &sensor_dev_attr_temp3_min.dev_attr.attr,
  870. &sensor_dev_attr_temp1_max.dev_attr.attr,
  871. &sensor_dev_attr_temp2_max.dev_attr.attr,
  872. &sensor_dev_attr_temp3_max.dev_attr.attr,
  873. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  874. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  875. &sensor_dev_attr_temp3_alarm.dev_attr.attr,
  876. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  877. &sensor_dev_attr_temp3_fault.dev_attr.attr,
  878. &sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
  879. &sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
  880. &sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
  881. &sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
  882. &sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
  883. &sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
  884. &sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
  885. &sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
  886. &sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
  887. &sensor_dev_attr_pwm1_auto_pwm_freq.dev_attr.attr,
  888. &sensor_dev_attr_pwm2_auto_pwm_freq.dev_attr.attr,
  889. &sensor_dev_attr_pwm3_auto_pwm_freq.dev_attr.attr,
  890. &sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
  891. &sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
  892. &sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
  893. &sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
  894. &sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
  895. &sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
  896. &sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
  897. &sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
  898. &sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
  899. &sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
  900. &sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
  901. &sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
  902. &dev_attr_vrm.attr,
  903. &dev_attr_cpu0_vid.attr,
  904. &dev_attr_alarms.attr,
  905. NULL
  906. };
  907. static const struct attribute_group lm85_group = {
  908. .attrs = lm85_attributes,
  909. };
  910. static struct attribute *lm85_attributes_in4[] = {
  911. &sensor_dev_attr_in4_input.dev_attr.attr,
  912. &sensor_dev_attr_in4_min.dev_attr.attr,
  913. &sensor_dev_attr_in4_max.dev_attr.attr,
  914. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  915. NULL
  916. };
  917. static const struct attribute_group lm85_group_in4 = {
  918. .attrs = lm85_attributes_in4,
  919. };
  920. static struct attribute *lm85_attributes_in567[] = {
  921. &sensor_dev_attr_in5_input.dev_attr.attr,
  922. &sensor_dev_attr_in6_input.dev_attr.attr,
  923. &sensor_dev_attr_in7_input.dev_attr.attr,
  924. &sensor_dev_attr_in5_min.dev_attr.attr,
  925. &sensor_dev_attr_in6_min.dev_attr.attr,
  926. &sensor_dev_attr_in7_min.dev_attr.attr,
  927. &sensor_dev_attr_in5_max.dev_attr.attr,
  928. &sensor_dev_attr_in6_max.dev_attr.attr,
  929. &sensor_dev_attr_in7_max.dev_attr.attr,
  930. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  931. &sensor_dev_attr_in6_alarm.dev_attr.attr,
  932. &sensor_dev_attr_in7_alarm.dev_attr.attr,
  933. NULL
  934. };
  935. static const struct attribute_group lm85_group_in567 = {
  936. .attrs = lm85_attributes_in567,
  937. };
  938. static void lm85_init_client(struct i2c_client *client)
  939. {
  940. int value;
  941. /* Start monitoring if needed */
  942. value = lm85_read_value(client, LM85_REG_CONFIG);
  943. if (!(value & 0x01)) {
  944. dev_info(&client->dev, "Starting monitoring\n");
  945. lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
  946. }
  947. /* Warn about unusual configuration bits */
  948. if (value & 0x02)
  949. dev_warn(&client->dev, "Device configuration is locked\n");
  950. if (!(value & 0x04))
  951. dev_warn(&client->dev, "Device is not ready\n");
  952. }
  953. static int lm85_detect(struct i2c_adapter *adapter, int address,
  954. int kind)
  955. {
  956. int company, verstep;
  957. struct i2c_client *client;
  958. struct lm85_data *data;
  959. int err = 0;
  960. const char *type_name;
  961. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
  962. /* We need to be able to do byte I/O */
  963. goto ERROR0;
  964. }
  965. /* OK. For now, we presume we have a valid client. We now create the
  966. client structure, even though we cannot fill it completely yet.
