random.c 49 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657
  1. /*
  2. * random.c -- A strong random number generator
  3. *
  4. * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
  5. *
  6. * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
  7. * rights reserved.
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. * 1. Redistributions of source code must retain the above copyright
  13. * notice, and the entire permission notice in its entirety,
  14. * including the disclaimer of warranties.
  15. * 2. Redistributions in binary form must reproduce the above copyright
  16. * notice, this list of conditions and the following disclaimer in the
  17. * documentation and/or other materials provided with the distribution.
  18. * 3. The name of the author may not be used to endorse or promote
  19. * products derived from this software without specific prior
  20. * written permission.
  21. *
  22. * ALTERNATIVELY, this product may be distributed under the terms of
  23. * the GNU General Public License, in which case the provisions of the GPL are
  24. * required INSTEAD OF the above restrictions. (This clause is
  25. * necessary due to a potential bad interaction between the GPL and
  26. * the restrictions contained in a BSD-style copyright.)
  27. *
  28. * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  29. * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  30. * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  31. * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
  32. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  33. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  34. * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  35. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  36. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  38. * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  39. * DAMAGE.
  40. */
  41. /*
  42. * (now, with legal B.S. out of the way.....)
  43. *
  44. * This routine gathers environmental noise from device drivers, etc.,
  45. * and returns good random numbers, suitable for cryptographic use.
  46. * Besides the obvious cryptographic uses, these numbers are also good
  47. * for seeding TCP sequence numbers, and other places where it is
  48. * desirable to have numbers which are not only random, but hard to
  49. * predict by an attacker.
  50. *
  51. * Theory of operation
  52. * ===================
  53. *
  54. * Computers are very predictable devices. Hence it is extremely hard
  55. * to produce truly random numbers on a computer --- as opposed to
  56. * pseudo-random numbers, which can easily generated by using a
  57. * algorithm. Unfortunately, it is very easy for attackers to guess
  58. * the sequence of pseudo-random number generators, and for some
  59. * applications this is not acceptable. So instead, we must try to
  60. * gather "environmental noise" from the computer's environment, which
  61. * must be hard for outside attackers to observe, and use that to
  62. * generate random numbers. In a Unix environment, this is best done
  63. * from inside the kernel.
  64. *
  65. * Sources of randomness from the environment include inter-keyboard
  66. * timings, inter-interrupt timings from some interrupts, and other
  67. * events which are both (a) non-deterministic and (b) hard for an
  68. * outside observer to measure. Randomness from these sources are
  69. * added to an "entropy pool", which is mixed using a CRC-like function.
  70. * This is not cryptographically strong, but it is adequate assuming
  71. * the randomness is not chosen maliciously, and it is fast enough that
  72. * the overhead of doing it on every interrupt is very reasonable.
  73. * As random bytes are mixed into the entropy pool, the routines keep
  74. * an *estimate* of how many bits of randomness have been stored into
  75. * the random number generator's internal state.
  76. *
  77. * When random bytes are desired, they are obtained by taking the SHA
  78. * hash of the contents of the "entropy pool". The SHA hash avoids
  79. * exposing the internal state of the entropy pool. It is believed to
  80. * be computationally infeasible to derive any useful information
  81. * about the input of SHA from its output. Even if it is possible to
  82. * analyze SHA in some clever way, as long as the amount of data
  83. * returned from the generator is less than the inherent entropy in
  84. * the pool, the output data is totally unpredictable. For this
  85. * reason, the routine decreases its internal estimate of how many
  86. * bits of "true randomness" are contained in the entropy pool as it
  87. * outputs random numbers.
  88. *
  89. * If this estimate goes to zero, the routine can still generate
  90. * random numbers; however, an attacker may (at least in theory) be
  91. * able to infer the future output of the generator from prior
  92. * outputs. This requires successful cryptanalysis of SHA, which is
  93. * not believed to be feasible, but there is a remote possibility.
  94. * Nonetheless, these numbers should be useful for the vast majority
  95. * of purposes.
  96. *
  97. * Exported interfaces ---- output
  98. * ===============================
  99. *
  100. * There are three exported interfaces; the first is one designed to
  101. * be used from within the kernel:
  102. *
  103. * void get_random_bytes(void *buf, int nbytes);
  104. *
  105. * This interface will return the requested number of random bytes,
  106. * and place it in the requested buffer.
  107. *
  108. * The two other interfaces are two character devices /dev/random and
  109. * /dev/urandom. /dev/random is suitable for use when very high
  110. * quality randomness is desired (for example, for key generation or
  111. * one-time pads), as it will only return a maximum of the number of
  112. * bits of randomness (as estimated by the random number generator)
  113. * contained in the entropy pool.
  114. *
  115. * The /dev/urandom device does not have this limit, and will return
  116. * as many bytes as are requested. As more and more random bytes are
  117. * requested without giving time for the entropy pool to recharge,
  118. * this will result in random numbers that are merely cryptographically
  119. * strong. For many applications, however, this is acceptable.
  120. *
  121. * Exported interfaces ---- input
  122. * ==============================
  123. *
  124. * The current exported interfaces for gathering environmental noise
  125. * from the devices are:
  126. *
  127. * void add_input_randomness(unsigned int type, unsigned int code,
  128. * unsigned int value);
  129. * void add_interrupt_randomness(int irq);
  130. *
  131. * add_input_randomness() uses the input layer interrupt timing, as well as
  132. * the event type information from the hardware.
  133. *
  134. * add_interrupt_randomness() uses the inter-interrupt timing as random
  135. * inputs to the entropy pool. Note that not all interrupts are good
  136. * sources of randomness! For example, the timer interrupts is not a
  137. * good choice, because the periodicity of the interrupts is too
  138. * regular, and hence predictable to an attacker. Disk interrupts are
  139. * a better measure, since the timing of the disk interrupts are more
  140. * unpredictable.
  141. *
  142. * All of these routines try to estimate how many bits of randomness a
  143. * particular randomness source. They do this by keeping track of the
  144. * first and second order deltas of the event timings.
  145. *
  146. * Ensuring unpredictability at system startup
  147. * ============================================
  148. *
  149. * When any operating system starts up, it will go through a sequence
  150. * of actions that are fairly predictable by an adversary, especially
  151. * if the start-up does not involve interaction with a human operator.
  152. * This reduces the actual number of bits of unpredictability in the
  153. * entropy pool below the value in entropy_count. In order to
  154. * counteract this effect, it helps to carry information in the
  155. * entropy pool across shut-downs and start-ups. To do this, put the
  156. * following lines an appropriate script which is run during the boot
  157. * sequence:
  158. *
  159. * echo "Initializing random number generator..."
  160. * random_seed=/var/run/random-seed
  161. * # Carry a random seed from start-up to start-up
  162. * # Load and then save the whole entropy pool
  163. * if [ -f $random_seed ]; then
  164. * cat $random_seed >/dev/urandom
  165. * else
  166. * touch $random_seed
  167. * fi
  168. * chmod 600 $random_seed
  169. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  170. *
  171. * and the following lines in an appropriate script which is run as
  172. * the system is shutdown:
  173. *
  174. * # Carry a random seed from shut-down to start-up
  175. * # Save the whole entropy pool
  176. * echo "Saving random seed..."
