xsysace.c 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284
  1. /*
  2. * Xilinx SystemACE device driver
  3. *
  4. * Copyright 2007 Secret Lab Technologies Ltd.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. */
  10. /*
  11. * The SystemACE chip is designed to configure FPGAs by loading an FPGA
  12. * bitstream from a file on a CF card and squirting it into FPGAs connected
  13. * to the SystemACE JTAG chain. It also has the advantage of providing an
  14. * MPU interface which can be used to control the FPGA configuration process
  15. * and to use the attached CF card for general purpose storage.
  16. *
  17. * This driver is a block device driver for the SystemACE.
  18. *
  19. * Initialization:
  20. * The driver registers itself as a platform_device driver at module
  21. * load time. The platform bus will take care of calling the
  22. * ace_probe() method for all SystemACE instances in the system. Any
  23. * number of SystemACE instances are supported. ace_probe() calls
  24. * ace_setup() which initialized all data structures, reads the CF
  25. * id structure and registers the device.
  26. *
  27. * Processing:
  28. * Just about all of the heavy lifting in this driver is performed by
  29. * a Finite State Machine (FSM). The driver needs to wait on a number
  30. * of events; some raised by interrupts, some which need to be polled
  31. * for. Describing all of the behaviour in a FSM seems to be the
  32. * easiest way to keep the complexity low and make it easy to
  33. * understand what the driver is doing. If the block ops or the
  34. * request function need to interact with the hardware, then they
  35. * simply need to flag the request and kick of FSM processing.
  36. *
  37. * The FSM itself is atomic-safe code which can be run from any
  38. * context. The general process flow is:
  39. * 1. obtain the ace->lock spinlock.
  40. * 2. loop on ace_fsm_dostate() until the ace->fsm_continue flag is
  41. * cleared.
  42. * 3. release the lock.
  43. *
  44. * Individual states do not sleep in any way. If a condition needs to
  45. * be waited for then the state much clear the fsm_continue flag and
  46. * either schedule the FSM to be run again at a later time, or expect
  47. * an interrupt to call the FSM when the desired condition is met.
  48. *
  49. * In normal operation, the FSM is processed at interrupt context
  50. * either when the driver's tasklet is scheduled, or when an irq is
  51. * raised by the hardware. The tasklet can be scheduled at any time.
  52. * The request method in particular schedules the tasklet when a new
  53. * request has been indicated by the block layer. Once started, the
  54. * FSM proceeds as far as it can processing the request until it
  55. * needs on a hardware event. At this point, it must yield execution.
  56. *
  57. * A state has two options when yielding execution:
  58. * 1. ace_fsm_yield()
  59. * - Call if need to poll for event.
  60. * - clears the fsm_continue flag to exit the processing loop
  61. * - reschedules the tasklet to run again as soon as possible
  62. * 2. ace_fsm_yieldirq()
  63. * - Call if an irq is expected from the HW
  64. * - clears the fsm_continue flag to exit the processing loop
  65. * - does not reschedule the tasklet so the FSM will not be processed
  66. * again until an irq is received.
  67. * After calling a yield function, the state must return control back
  68. * to the FSM main loop.
  69. *
  70. * Additionally, the driver maintains a kernel timer which can process
  71. * the FSM. If the FSM gets stalled, typically due to a missed
  72. * interrupt, then the kernel timer will expire and the driver can
  73. * continue where it left off.
  74. *
  75. * To Do:
  76. * - Add FPGA configuration control interface.