  967. But it allows us to access lm85_{read,write}_value. */
  968. if (!(data = kzalloc(sizeof(struct lm85_data), GFP_KERNEL))) {
  969. err = -ENOMEM;
  970. goto ERROR0;
  971. }
  972. client = &data->client;
  973. i2c_set_clientdata(client, data);
  974. client->addr = address;
  975. client->adapter = adapter;
  976. client->driver = &lm85_driver;
  977. /* Now, we do the remaining detection. */
  978. company = lm85_read_value(client, LM85_REG_COMPANY);
  979. verstep = lm85_read_value(client, LM85_REG_VERSTEP);
  980. dev_dbg(&adapter->dev, "Detecting device at %d,0x%02x with"
  981. " COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
  982. i2c_adapter_id(client->adapter), client->addr,
  983. company, verstep);
  984. /* If auto-detecting, Determine the chip type. */
  985. if (kind <= 0) {
  986. dev_dbg(&adapter->dev, "Autodetecting device at %d,0x%02x ...\n",
  987. i2c_adapter_id(adapter), address);
  988. if (company == LM85_COMPANY_NATIONAL
  989. && verstep == LM85_VERSTEP_LM85C) {
  990. kind = lm85c;
  991. } else if (company == LM85_COMPANY_NATIONAL
  992. && verstep == LM85_VERSTEP_LM85B) {
  993. kind = lm85b;
  994. } else if (company == LM85_COMPANY_NATIONAL
  995. && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
  996. dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
  997. " Defaulting to LM85.\n", verstep);
  998. kind = any_chip;
  999. } else if (company == LM85_COMPANY_ANALOG_DEV
  1000. && verstep == LM85_VERSTEP_ADM1027) {
  1001. kind = adm1027;
  1002. } else if (company == LM85_COMPANY_ANALOG_DEV
  1003. && (verstep == LM85_VERSTEP_ADT7463
  1004. || verstep == LM85_VERSTEP_ADT7463C)) {
  1005. kind = adt7463;
  1006. } else if (company == LM85_COMPANY_ANALOG_DEV
  1007. && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
  1008. dev_err(&adapter->dev, "Unrecognized version/stepping 0x%02x"
  1009. " Defaulting to Generic LM85.\n", verstep);
  1010. kind = any_chip;
  1011. } else if (company == LM85_COMPANY_SMSC
  1012. && (verstep == LM85_VERSTEP_EMC6D100_A0
  1013. || verstep == LM85_VERSTEP_EMC6D100_A1)) {
  1014. /* Unfortunately, we can't tell a '100 from a '101
  1015. * from the registers. Since a '101 is a '100
  1016. * in a package with fewer pins and therefore no
  1017. * 3.3V, 1.5V or 1.8V inputs, perhaps if those
  1018. * inputs read 0, then it's a '101.
  1019. */
  1020. kind = emc6d100;
  1021. } else if (company == LM85_COMPANY_SMSC
  1022. && verstep == LM85_VERSTEP_EMC6D102) {
  1023. kind = emc6d102;
  1024. } else if (company == LM85_COMPANY_SMSC
  1025. && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
  1026. dev_err(&adapter->dev, "lm85: Detected SMSC chip\n");
  1027. dev_err(&adapter->dev, "lm85: Unrecognized version/stepping 0x%02x"
  1028. " Defaulting to Generic LM85.\n", verstep);
  1029. kind = any_chip;
  1030. } else if (kind == any_chip
  1031. && (verstep & LM85_VERSTEP_VMASK) == LM85_VERSTEP_GENERIC) {
  1032. dev_err(&adapter->dev, "Generic LM85 Version 6 detected\n");
  1033. /* Leave kind as "any_chip" */
  1034. } else {
  1035. dev_dbg(&adapter->dev, "Autodetection failed\n");