  177. * random_seed=/var/run/random-seed
  178. * touch $random_seed
  179. * chmod 600 $random_seed
  180. * dd if=/dev/urandom of=$random_seed count=1 bs=512
  181. *
  182. * For example, on most modern systems using the System V init
  183. * scripts, such code fragments would be found in
  184. * /etc/rc.d/init.d/random. On older Linux systems, the correct script
  185. * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
  186. *
  187. * Effectively, these commands cause the contents of the entropy pool
  188. * to be saved at shut-down time and reloaded into the entropy pool at
  189. * start-up. (The 'dd' in the addition to the bootup script is to
  190. * make sure that /etc/random-seed is different for every start-up,
  191. * even if the system crashes without executing rc.0.) Even with
  192. * complete knowledge of the start-up activities, predicting the state
  193. * of the entropy pool requires knowledge of the previous history of
  194. * the system.
  195. *
  196. * Configuring the /dev/random driver under Linux
  197. * ==============================================
  198. *
  199. * The /dev/random driver under Linux uses minor numbers 8 and 9 of
  200. * the /dev/mem major number (#1). So if your system does not have
  201. * /dev/random and /dev/urandom created already, they can be created
  202. * by using the commands:
  203. *
  204. * mknod /dev/random c 1 8
  205. * mknod /dev/urandom c 1 9
  206. *
  207. * Acknowledgements:
  208. * =================
  209. *
  210. * Ideas for constructing this random number generator were derived
  211. * from Pretty Good Privacy's random number generator, and from private
  212. * discussions with Phil Karn. Colin Plumb provided a faster random
  213. * number generator, which speed up the mixing function of the entropy
  214. * pool, taken from PGPfone. Dale Worley has also contributed many
  215. * useful ideas and suggestions to improve this driver.
  216. *
  217. * Any flaws in the design are solely my responsibility, and should
  218. * not be attributed to the Phil, Colin, or any of authors of PGP.
  219. *
  220. * Further background information on this topic may be obtained from
  221. * RFC 1750, "Randomness Recommendations for Security", by Donald
  222. * Eastlake, Steve Crocker, and Jeff Schiller.
  223. */
  224. #include <linux/utsname.h>
  225. #include <linux/module.h>
  226. #include <linux/kernel.h>
  227. #include <linux/major.h>
  228. #include <linux/string.h>
  229. #include <linux/fcntl.h>
  230. #include <linux/slab.h>
  231. #include <linux/random.h>
  232. #include <linux/poll.h>
  233. #include <linux/init.h>
  234. #include <linux/fs.h>
  235. #include <linux/genhd.h>
  236. #include <linux/interrupt.h>
  237. #include <linux/mm.h>
  238. #include <linux/spinlock.h>
  239. #include <linux/percpu.h>
  240. #include <linux/cryptohash.h>
  241. #include <asm/processor.h>
  242. #include <asm/uaccess.h>
  243. #include <asm/irq.h>
  244. #include <asm/io.h>
  245. /*
  246. * Configuration information
  247. */
  248. #define INPUT_POOL_WORDS 128
  249. #define OUTPUT_POOL_WORDS 32
  250. #define SEC_XFER_SIZE 512
  251. /*
  252. * The minimum number of bits of entropy before we wake up a read on
  253. * /dev/random. Should be enough to do a significant reseed.
  254. */
  255. static int random_read_wakeup_thresh = 64;
  256. /*
  257. * If the entropy count falls under this number of bits, then we
  258. * should wake up processes which are selecting or polling on write
  259. * access to /dev/random.
  260. */
  261. static int random_write_wakeup_thresh = 128;
  262. /*
  263. * When the input pool goes over trickle_thresh, start dropping most
  264. * samples to avoid wasting CPU time and reduce lock contention.
  265. */
  266. static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
  267. static DEFINE_PER_CPU(int, trickle_count);
  268. /*
  269. * A pool of size .poolwords is stirred with a primitive polynomial
  270. * of degree .poolwords over GF(2). The taps for various sizes are
  271. * defined below. They are chosen to be evenly spaced (minimum RMS
  272. * distance from evenly spaced; the numbers in the comments are a
  273. * scaled squared error sum) except for the last tap, which is 1 to
  274. * get the twisting happening as fast as possible.
  275. */
  276. static struct poolinfo {
  277. int poolwords;
  278. int tap1, tap2, tap3, tap4, tap5;
  279. } poolinfo_table[] = {
  280. /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
  281. { 128, 103, 76, 51, 25, 1 },
  282. /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
  283. { 32, 26, 20, 14, 7, 1 },
  284. #if 0
  285. /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
  286. { 2048, 1638, 1231, 819, 411, 1 },
  287. /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
  288. { 1024, 817, 615, 412, 204, 1 },
  289. /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
  290. { 1024, 819, 616, 410, 207, 2 },
  291. /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
  292. { 512, 411, 308, 208, 104, 1 },
  293. /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
  294. { 512, 409, 307, 206, 102, 2 },
  295. /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
  296. { 512, 409, 309, 205, 103, 2 },
  297. /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
  298. { 256, 205, 155, 101, 52, 1 },
  299. /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
  300. { 128, 103, 78, 51, 27, 2 },
  301. /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
  302. { 64, 52, 39, 26, 14, 1 },
  303. #endif
  304. };
  305. #define POOLBITS poolwords*32
  306. #define POOLBYTES poolwords*4
  307. /*
  308. * For the purposes of better mixing, we use the CRC-32 polynomial as
  309. * well to make a twisted Generalized Feedback Shift Reigster
  310. *
  311. * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
  312. * Transactions on Modeling and Computer Simulation 2(3):179-194.
  313. * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
  314. * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
  315. *
  316. * Thanks to Colin Plumb for suggesting this.
  317. *
  318. * We have not analyzed the resultant polynomial to prove it primitive;
  319. * in fact it almost certainly isn't. Nonetheless, the irreducible factors
  320. * of a random large-degree polynomial over GF(2) are more than large enough
  321. * that periodicity is not a concern.
  322. *
  323. * The input hash is much less sensitive than the output hash. All
  324. * that we want of it is that it be a good non-cryptographic hash;
  325. * i.e. it not produce collisions when fed "random" data of the sort
  326. * we expect to see. As long as the pool state differs for different
  327. * inputs, we have preserved the input entropy and done a good job.
  328. * The fact that an intelligent attacker can construct inputs that
  329. * will produce controlled alterations to the pool's state is not
  330. * important because we don't consider such inputs to contribute any
  331. * randomness. The only property we need with respect to them is that
  332. * the attacker can't increase his/her knowledge of the pool's state.
  333. * Since all additions are reversible (knowing the final state and the
  334. * input, you can reconstruct the initial state), if an attacker has
  335. * any uncertainty about the initial state, he/she can only shuffle
  336. * that uncertainty about, but never cause any collisions (which would
  337. * decrease the uncertainty).
  338. *
  339. * The chosen system lets the state of the pool be (essentially) the input
  340. * modulo the generator polymnomial. Now, for random primitive polynomials,
  341. * this is a universal class of hash functions, meaning that the chance
  342. * of a collision is limited by the attacker's knowledge of the generator
  343. * polynomail, so if it is chosen at random, an attacker can never force
  344. * a collision. Here, we use a fixed polynomial, but we *can* assume that
  345. * ###--> it is unknown to the processes generating the input entropy. <-###
  346. * Because of this important property, this is a good, collision-resistant
  347. * hash; hash collisions will occur no more often than chance.