  77. * - Request major number from lanana
  78. */
  79. #undef DEBUG
  80. #include <linux/module.h>
  81. #include <linux/ctype.h>
  82. #include <linux/init.h>
  83. #include <linux/interrupt.h>
  84. #include <linux/errno.h>
  85. #include <linux/kernel.h>
  86. #include <linux/delay.h>
  87. #include <linux/slab.h>
  88. #include <linux/blkdev.h>
  89. #include <linux/hdreg.h>
  90. #include <linux/platform_device.h>
  91. #if defined(CONFIG_OF)
  92. #include <linux/of_device.h>
  93. #include <linux/of_platform.h>
  94. #endif
  95. MODULE_AUTHOR("Grant Likely <grant.likely@secretlab.ca>");
  96. MODULE_DESCRIPTION("Xilinx SystemACE device driver");
  97. MODULE_LICENSE("GPL");
  98. /* SystemACE register definitions */
  99. #define ACE_BUSMODE (0x00)
  100. #define ACE_STATUS (0x04)
  101. #define ACE_STATUS_CFGLOCK (0x00000001)
  102. #define ACE_STATUS_MPULOCK (0x00000002)
  103. #define ACE_STATUS_CFGERROR (0x00000004) /* config controller error */
  104. #define ACE_STATUS_CFCERROR (0x00000008) /* CF controller error */
  105. #define ACE_STATUS_CFDETECT (0x00000010)
  106. #define ACE_STATUS_DATABUFRDY (0x00000020)
  107. #define ACE_STATUS_DATABUFMODE (0x00000040)
  108. #define ACE_STATUS_CFGDONE (0x00000080)
  109. #define ACE_STATUS_RDYFORCFCMD (0x00000100)
  110. #define ACE_STATUS_CFGMODEPIN (0x00000200)
  111. #define ACE_STATUS_CFGADDR_MASK (0x0000e000)
  112. #define ACE_STATUS_CFBSY (0x00020000)
  113. #define ACE_STATUS_CFRDY (0x00040000)
  114. #define ACE_STATUS_CFDWF (0x00080000)
  115. #define ACE_STATUS_CFDSC (0x00100000)
  116. #define ACE_STATUS_CFDRQ (0x00200000)
  117. #define ACE_STATUS_CFCORR (0x00400000)
  118. #define ACE_STATUS_CFERR (0x00800000)
  119. #define ACE_ERROR (0x08)
  120. #define ACE_CFGLBA (0x0c)
  121. #define ACE_MPULBA (0x10)
  122. #define ACE_SECCNTCMD (0x14)
  123. #define ACE_SECCNTCMD_RESET (0x0100)
  124. #define ACE_SECCNTCMD_IDENTIFY (0x0200)
  125. #define ACE_SECCNTCMD_READ_DATA (0x0300)
  126. #define ACE_SECCNTCMD_WRITE_DATA (0x0400)
  127. #define ACE_SECCNTCMD_ABORT (0x0600)
  128. #define ACE_VERSION (0x16)
  129. #define ACE_VERSION_REVISION_MASK (0x00FF)
  130. #define ACE_VERSION_MINOR_MASK (0x0F00)
  131. #define ACE_VERSION_MAJOR_MASK (0xF000)
  132. #define ACE_CTRL (0x18)
  133. #define ACE_CTRL_FORCELOCKREQ (0x0001)
  134. #define ACE_CTRL_LOCKREQ (0x0002)
  135. #define ACE_CTRL_FORCECFGADDR (0x0004)
  136. #define ACE_CTRL_FORCECFGMODE (0x0008)
  137. #define ACE_CTRL_CFGMODE (0x0010)
  138. #define ACE_CTRL_CFGSTART (0x0020)
  139. #define ACE_CTRL_CFGSEL (0x0040)
  140. #define ACE_CTRL_CFGRESET (0x0080)
  141. #define ACE_CTRL_DATABUFRDYIRQ (0x0100)
  142. #define ACE_CTRL_ERRORIRQ (0x0200)
  143. #define ACE_CTRL_CFGDONEIRQ (0x0400)
  144. #define ACE_CTRL_RESETIRQ (0x0800)
  145. #define ACE_CTRL_CFGPROG (0x1000)
  146. #define ACE_CTRL_CFGADDR_MASK (0xe000)
  147. #define ACE_FATSTAT (0x1c)
  148. #define ACE_NUM_MINORS 16
  149. #define ACE_SECTOR_SIZE (512)
  150. #define ACE_FIFO_SIZE (32)
  151. #define ACE_BUF_PER_SECTOR (ACE_SECTOR_SIZE / ACE_FIFO_SIZE)
  152. #define ACE_BUS_WIDTH_8 0
  153. #define ACE_BUS_WIDTH_16 1
  154. struct ace_reg_ops;
  155. struct ace_device {
  156. /* driver state data */
  157. int id;
  158. int media_change;
  159. int users;
  160. struct list_head list;
  161. /* finite state machine data */
  162. struct tasklet_struct fsm_tasklet;
  163. uint fsm_task; /* Current activity (ACE_TASK_*) */
  164. uint fsm_state; /* Current state (ACE_FSM_STATE_*) */
  165. uint fsm_continue_flag; /* cleared to exit FSM mainloop */