  1036. /* Not an LM85... */
  1037. if (kind == any_chip) { /* User used force=x,y */
  1038. dev_err(&adapter->dev, "Generic LM85 Version 6 not"
  1039. " found at %d,0x%02x. Try force_lm85c.\n",
  1040. i2c_adapter_id(adapter), address);
  1041. }
  1042. err = 0;
  1043. goto ERROR1;
  1044. }
  1045. }
  1046. /* Fill in the chip specific driver values */
  1047. switch (kind) {
  1048. case lm85b:
  1049. type_name = "lm85b";
  1050. break;
  1051. case lm85c:
  1052. type_name = "lm85c";
  1053. break;
  1054. case adm1027:
  1055. type_name = "adm1027";
  1056. break;
  1057. case adt7463:
  1058. type_name = "adt7463";
  1059. break;
  1060. case emc6d100:
  1061. type_name = "emc6d100";
  1062. break;
  1063. case emc6d102:
  1064. type_name = "emc6d102";
  1065. break;
  1066. default:
  1067. type_name = "lm85";
  1068. }
  1069. strlcpy(client->name, type_name, I2C_NAME_SIZE);
  1070. /* Fill in the remaining client fields */
  1071. data->type = kind;
  1072. mutex_init(&data->update_lock);
  1073. /* Tell the I2C layer a new client has arrived */
  1074. err = i2c_attach_client(client);
  1075. if (err)
  1076. goto ERROR1;
  1077. /* Set the VRM version */
  1078. data->vrm = vid_which_vrm();
  1079. /* Initialize the LM85 chip */
  1080. lm85_init_client(client);
  1081. /* Register sysfs hooks */
  1082. err = sysfs_create_group(&client->dev.kobj, &lm85_group);
  1083. if (err)
  1084. goto ERROR2;
  1085. /* The ADT7463 has an optional VRM 10 mode where pin 21 is used
  1086. as a sixth digital VID input rather than an analog input. */
  1087. data->vid = lm85_read_value(client, LM85_REG_VID);
  1088. if (!(kind == adt7463 && (data->vid & 0x80)))
  1089. if ((err = sysfs_create_group(&client->dev.kobj,
  1090. &lm85_group_in4)))
  1091. goto ERROR3;
  1092. /* The EMC6D100 has 3 additional voltage inputs */
  1093. if (kind == emc6d100)
  1094. if ((err = sysfs_create_group(&client->dev.kobj,
  1095. &lm85_group_in567)))
  1096. goto ERROR3;
  1097. data->hwmon_dev = hwmon_device_register(&client->dev);
  1098. if (IS_ERR(data->hwmon_dev)) {
  1099. err = PTR_ERR(data->hwmon_dev);
  1100. goto ERROR3;
  1101. }
  1102. return 0;
  1103. /* Error out and cleanup code */
  1104. ERROR3:
  1105. sysfs_remove_group(&client->dev.kobj, &lm85_group);
  1106. sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
  1107. if (kind == emc6d100)
  1108. sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
  1109. ERROR2:
  1110. i2c_detach_client(client);
  1111. ERROR1:
  1112. kfree(data);
  1113. ERROR0:
  1114. return err;
  1115. }
  1116. static int lm85_detach_client(struct i2c_client *client)
  1117. {
  1118. struct lm85_data *data = i2c_get_clientdata(client);
  1119. hwmon_device_unregister(data->hwmon_dev);
  1120. sysfs_remove_group(&client->dev.kobj, &lm85_group);
  1121. sysfs_remove_group(&client->dev.kobj, &lm85_group_in4);
  1122. if (data->type == emc6d100)
  1123. sysfs_remove_group(&client->dev.kobj, &lm85_group_in567);
  1124. i2c_detach_client(client);
  1125. kfree(data);
  1126. return 0;
  1127. }
  1128. static int lm85_read_value(struct i2c_client *client, u8 reg)