  348. */
  349. /*
  350. * Static global variables
  351. */
  352. static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
  353. static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
  354. static struct fasync_struct *fasync;
  355. #if 0
  356. static int debug;
  357. module_param(debug, bool, 0644);
  358. #define DEBUG_ENT(fmt, arg...) do { \
  359. if (debug) \
  360. printk(KERN_DEBUG "random %04d %04d %04d: " \
  361. fmt,\
  362. input_pool.entropy_count,\
  363. blocking_pool.entropy_count,\
  364. nonblocking_pool.entropy_count,\
  365. ## arg); } while (0)
  366. #else
  367. #define DEBUG_ENT(fmt, arg...) do {} while (0)
  368. #endif
  369. /**********************************************************************
  370. *
  371. * OS independent entropy store. Here are the functions which handle
  372. * storing entropy in an entropy pool.
  373. *
  374. **********************************************************************/
  375. struct entropy_store;
  376. struct entropy_store {
  377. /* read-only data: */
  378. struct poolinfo *poolinfo;
  379. __u32 *pool;
  380. const char *name;
  381. int limit;
  382. struct entropy_store *pull;
  383. /* read-write data: */
  384. spinlock_t lock;
  385. unsigned add_ptr;
  386. int entropy_count; /* Must at no time exceed ->POOLBITS! */
  387. int input_rotate;
  388. };
  389. static __u32 input_pool_data[INPUT_POOL_WORDS];
  390. static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
  391. static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
  392. static struct entropy_store input_pool = {
  393. .poolinfo = &poolinfo_table[0],
  394. .name = "input",
  395. .limit = 1,
  396. .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
  397. .pool = input_pool_data
  398. };
  399. static struct entropy_store blocking_pool = {
  400. .poolinfo = &poolinfo_table[1],
  401. .name = "blocking",
  402. .limit = 1,
  403. .pull = &input_pool,
  404. .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
  405. .pool = blocking_pool_data
  406. };
  407. static struct entropy_store nonblocking_pool = {
  408. .poolinfo = &poolinfo_table[1],
  409. .name = "nonblocking",
  410. .pull = &input_pool,
  411. .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
  412. .pool = nonblocking_pool_data
  413. };
  414. /*
  415. * This function adds bytes into the entropy "pool". It does not
  416. * update the entropy estimate. The caller should call
  417. * credit_entropy_bits if this is appropriate.
  418. *
  419. * The pool is stirred with a primitive polynomial of the appropriate
  420. * degree, and then twisted. We twist by three bits at a time because
  421. * it's cheap to do so and helps slightly in the expected case where
  422. * the entropy is concentrated in the low-order bits.
  423. */
  424. static void mix_pool_bytes_extract(struct entropy_store *r, const void *in,
  425. int nbytes, __u8 out[64])
  426. {
  427. static __u32 const twist_table[8] = {
  428. 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
  429. 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
  430. unsigned long i, j, tap1, tap2, tap3, tap4, tap5;
  431. int input_rotate;
  432. int wordmask = r->poolinfo->poolwords - 1;
  433. const char *bytes = in;
  434. __u32 w;
  435. unsigned long flags;
  436. /* Taps are constant, so we can load them without holding r->lock. */
  437. tap1 = r->poolinfo->tap1;
  438. tap2 = r->poolinfo->tap2;
  439. tap3 = r->poolinfo->tap3;
  440. tap4 = r->poolinfo->tap4;
  441. tap5 = r->poolinfo->tap5;
  442. spin_lock_irqsave(&r->lock, flags);
  443. input_rotate = r->input_rotate;
  444. i = r->add_ptr;
  445. /* mix one byte at a time to simplify size handling and churn faster */
  446. while (nbytes--) {
  447. w = rol32(*bytes++, input_rotate & 31);
  448. i = (i - 1) & wordmask;
  449. /* XOR in the various taps */
  450. w ^= r->pool[i];
  451. w ^= r->pool[(i + tap1) & wordmask];
  452. w ^= r->pool[(i + tap2) & wordmask];
  453. w ^= r->pool[(i + tap3) & wordmask];
  454. w ^= r->pool[(i + tap4) & wordmask];
  455. w ^= r->pool[(i + tap5) & wordmask];
  456. /* Mix the result back in with a twist */
  457. r->pool[i] = (w >> 3) ^ twist_table[w & 7];
  458. /*
  459. * Normally, we add 7 bits of rotation to the pool.
  460. * At the beginning of the pool, add an extra 7 bits
  461. * rotation, so that successive passes spread the
  462. * input bits across the pool evenly.
  463. */
  464. input_rotate += i ? 7 : 14;
  465. }
  466. r->input_rotate = input_rotate;
  467. r->add_ptr = i;
  468. if (out)
  469. for (j = 0; j < 16; j++)
  470. ((__u32 *)out)[j] = r->pool[(i - j) & wordmask];
  471. spin_unlock_irqrestore(&r->lock, flags);
  472. }
  473. static void mix_pool_bytes(struct entropy_store *r, const void *in, int bytes)
  474. {
  475. mix_pool_bytes_extract(r, in, bytes, NULL);
  476. }
  477. /*
  478. * Credit (or debit) the entropy store with n bits of entropy
  479. */
  480. static void credit_entropy_bits(struct entropy_store *r, int nbits)
  481. {
  482. unsigned long flags;
  483. int entropy_count;
  484. if (!nbits)
  485. return;
  486. spin_lock_irqsave(&r->lock, flags);
  487. DEBUG_ENT("added %d entropy credits to %s\n", nbits, r->name);
  488. entropy_count = r->entropy_count;
  489. entropy_count += nbits;
  490. if (entropy_count < 0) {
  491. DEBUG_ENT("negative entropy/overflow\n");
  492. entropy_count = 0;
  493. } else if (entropy_count > r->poolinfo->POOLBITS)
  494. entropy_count = r->poolinfo->POOLBITS;
  495. r->entropy_count = entropy_count;
  496. /* should we wake readers? */
  497. if (r == &input_pool && entropy_count >= random_read_wakeup_thresh) {
  498. wake_up_interruptible(&random_read_wait);
  499. kill_fasync(&fasync, SIGIO, POLL_IN);
  500. }
  501. spin_unlock_irqrestore(&r->lock, flags);
  502. }
  503. /*********************************************************************
  504. *
  505. * Entropy input management
  506. *
  507. *********************************************************************/
  508. /* There is one of these per entropy source */
  509. struct timer_rand_state {
  510. cycles_t last_time;
  511. long last_delta, last_delta2;
  512. unsigned dont_count_entropy:1;
  513. };
  514. static struct timer_rand_state input_timer_state;
  515. static struct timer_rand_state *irq_timer_state[NR_IRQS];
  516. /*
  517. * This function adds entropy to the entropy "pool" by using timing
  518. * delays. It uses the timer_rand_state structure to make an estimate
  519. * of how many bits of entropy this call has added to the pool.
  520. *
  521. * The number "num" is also added to the pool - it should somehow describe
  522. * the type of event which just happened. This is currently 0-255 for
  523. * keyboard scan codes, and 256 upwards for interrupts.
  524. *
  525. */
  526. static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
  527. {
  528. struct {
  529. cycles_t cycles;
  530. long jiffies;
  531. unsigned num;
  532. } sample;
  533. long delta, delta2, delta3;
  534. preempt_disable();
  535. /* if over the trickle threshold, use only 1 in 4096 samples */
  536. if (input_pool.entropy_count > trickle_thresh &&
  537. (__get_cpu_var(trickle_count)++ & 0xfff))
  538. goto out;
  539. sample.jiffies = jiffies;
  540. sample.cycles = get_cycles();
  541. sample.num = num;
  542. mix_pool_bytes(&input_pool, &sample, sizeof(sample));
  543. /*
  544. * Calculate number of bits of randomness we probably added.
  545. * We take into account the first, second and third-order deltas
  546. * in order to make our estimate.
  547. */
  548. if (!state->dont_count_entropy) {
  549. delta = sample.jiffies - state->last_time;
  550. state->last_time = sample.jiffies;
  551. delta2 = delta - state->last_delta;
  552. state->last_delta = delta;
  553. delta3 = delta2 - state->last_delta2;
  554. state->last_delta2 = delta2;
  555. if (delta < 0)
  556. delta = -delta;
  557. if (delta2 < 0)
  558. delta2 = -delta2;
  559. if (delta3 < 0)
  560. delta3 = -delta3;
  561. if (delta > delta2)
  562. delta = delta2;
  563. if (delta > delta3)
  564. delta = delta3;
  565. /*
  566. * delta is now minimum absolute delta.
  567. * Round down by 1 bit on general principles,
  568. * and limit entropy entimate to 12 bits.
  569. */
  570. credit_entropy_bits(&input_pool,
  571. min_t(int, fls(delta>>1), 11));
  572. }
  573. out:
  574. preempt_enable();
  575. }
  576. void add_input_randomness(unsigned int type, unsigned int code,
  577. unsigned int value)
  578. {
  579. static unsigned char last_value;
  580. /* ignore autorepeat and the like */
  581. if (value == last_value)
  582. return;
  583. DEBUG_ENT("input event\n");
  584. last_value = value;
  585. add_timer_randomness(&input_timer_state,
  586. (type << 4) ^ code ^ (code >> 4) ^ value);
  587. }
  588. EXPORT_SYMBOL_GPL(add_input_randomness);
  589. void add_interrupt_randomness(int irq)
  590. {
  591. if (irq >= NR_IRQS || irq_timer_state[irq] == NULL)
  592. return;
  593. DEBUG_ENT("irq event %d\n", irq);
  594. add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
  595. }
  596. #ifdef CONFIG_BLOCK
  597. void add_disk_randomness(struct gendisk *disk)
  598. {
  599. if (!disk || !disk->random)
  600. return;
  601. /* first major is 1, so we get >= 0x200 here */
  602. DEBUG_ENT("disk event %d:%d\n",
  603. MAJOR(disk_devt(disk)), MINOR(disk_devt(disk)));
  604. add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
  605. }
  606. #endif
  607. #define EXTRACT_SIZE 10
  608. /*********************************************************************
  609. *
  610. * Entropy extraction routines
  611. *
  612. *********************************************************************/
  613. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  614. size_t nbytes, int min, int rsvd);
  615. /*
  616. * This utility inline function is responsible for transfering entropy
  617. * from the primary pool to the secondary extraction pool. We make
  618. * sure we pull enough for a 'catastrophic reseed'.
  619. */
  620. static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
  621. {
  622. __u32 tmp[OUTPUT_POOL_WORDS];
  623. if (r->pull && r->entropy_count < nbytes * 8 &&
  624. r->entropy_count < r->poolinfo->POOLBITS) {
  625. /* If we're limited, always leave two wakeup worth's BITS */
  626. int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
  627. int bytes = nbytes;
  628. /* pull at least as many as BYTES as wakeup BITS */
  629. bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
  630. /* but never more than the buffer size */
  631. bytes = min_t(int, bytes, sizeof(tmp));
  632. DEBUG_ENT("going to reseed %s with %d bits "
  633. "(%d of %d requested)\n",
  634. r->name, bytes * 8, nbytes * 8, r->entropy_count);
  635. bytes = extract_entropy(r->pull, tmp, bytes,
  636. random_read_wakeup_thresh / 8, rsvd);
  637. mix_pool_bytes(r, tmp, bytes);
  638. credit_entropy_bits(r, bytes*8);
  639. }
  640. }
  641. /*
  642. * These functions extracts randomness from the "entropy pool", and
  643. * returns it in a buffer.
  644. *
  645. * The min parameter specifies the minimum amount we can pull before
  646. * failing to avoid races that defeat catastrophic reseeding while the
  647. * reserved parameter indicates how much entropy we must leave in the
  648. * pool after each pull to avoid starving other readers.
  649. *
  650. * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
  651. */
  652. static size_t account(struct entropy_store *r, size_t nbytes, int min,
  653. int reserved)
  654. {
  655. unsigned long flags;
  656. BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
  657. /* Hold lock while accounting */
  658. spin_lock_irqsave(&r->lock, flags);
  659. DEBUG_ENT("trying to extract %d bits from %s\n",
  660. nbytes * 8, r->name);
  661. /* Can we pull enough? */
  662. if (r->entropy_count / 8 < min + reserved) {
  663. nbytes = 0;
  664. } else {
  665. /* If limited, never pull more than available */
  666. if (r->limit && nbytes + reserved >= r->entropy_count / 8)
  667. nbytes = r->entropy_count/8 - reserved;
  668. if (r->entropy_count / 8 >= nbytes + reserved)
  669. r->entropy_count -= nbytes*8;
  670. else
  671. r->entropy_count = reserved;
  672. if (r->entropy_count < random_write_wakeup_thresh) {
  673. wake_up_interruptible(&random_write_wait);
  674. kill_fasync(&fasync, SIGIO, POLL_OUT);
  675. }
  676. }
  677. DEBUG_ENT("debiting %d entropy credits from %s%s\n",
  678. nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
  679. spin_unlock_irqrestore(&r->lock, flags);
  680. return nbytes;
  681. }
  682. static void extract_buf(struct entropy_store *r, __u8 *out)
  683. {
  684. int i;
  685. __u32 hash[5], workspace[SHA_WORKSPACE_WORDS];
  686. __u8 extract[64];
  687. /* Generate a hash across the pool, 16 words (512 bits) at a time */
  688. sha_init(hash);
  689. for (i = 0; i < r->poolinfo->poolwords; i += 16)
  690. sha_transform(hash, (__u8 *)(r->pool + i), workspace);
  691. /*
  692. * We mix the hash back into the pool to prevent backtracking
  693. * attacks (where the attacker knows the state of the pool
  694. * plus the current outputs, and attempts to find previous
  695. * ouputs), unless the hash function can be inverted. By
  696. * mixing at least a SHA1 worth of hash data back, we make
  697. * brute-forcing the feedback as hard as brute-forcing the
  698. * hash.
  699. */
  700. mix_pool_bytes_extract(r, hash, sizeof(hash), extract);
  701. /*
  702. * To avoid duplicates, we atomically extract a portion of the
  703. * pool while mixing, and hash one final time.
  704. */
  705. sha_transform(hash, extract, workspace);
  706. memset(extract, 0, sizeof(extract));
  707. memset(workspace, 0, sizeof(workspace));
  708. /*
  709. * In case the hash function has some recognizable output
  710. * pattern, we fold it in half. Thus, we always feed back
  711. * twice as much data as we output.