  1129. {
  1130. int res;
  1131. /* What size location is it? */
  1132. switch (reg) {
  1133. case LM85_REG_FAN(0): /* Read WORD data */
  1134. case LM85_REG_FAN(1):
  1135. case LM85_REG_FAN(2):
  1136. case LM85_REG_FAN(3):
  1137. case LM85_REG_FAN_MIN(0):
  1138. case LM85_REG_FAN_MIN(1):
  1139. case LM85_REG_FAN_MIN(2):
  1140. case LM85_REG_FAN_MIN(3):
  1141. case LM85_REG_ALARM1: /* Read both bytes at once */
  1142. res = i2c_smbus_read_byte_data(client, reg) & 0xff;
  1143. res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
  1144. break;
  1145. default: /* Read BYTE data */
  1146. res = i2c_smbus_read_byte_data(client, reg);
  1147. break;
  1148. }
  1149. return res;
  1150. }
  1151. static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
  1152. {
  1153. switch (reg) {
  1154. case LM85_REG_FAN(0): /* Write WORD data */
  1155. case LM85_REG_FAN(1):
  1156. case LM85_REG_FAN(2):
  1157. case LM85_REG_FAN(3):
  1158. case LM85_REG_FAN_MIN(0):
  1159. case LM85_REG_FAN_MIN(1):
  1160. case LM85_REG_FAN_MIN(2):
  1161. case LM85_REG_FAN_MIN(3):
  1162. /* NOTE: ALARM is read only, so not included here */
  1163. i2c_smbus_write_byte_data(client, reg, value & 0xff);
  1164. i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
  1165. break;
  1166. default: /* Write BYTE data */
  1167. i2c_smbus_write_byte_data(client, reg, value);
  1168. break;
  1169. }
  1170. }
  1171. static struct lm85_data *lm85_update_device(struct device *dev)
  1172. {
  1173. struct i2c_client *client = to_i2c_client(dev);
  1174. struct lm85_data *data = i2c_get_clientdata(client);
  1175. int i;
  1176. mutex_lock(&data->update_lock);
  1177. if (!data->valid ||
  1178. time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
  1179. /* Things that change quickly */
  1180. dev_dbg(&client->dev, "Reading sensor values\n");
  1181. /* Have to read extended bits first to "freeze" the
  1182. * more significant bits that are read later.
  1183. * There are 2 additional resolution bits per channel and we
  1184. * have room for 4, so we shift them to the left.
  1185. */
  1186. if (data->type == adm1027 || data->type == adt7463) {
  1187. int ext1 = lm85_read_value(client,
  1188. ADM1027_REG_EXTEND_ADC1);
  1189. int ext2 = lm85_read_value(client,
  1190. ADM1027_REG_EXTEND_ADC2);
  1191. int val = (ext1 << 8) + ext2;
  1192. for (i = 0; i <= 4; i++)
  1193. data->in_ext[i] =
  1194. ((val >> (i * 2)) & 0x03) << 2;
  1195. for (i = 0; i <= 2; i++)
  1196. data->temp_ext[i] =
  1197. (val >> ((i + 4) * 2)) & 0x0c;
  1198. }
  1199. data->vid = lm85_read_value(client, LM85_REG_VID);
  1200. for (i = 0; i <= 3; ++i) {
  1201. data->in[i] =
  1202. lm85_read_value(client, LM85_REG_IN(i));
  1203. data->fan[i] =
  1204. lm85_read_value(client, LM85_REG_FAN(i));
  1205. }
  1206. if (!(data->type == adt7463 && (data->vid & 0x80))) {
  1207. data->in[4] = lm85_read_value(client,
  1208. LM85_REG_IN(4));
  1209. }
  1210. for (i = 0; i <= 2; ++i) {
  1211. data->temp[i] =
  1212. lm85_read_value(client, LM85_REG_TEMP(i));
  1213. data->pwm[i] =
  1214. lm85_read_value(client, LM85_REG_PWM(i));