  712. */
  713. hash[0] ^= hash[3];
  714. hash[1] ^= hash[4];
  715. hash[2] ^= rol32(hash[2], 16);
  716. memcpy(out, hash, EXTRACT_SIZE);
  717. memset(hash, 0, sizeof(hash));
  718. }
  719. static ssize_t extract_entropy(struct entropy_store *r, void *buf,
  720. size_t nbytes, int min, int reserved)
  721. {
  722. ssize_t ret = 0, i;
  723. __u8 tmp[EXTRACT_SIZE];
  724. xfer_secondary_pool(r, nbytes);
  725. nbytes = account(r, nbytes, min, reserved);
  726. while (nbytes) {
  727. extract_buf(r, tmp);
  728. i = min_t(int, nbytes, EXTRACT_SIZE);
  729. memcpy(buf, tmp, i);
  730. nbytes -= i;
  731. buf += i;
  732. ret += i;
  733. }
  734. /* Wipe data just returned from memory */
  735. memset(tmp, 0, sizeof(tmp));
  736. return ret;
  737. }
  738. static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
  739. size_t nbytes)
  740. {
  741. ssize_t ret = 0, i;
  742. __u8 tmp[EXTRACT_SIZE];
  743. xfer_secondary_pool(r, nbytes);
  744. nbytes = account(r, nbytes, 0, 0);
  745. while (nbytes) {
  746. if (need_resched()) {
  747. if (signal_pending(current)) {
  748. if (ret == 0)
  749. ret = -ERESTARTSYS;
  750. break;
  751. }
  752. schedule();
  753. }
  754. extract_buf(r, tmp);
  755. i = min_t(int, nbytes, EXTRACT_SIZE);
  756. if (copy_to_user(buf, tmp, i)) {
  757. ret = -EFAULT;
  758. break;
  759. }
  760. nbytes -= i;
  761. buf += i;
  762. ret += i;
  763. }
  764. /* Wipe data just returned from memory */
  765. memset(tmp, 0, sizeof(tmp));
  766. return ret;
  767. }
  768. /*
  769. * This function is the exported kernel interface. It returns some
  770. * number of good random numbers, suitable for seeding TCP sequence
  771. * numbers, etc.
  772. */
  773. void get_random_bytes(void *buf, int nbytes)
  774. {
  775. extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
  776. }
  777. EXPORT_SYMBOL(get_random_bytes);
  778. /*
  779. * init_std_data - initialize pool with system data
  780. *
  781. * @r: pool to initialize
  782. *
  783. * This function clears the pool's entropy count and mixes some system
  784. * data into the pool to prepare it for use. The pool is not cleared
  785. * as that can only decrease the entropy in the pool.
  786. */
  787. static void init_std_data(struct entropy_store *r)
  788. {
  789. ktime_t now;
  790. unsigned long flags;
  791. spin_lock_irqsave(&r->lock, flags);
  792. r->entropy_count = 0;
  793. spin_unlock_irqrestore(&r->lock, flags);
  794. now = ktime_get_real();
  795. mix_pool_bytes(r, &now, sizeof(now));
  796. mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
  797. }
  798. static int rand_initialize(void)
  799. {
  800. init_std_data(&input_pool);
  801. init_std_data(&blocking_pool);
  802. init_std_data(&nonblocking_pool);
  803. return 0;
  804. }
  805. module_init(rand_initialize);
  806. void rand_initialize_irq(int irq)
  807. {
  808. struct timer_rand_state *state;
  809. if (irq >= NR_IRQS || irq_timer_state[irq])
  810. return;
  811. /*
  812. * If kzalloc returns null, we just won't use that entropy
  813. * source.
  814. */
  815. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  816. if (state)
  817. irq_timer_state[irq] = state;
  818. }
  819. #ifdef CONFIG_BLOCK
  820. void rand_initialize_disk(struct gendisk *disk)
  821. {
  822. struct timer_rand_state *state;
  823. /*
  824. * If kzalloc returns null, we just won't use that entropy
  825. * source.
  826. */
  827. state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
  828. if (state)
  829. disk->random = state;
  830. }
  831. #endif
  832. static ssize_t
  833. random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  834. {
  835. ssize_t n, retval = 0, count = 0;
  836. if (nbytes == 0)
  837. return 0;
  838. while (nbytes > 0) {
  839. n = nbytes;
  840. if (n > SEC_XFER_SIZE)
  841. n = SEC_XFER_SIZE;
  842. DEBUG_ENT("reading %d bits\n", n*8);
  843. n = extract_entropy_user(&blocking_pool, buf, n);
  844. DEBUG_ENT("read got %d bits (%d still needed)\n",
  845. n*8, (nbytes-n)*8);
  846. if (n == 0) {
  847. if (file->f_flags & O_NONBLOCK) {
  848. retval = -EAGAIN;
  849. break;
  850. }
  851. DEBUG_ENT("sleeping?\n");
  852. wait_event_interruptible(random_read_wait,
  853. input_pool.entropy_count >=
  854. random_read_wakeup_thresh);
  855. DEBUG_ENT("awake\n");
  856. if (signal_pending(current)) {
  857. retval = -ERESTARTSYS;
  858. break;
  859. }
  860. continue;
  861. }
  862. if (n < 0) {
  863. retval = n;
  864. break;
  865. }
  866. count += n;
  867. buf += n;
  868. nbytes -= n;
  869. break; /* This break makes the device work */
  870. /* like a named pipe */
  871. }
  872. /*
  873. * If we gave the user some bytes, update the access time.
  874. */
  875. if (count)
  876. file_accessed(file);
  877. return (count ? count : retval);
  878. }
  879. static ssize_t
  880. urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
  881. {
  882. return extract_entropy_user(&nonblocking_pool, buf, nbytes);
  883. }
  884. static unsigned int
  885. random_poll(struct file *file, poll_table * wait)
  886. {
  887. unsigned int mask;
  888. poll_wait(file, &random_read_wait, wait);
  889. poll_wait(file, &random_write_wait, wait);
  890. mask = 0;
  891. if (input_pool.entropy_count >= random_read_wakeup_thresh)
  892. mask |= POLLIN | POLLRDNORM;
  893. if (input_pool.entropy_count < random_write_wakeup_thresh)
  894. mask |= POLLOUT | POLLWRNORM;
  895. return mask;
  896. }
  897. static int
  898. write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
  899. {
  900. size_t bytes;
  901. __u32 buf[16];
  902. const char __user *p = buffer;
  903. while (count > 0) {
  904. bytes = min(count, sizeof(buf));
  905. if (copy_from_user(&buf, p, bytes))
  906. return -EFAULT;
  907. count -= bytes;
  908. p += bytes;
  909. mix_pool_bytes(r, buf, bytes);
  910. cond_resched();
  911. }
  912. return 0;
  913. }
  914. static ssize_t random_write(struct file *file, const char __user *buffer,
  915. size_t count, loff_t *ppos)
  916. {
  917. size_t ret;
  918. struct inode *inode = file->f_path.dentry->d_inode;
  919. ret = write_pool(&blocking_pool, buffer, count);
  920. if (ret)
  921. return ret;
  922. ret = write_pool(&nonblocking_pool, buffer, count);
  923. if (ret)
  924. return ret;
  925. inode->i_mtime = current_fs_time(inode->i_sb);
  926. mark_inode_dirty(inode);
  927. return (ssize_t)count;
  928. }
  929. static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
  930. {
  931. int size, ent_count;
  932. int __user *p = (int __user *)arg;
  933. int retval;
  934. switch (cmd) {
  935. case RNDGETENTCNT:
  936. /* inherently racy, no point locking */
  937. if (put_user(input_pool.entropy_count, p))
  938. return -EFAULT;
  939. return 0;
  940. case RNDADDTOENTCNT:
  941. if (!capable(CAP_SYS_ADMIN))
  942. return -EPERM;
  943. if (get_user(ent_count, p))
  944. return -EFAULT;
  945. credit_entropy_bits(&input_pool, ent_count);
  946. return 0;
  947. case RNDADDENTROPY:
  948. if (!capable(CAP_SYS_ADMIN))
  949. return -EPERM;
  950. if (get_user(ent_count, p++))
  951. return -EFAULT;
  952. if (ent_count < 0)
  953. return -EINVAL;
  954. if (get_user(size, p++))
  955. return -EFAULT;
  956. retval = write_pool(&input_pool, (const char __user *)p,
  957. size);
  958. if (retval < 0)
  959. return retval;
  960. credit_entropy_bits(&input_pool, ent_count);
  961. return 0;
  962. case RNDZAPENTCNT:
  963. case RNDCLEARPOOL:
  964. /* Clear the entropy pool counters. */
  965. if (!capable(CAP_SYS_ADMIN))
  966. return -EPERM;
  967. rand_initialize();
  968. return 0;
  969. default:
  970. return -EINVAL;
  971. }
  972. }
  973. static int random_fasync(int fd, struct file *filp, int on)
  974. {
  975. return fasync_helper(fd, filp, on, &fasync);
  976. }
  977. static int random_release(struct inode *inode, struct file *filp)
  978. {
  979. return fasync_helper(-1, filp, 0, &fasync);
  980. }
  981. const struct file_operations random_fops = {
  982. .read = random_read,
  983. .write = random_write,
  984. .poll = random_poll,
  985. .unlocked_ioctl = random_ioctl,
  986. .fasync = random_fasync,
  987. .release = random_release,
  988. };
  989. const struct file_operations urandom_fops = {
  990. .read = urandom_read,
  991. .write = random_write,
  992. .unlocked_ioctl = random_ioctl,
  993. .fasync = random_fasync,
  994. .release = random_release,
  995. };
  996. /***************************************************************
  997. * Random UUID interface
  998. *
  999. * Used here for a Boot ID, but can be useful for other kernel
  1000. * drivers.
  1001. ***************************************************************/
  1002. /*
  1003. * Generate random UUID
  1004. */
  1005. void generate_random_uuid(unsigned char uuid_out[16])
  1006. {
  1007. get_random_bytes(uuid_out, 16);
  1008. /* Set UUID version to 4 --- truely random generation */
  1009. uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
  1010. /* Set the UUID variant to DCE */
  1011. uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
  1012. }
  1013. EXPORT_SYMBOL(generate_random_uuid);
  1014. /********************************************************************
  1015. *
  1016. * Sysctl interface
  1017. *
  1018. ********************************************************************/
  1019. #ifdef CONFIG_SYSCTL
  1020. #include <linux/sysctl.h>
  1021. static int min_read_thresh = 8, min_write_thresh;
  1022. static int max_read_thresh = INPUT_POOL_WORDS * 32;
  1023. static int max_write_thresh = INPUT_POOL_WORDS * 32;
  1024. static char sysctl_bootid[16];
  1025. /*
  1026. * These functions is used to return both the bootid UUID, and random
  1027. * UUID. The difference is in whether table->data is NULL; if it is,
  1028. * then a new UUID is generated and returned to the user.
  1029. *
  1030. * If the user accesses this via the proc interface, it will be returned
  1031. * as an ASCII string in the standard UUID format. If accesses via the
  1032. * sysctl system call, it is returned as 16 bytes of binary data.
  1033. */
  1034. static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
  1035. void __user *buffer, size_t *lenp, loff_t *ppos)
  1036. {
  1037. ctl_table fake_table;
  1038. unsigned char buf[64], tmp_uuid[16], *uuid;
  1039. uuid = table->data;
  1040. if (!uuid) {
  1041. uuid = tmp_uuid;
  1042. uuid[8] = 0;
  1043. }
  1044. if (uuid[8] == 0)
  1045. generate_random_uuid(uuid);
  1046. sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
  1047. "%02x%02x%02x%02x%02x%02x",
  1048. uuid[0], uuid[1], uuid[2], uuid[3],
  1049. uuid[4], uuid[5], uuid[6], uuid[7],
  1050. uuid[8], uuid[9], uuid[10], uuid[11],
  1051. uuid[12], uuid[13], uuid[14], uuid[15]);
  1052. fake_table.data = buf;
  1053. fake_table.maxlen = sizeof(buf);
  1054. return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
  1055. }
  1056. static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
  1057. void __user *oldval, size_t __user *oldlenp,
  1058. void __user *newval, size_t newlen)
  1059. {
  1060. unsigned char tmp_uuid[16], *uuid;
  1061. unsigned int len;
  1062. if (!oldval || !oldlenp)
  1063. return 1;
  1064. uuid = table->data;
  1065. if (!uuid) {
  1066. uuid = tmp_uuid;
  1067. uuid[8] = 0;
  1068. }
  1069. if (uuid[8] == 0)
  1070. generate_random_uuid(uuid);
  1071. if (get_user(len, oldlenp))
  1072. return -EFAULT;
  1073. if (len) {
  1074. if (len > 16)
  1075. len = 16;
  1076. if (copy_to_user(oldval, uuid, len) ||
  1077. put_user(len, oldlenp))
  1078. return -EFAULT;
  1079. }
  1080. return 1;
  1081. }
  1082. static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
  1083. ctl_table random_table[] = {
  1084. {
  1085. .ctl_name = RANDOM_POOLSIZE,
  1086. .procname = "poolsize",
  1087. .data = &sysctl_poolsize,
  1088. .maxlen = sizeof(int),
  1089. .mode = 0444,
  1090. .proc_handler = &proc_dointvec,
  1091. },
  1092. {
  1093. .ctl_name = RANDOM_ENTROPY_COUNT,
  1094. .procname = "entropy_avail",
  1095. .maxlen = sizeof(int),
  1096. .mode = 0444,
  1097. .proc_handler = &proc_dointvec,
  1098. .data = &input_pool.entropy_count,
  1099. },
  1100. {
  1101. .ctl_name = RANDOM_READ_THRESH,
  1102. .procname = "read_wakeup_threshold",
  1103. .data = &random_read_wakeup_thresh,
  1104. .maxlen = sizeof(int),
  1105. .mode = 0644,
  1106. .proc_handler = &proc_dointvec_minmax,
  1107. .strategy = &sysctl_intvec,
  1108. .extra1 = &min_read_thresh,
  1109. .extra2 = &max_read_thresh,
  1110. },
  1111. {
  1112. .ctl_name = RANDOM_WRITE_THRESH,
  1113. .procname = "write_wakeup_threshold",
  1114. .data = &random_write_wakeup_thresh,
  1115. .maxlen = sizeof(int),
  1116. .mode = 0644,
  1117. .proc_handler = &proc_dointvec_minmax,
  1118. .strategy = &sysctl_intvec,
  1119. .extra1 = &min_write_thresh,
  1120. .extra2 = &max_write_thresh,
  1121. },
  1122. {
  1123. .ctl_name = RANDOM_BOOT_ID,
  1124. .procname = "boot_id",
  1125. .data = &sysctl_bootid,
  1126. .maxlen = 16,
  1127. .mode = 0444,
  1128. .proc_handler = &proc_do_uuid,
  1129. .strategy = &uuid_strategy,
  1130. },
  1131. {
  1132. .ctl_name = RANDOM_UUID,
  1133. .procname = "uuid",
  1134. .maxlen = 16,
  1135. .mode = 0444,
  1136. .proc_handler = &proc_do_uuid,
  1137. .strategy = &uuid_strategy,
  1138. },
  1139. { .ctl_name = 0 }
  1140. };
  1141. #endif /* CONFIG_SYSCTL */
  1142. /********************************************************************
  1143. *
  1144. * Random funtions for networking
  1145. *
  1146. ********************************************************************/
  1147. /*
  1148. * TCP initial sequence number picking. This uses the random number
  1149. * generator to pick an initial secret value. This value is hashed
  1150. * along with the TCP endpoint information to provide a unique
  1151. * starting point for each pair of TCP endpoints. This defeats
  1152. * attacks which rely on guessing the initial TCP sequence number.