  1215. }
  1216. data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
  1217. if (data->type == emc6d100) {
  1218. /* Three more voltage sensors */
  1219. for (i = 5; i <= 7; ++i) {
  1220. data->in[i] = lm85_read_value(client,
  1221. EMC6D100_REG_IN(i));
  1222. }
  1223. /* More alarm bits */
  1224. data->alarms |= lm85_read_value(client,
  1225. EMC6D100_REG_ALARM3) << 16;
  1226. } else if (data->type == emc6d102) {
  1227. /* Have to read LSB bits after the MSB ones because
  1228. the reading of the MSB bits has frozen the
  1229. LSBs (backward from the ADM1027).
  1230. */
  1231. int ext1 = lm85_read_value(client,
  1232. EMC6D102_REG_EXTEND_ADC1);
  1233. int ext2 = lm85_read_value(client,
  1234. EMC6D102_REG_EXTEND_ADC2);
  1235. int ext3 = lm85_read_value(client,
  1236. EMC6D102_REG_EXTEND_ADC3);
  1237. int ext4 = lm85_read_value(client,
  1238. EMC6D102_REG_EXTEND_ADC4);
  1239. data->in_ext[0] = ext3 & 0x0f;
  1240. data->in_ext[1] = ext4 & 0x0f;
  1241. data->in_ext[2] = ext4 >> 4;
  1242. data->in_ext[3] = ext3 >> 4;
  1243. data->in_ext[4] = ext2 >> 4;
  1244. data->temp_ext[0] = ext1 & 0x0f;
  1245. data->temp_ext[1] = ext2 & 0x0f;
  1246. data->temp_ext[2] = ext1 >> 4;
  1247. }
  1248. data->last_reading = jiffies;
  1249. } /* last_reading */
  1250. if (!data->valid ||
  1251. time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
  1252. /* Things that don't change often */
  1253. dev_dbg(&client->dev, "Reading config values\n");
  1254. for (i = 0; i <= 3; ++i) {
  1255. data->in_min[i] =
  1256. lm85_read_value(client, LM85_REG_IN_MIN(i));
  1257. data->in_max[i] =
  1258. lm85_read_value(client, LM85_REG_IN_MAX(i));
  1259. data->fan_min[i] =
  1260. lm85_read_value(client, LM85_REG_FAN_MIN(i));
  1261. }
  1262. if (!(data->type == adt7463 && (data->vid & 0x80))) {
  1263. data->in_min[4] = lm85_read_value(client,
  1264. LM85_REG_IN_MIN(4));
  1265. data->in_max[4] = lm85_read_value(client,
  1266. LM85_REG_IN_MAX(4));
  1267. }
  1268. if (data->type == emc6d100) {
  1269. for (i = 5; i <= 7; ++i) {
  1270. data->in_min[i] = lm85_read_value(client,
  1271. EMC6D100_REG_IN_MIN(i));
  1272. data->in_max[i] = lm85_read_value(client,
  1273. EMC6D100_REG_IN_MAX(i));
  1274. }
  1275. }
  1276. for (i = 0; i <= 2; ++i) {
  1277. int val;
  1278. data->temp_min[i] =
  1279. lm85_read_value(client, LM85_REG_TEMP_MIN(i));
  1280. data->temp_max[i] =
  1281. lm85_read_value(client, LM85_REG_TEMP_MAX(i));
  1282. data->autofan[i].config =
  1283. lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
  1284. val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
  1285. data->autofan[i].freq = val & 0x07;
  1286. data->zone[i].range = val >> 4;
  1287. data->autofan[i].min_pwm =
  1288. lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
  1289. data->zone[i].limit =
  1290. lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
  1291. data->zone[i].critical =
  1292. lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
  1293. }
  1294. i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
  1295. data->autofan[0].min_off = (i & 0x20) != 0;
  1296. data->autofan[1].min_off = (i & 0x40) != 0;
  1297. data->autofan[2].min_off = (i & 0x80) != 0;
  1298. i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
  1299. data->zone[0].hyst = i >> 4;
  1300. data->zone[1].hyst = i & 0x0f;
  1301. i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
  1302. data->zone[2].hyst = i >> 4;
  1303. data->last_config = jiffies;
  1304. } /* last_config */
  1305. data->valid = 1;
  1306. mutex_unlock(&data->update_lock);
  1307. return data;
  1308. }
  1309. static int __init sm_lm85_init(void)
  1310. {
  1311. return i2c_add_driver(&lm85_driver);
  1312. }
  1313. static void __exit sm_lm85_exit(void)
  1314. {
  1315. i2c_del_driver(&lm85_driver);
  1316. }
  1317. MODULE_LICENSE("GPL");
  1318. MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
  1319. "Margit Schubert-While <margitsw@t-online.de>, "
  1320. "Justin Thiessen <jthiessen@penguincomputing.com>");
  1321. MODULE_DESCRIPTION("LM85-B, LM85-C driver");
  1322. module_init(sm_lm85_init);
  1323. module_exit(sm_lm85_exit);