  1153. * This algorithm was suggested by Steve Bellovin.
  1154. *
  1155. * Using a very strong hash was taking an appreciable amount of the total
  1156. * TCP connection establishment time, so this is a weaker hash,
  1157. * compensated for by changing the secret periodically.
  1158. */
  1159. /* F, G and H are basic MD4 functions: selection, majority, parity */
  1160. #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
  1161. #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
  1162. #define H(x, y, z) ((x) ^ (y) ^ (z))
  1163. /*
  1164. * The generic round function. The application is so specific that
  1165. * we don't bother protecting all the arguments with parens, as is generally
  1166. * good macro practice, in favor of extra legibility.
  1167. * Rotation is separate from addition to prevent recomputation
  1168. */
  1169. #define ROUND(f, a, b, c, d, x, s) \
  1170. (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
  1171. #define K1 0
  1172. #define K2 013240474631UL
  1173. #define K3 015666365641UL
  1174. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1175. static __u32 twothirdsMD4Transform(__u32 const buf[4], __u32 const in[12])
  1176. {
  1177. __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
  1178. /* Round 1 */
  1179. ROUND(F, a, b, c, d, in[ 0] + K1, 3);
  1180. ROUND(F, d, a, b, c, in[ 1] + K1, 7);
  1181. ROUND(F, c, d, a, b, in[ 2] + K1, 11);
  1182. ROUND(F, b, c, d, a, in[ 3] + K1, 19);
  1183. ROUND(F, a, b, c, d, in[ 4] + K1, 3);
  1184. ROUND(F, d, a, b, c, in[ 5] + K1, 7);
  1185. ROUND(F, c, d, a, b, in[ 6] + K1, 11);
  1186. ROUND(F, b, c, d, a, in[ 7] + K1, 19);
  1187. ROUND(F, a, b, c, d, in[ 8] + K1, 3);
  1188. ROUND(F, d, a, b, c, in[ 9] + K1, 7);
  1189. ROUND(F, c, d, a, b, in[10] + K1, 11);
  1190. ROUND(F, b, c, d, a, in[11] + K1, 19);
  1191. /* Round 2 */
  1192. ROUND(G, a, b, c, d, in[ 1] + K2, 3);
  1193. ROUND(G, d, a, b, c, in[ 3] + K2, 5);
  1194. ROUND(G, c, d, a, b, in[ 5] + K2, 9);
  1195. ROUND(G, b, c, d, a, in[ 7] + K2, 13);
  1196. ROUND(G, a, b, c, d, in[ 9] + K2, 3);
  1197. ROUND(G, d, a, b, c, in[11] + K2, 5);
  1198. ROUND(G, c, d, a, b, in[ 0] + K2, 9);
  1199. ROUND(G, b, c, d, a, in[ 2] + K2, 13);
  1200. ROUND(G, a, b, c, d, in[ 4] + K2, 3);
  1201. ROUND(G, d, a, b, c, in[ 6] + K2, 5);
  1202. ROUND(G, c, d, a, b, in[ 8] + K2, 9);
  1203. ROUND(G, b, c, d, a, in[10] + K2, 13);
  1204. /* Round 3 */
  1205. ROUND(H, a, b, c, d, in[ 3] + K3, 3);
  1206. ROUND(H, d, a, b, c, in[ 7] + K3, 9);
  1207. ROUND(H, c, d, a, b, in[11] + K3, 11);
  1208. ROUND(H, b, c, d, a, in[ 2] + K3, 15);
  1209. ROUND(H, a, b, c, d, in[ 6] + K3, 3);
  1210. ROUND(H, d, a, b, c, in[10] + K3, 9);
  1211. ROUND(H, c, d, a, b, in[ 1] + K3, 11);
  1212. ROUND(H, b, c, d, a, in[ 5] + K3, 15);
  1213. ROUND(H, a, b, c, d, in[ 9] + K3, 3);
  1214. ROUND(H, d, a, b, c, in[ 0] + K3, 9);
  1215. ROUND(H, c, d, a, b, in[ 4] + K3, 11);
  1216. ROUND(H, b, c, d, a, in[ 8] + K3, 15);
  1217. return buf[1] + b; /* "most hashed" word */
  1218. /* Alternative: return sum of all words? */
  1219. }
  1220. #endif
  1221. #undef ROUND
  1222. #undef F
  1223. #undef G
  1224. #undef H
  1225. #undef K1
  1226. #undef K2
  1227. #undef K3
  1228. /* This should not be decreased so low that ISNs wrap too fast. */
  1229. #define REKEY_INTERVAL (300 * HZ)
  1230. /*
  1231. * Bit layout of the tcp sequence numbers (before adding current time):
  1232. * bit 24-31: increased after every key exchange
  1233. * bit 0-23: hash(source,dest)
  1234. *
  1235. * The implementation is similar to the algorithm described
  1236. * in the Appendix of RFC 1185, except that
  1237. * - it uses a 1 MHz clock instead of a 250 kHz clock
  1238. * - it performs a rekey every 5 minutes, which is equivalent
  1239. * to a (source,dest) tulple dependent forward jump of the
  1240. * clock by 0..2^(HASH_BITS+1)
  1241. *
  1242. * Thus the average ISN wraparound time is 68 minutes instead of
  1243. * 4.55 hours.
  1244. *
  1245. * SMP cleanup and lock avoidance with poor man's RCU.
  1246. * Manfred Spraul <manfred@colorfullife.com>
  1247. *
  1248. */
  1249. #define COUNT_BITS 8
  1250. #define COUNT_MASK ((1 << COUNT_BITS) - 1)
  1251. #define HASH_BITS 24
  1252. #define HASH_MASK ((1 << HASH_BITS) - 1)
  1253. static struct keydata {
  1254. __u32 count; /* already shifted to the final position */
  1255. __u32 secret[12];
  1256. } ____cacheline_aligned ip_keydata[2];
  1257. static unsigned int ip_cnt;
  1258. static void rekey_seq_generator(struct work_struct *work);
  1259. static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
  1260. /*
  1261. * Lock avoidance:
  1262. * The ISN generation runs lockless - it's just a hash over random data.
  1263. * State changes happen every 5 minutes when the random key is replaced.
  1264. * Synchronization is performed by having two copies of the hash function
  1265. * state and rekey_seq_generator always updates the inactive copy.
  1266. * The copy is then activated by updating ip_cnt.
  1267. * The implementation breaks down if someone blocks the thread
  1268. * that processes SYN requests for more than 5 minutes. Should never
  1269. * happen, and even if that happens only a not perfectly compliant
  1270. * ISN is generated, nothing fatal.
  1271. */
  1272. static void rekey_seq_generator(struct work_struct *work)
  1273. {
  1274. struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
  1275. get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
  1276. keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
  1277. smp_wmb();
  1278. ip_cnt++;
  1279. schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
  1280. }
  1281. static inline struct keydata *get_keyptr(void)
  1282. {
  1283. struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
  1284. smp_rmb();
  1285. return keyptr;
  1286. }
  1287. static __init int seqgen_init(void)
  1288. {
  1289. rekey_seq_generator(NULL);
  1290. return 0;
  1291. }
  1292. late_initcall(seqgen_init);
  1293. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1294. __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
  1295. __be16 sport, __be16 dport)
  1296. {
  1297. __u32 seq;
  1298. __u32 hash[12];
  1299. struct keydata *keyptr = get_keyptr();
  1300. /* The procedure is the same as for IPv4, but addresses are longer.
  1301. * Thus we must use twothirdsMD4Transform.
  1302. */
  1303. memcpy(hash, saddr, 16);
  1304. hash[4] = ((__force u16)sport << 16) + (__force u16)dport;
  1305. memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
  1306. seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
  1307. seq += keyptr->count;
  1308. seq += ktime_to_ns(ktime_get_real());
  1309. return seq;
  1310. }
  1311. EXPORT_SYMBOL(secure_tcpv6_sequence_number);
  1312. #endif
  1313. /* The code below is shamelessly stolen from secure_tcp_sequence_number().
  1314. * All blames to Andrey V. Savochkin <saw@msu.ru>.
  1315. */
  1316. __u32 secure_ip_id(__be32 daddr)
  1317. {
  1318. struct keydata *keyptr;
  1319. __u32 hash[4];
  1320. keyptr = get_keyptr();
  1321. /*
  1322. * Pick a unique starting offset for each IP destination.
  1323. * The dest ip address is placed in the starting vector,
  1324. * which is then hashed with random data.
  1325. */
  1326. hash[0] = (__force __u32)daddr;
  1327. hash[1] = keyptr->secret[9];
  1328. hash[2] = keyptr->secret[10];
  1329. hash[3] = keyptr->secret[11];
  1330. return half_md4_transform(hash, keyptr->secret);
  1331. }
  1332. #ifdef CONFIG_INET
  1333. __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
  1334. __be16 sport, __be16 dport)
  1335. {
  1336. __u32 seq;
  1337. __u32 hash[4];
  1338. struct keydata *keyptr = get_keyptr();
  1339. /*
  1340. * Pick a unique starting offset for each TCP connection endpoints
  1341. * (saddr, daddr, sport, dport).
  1342. * Note that the words are placed into the starting vector, which is
  1343. * then mixed with a partial MD4 over random data.
  1344. */
  1345. hash[0] = (__force u32)saddr;
  1346. hash[1] = (__force u32)daddr;
  1347. hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
  1348. hash[3] = keyptr->secret[11];
  1349. seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
  1350. seq += keyptr->count;
  1351. /*
  1352. * As close as possible to RFC 793, which
  1353. * suggests using a 250 kHz clock.
  1354. * Further reading shows this assumes 2 Mb/s networks.
  1355. * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
  1356. * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
  1357. * we also need to limit the resolution so that the u32 seq
  1358. * overlaps less than one time per MSL (2 minutes).
  1359. * Choosing a clock of 64 ns period is OK. (period of 274 s)
  1360. */
  1361. seq += ktime_to_ns(ktime_get_real()) >> 6;
  1362. return seq;
  1363. }
  1364. /* Generate secure starting point for ephemeral IPV4 transport port search */
  1365. u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
  1366. {
  1367. struct keydata *keyptr = get_keyptr();
  1368. u32 hash[4];
  1369. /*
  1370. * Pick a unique starting offset for each ephemeral port search
  1371. * (saddr, daddr, dport) and 48bits of random data.
  1372. */
  1373. hash[0] = (__force u32)saddr;
  1374. hash[1] = (__force u32)daddr;
  1375. hash[2] = (__force u32)dport ^ keyptr->secret[10];
  1376. hash[3] = keyptr->secret[11];
  1377. return half_md4_transform(hash, keyptr->secret);
  1378. }
  1379. EXPORT_SYMBOL_GPL(secure_ipv4_port_ephemeral);
  1380. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1381. u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr,
  1382. __be16 dport)
  1383. {
  1384. struct keydata *keyptr = get_keyptr();
  1385. u32 hash[12];
  1386. memcpy(hash, saddr, 16);
  1387. hash[4] = (__force u32)dport;
  1388. memcpy(&hash[5], keyptr->secret, sizeof(__u32) * 7);
  1389. return twothirdsMD4Transform((const __u32 *)daddr, hash);
  1390. }
  1391. #endif
  1392. #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
  1393. /* Similar to secure_tcp_sequence_number but generate a 48 bit value
  1394. * bit's 32-47 increase every key exchange
  1395. * 0-31 hash(source, dest)
  1396. */
  1397. u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
  1398. __be16 sport, __be16 dport)
  1399. {
  1400. u64 seq;
  1401. __u32 hash[4];
  1402. struct keydata *keyptr = get_keyptr();
  1403. hash[0] = (__force u32)saddr;
  1404. hash[1] = (__force u32)daddr;
  1405. hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
  1406. hash[3] = keyptr->secret[11];
  1407. seq = half_md4_transform(hash, keyptr->secret);
  1408. seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
  1409. seq += ktime_to_ns(ktime_get_real());
  1410. seq &= (1ull << 48) - 1;
  1411. return seq;
  1412. }
  1413. EXPORT_SYMBOL(secure_dccp_sequence_number);
  1414. #endif
  1415. #endif /* CONFIG_INET */
  1416. /*
  1417. * Get a random word for internal kernel use only. Similar to urandom but
  1418. * with the goal of minimal entropy pool depletion. As a result, the random
  1419. * value is not cryptographically secure but for several uses the cost of
  1420. * depleting entropy is too high
  1421. */
  1422. unsigned int get_random_int(void)
  1423. {
  1424. /*
  1425. * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
  1426. * every second, from the entropy pool (and thus creates a limited
  1427. * drain on it), and uses halfMD4Transform within the second. We
  1428. * also mix it with jiffies and the PID:
  1429. */
  1430. return secure_ip_id((__force __be32)(current->pid + jiffies));
  1431. }
  1432. /*
  1433. * randomize_range() returns a start address such that
  1434. *
  1435. * [...... <range> .....]
  1436. * start end
  1437. *
  1438. * a <range> with size "len" starting at the return value is inside in the
  1439. * area defined by [start, end], but is otherwise randomized.
  1440. */
  1441. unsigned long
  1442. randomize_range(unsigned long start, unsigned long end, unsigned long len)
  1443. {
  1444. unsigned long range = end - len - start;
  1445. if (end <= start + len)
  1446. return 0;
  1447. return PAGE_ALIGN(get_random_int() % range + start);
  1448. }