  166. uint fsm_iter_num;
  167. struct timer_list stall_timer;
  168. /* Transfer state/result, use for both id and block request */
  169. struct request *req; /* request being processed */
  170. void *data_ptr; /* pointer to I/O buffer */
  171. int data_count; /* number of buffers remaining */
  172. int data_result; /* Result of transfer; 0 := success */
  173. int id_req_count; /* count of id requests */
  174. int id_result;
  175. struct completion id_completion; /* used when id req finishes */
  176. int in_irq;
  177. /* Details of hardware device */
  178. unsigned long physaddr;
  179. void __iomem *baseaddr;
  180. int irq;
  181. int bus_width; /* 0 := 8 bit; 1 := 16 bit */
  182. struct ace_reg_ops *reg_ops;
  183. int lock_count;
  184. /* Block device data structures */
  185. spinlock_t lock;
  186. struct device *dev;
  187. struct request_queue *queue;
  188. struct gendisk *gd;
  189. /* Inserted CF card parameters */
  190. struct hd_driveid cf_id;
  191. };
  192. static int ace_major;
  193. /* ---------------------------------------------------------------------
  194. * Low level register access
  195. */
  196. struct ace_reg_ops {
  197. u16(*in) (struct ace_device * ace, int reg);
  198. void (*out) (struct ace_device * ace, int reg, u16 val);
  199. void (*datain) (struct ace_device * ace);
  200. void (*dataout) (struct ace_device * ace);
  201. };
  202. /* 8 Bit bus width */
  203. static u16 ace_in_8(struct ace_device *ace, int reg)
  204. {
  205. void __iomem *r = ace->baseaddr + reg;
  206. return in_8(r) | (in_8(r + 1) << 8);
  207. }
  208. static void ace_out_8(struct ace_device *ace, int reg, u16 val)
  209. {
  210. void __iomem *r = ace->baseaddr + reg;
  211. out_8(r, val);
  212. out_8(r + 1, val >> 8);
  213. }
  214. static void ace_datain_8(struct ace_device *ace)
  215. {
  216. void __iomem *r = ace->baseaddr + 0x40;
  217. u8 *dst = ace->data_ptr;
  218. int i = ACE_FIFO_SIZE;
  219. while (i--)
  220. *dst++ = in_8(r++);
  221. ace->data_ptr = dst;
  222. }
  223. static void ace_dataout_8(struct ace_device *ace)
  224. {
  225. void __iomem *r = ace->baseaddr + 0x40;
  226. u8 *src = ace->data_ptr;
  227. int i = ACE_FIFO_SIZE;
  228. while (i--)
  229. out_8(r++, *src++);
  230. ace->data_ptr = src;
  231. }
  232. static struct ace_reg_ops ace_reg_8_ops = {
  233. .in = ace_in_8,
  234. .out = ace_out_8,
  235. .datain = ace_datain_8,
  236. .dataout = ace_dataout_8,
  237. };
  238. /* 16 bit big endian bus attachment */
  239. static u16 ace_in_be16(struct ace_device *ace, int reg)
  240. {
  241. return in_be16(ace->baseaddr + reg);
  242. }
  243. static void ace_out_be16(struct ace_device *ace, int reg, u16 val)
  244. {
  245. out_be16(ace->baseaddr + reg, val);
  246. }
  247. static void ace_datain_be16(struct ace_device *ace)
  248. {
  249. int i = ACE_FIFO_SIZE / 2;
  250. u16 *dst = ace->data_ptr;
  251. while (i--)
  252. *dst++ = in_le16(ace->baseaddr + 0x40);
  253. ace->data_ptr = dst;
  254. }
  255. static void ace_dataout_be16(struct ace_device *ace)
  256. {
  257. int i = ACE_FIFO_SIZE / 2;
  258. u16 *src = ace->data_ptr;
  259. while (i--)
  260. out_le16(ace->baseaddr + 0x40, *src++);
  261. ace->data_ptr = src;
  262. }
  263. /* 16 bit little endian bus attachment */
  264. static u16 ace_in_le16(struct ace_device *ace, int reg)
  265. {
  266. return in_le16(ace->baseaddr + reg);
  267. }
  268. static void ace_out_le16(struct ace_device *ace, int reg, u16 val)
  269. {
  270. out_le16(ace->baseaddr + reg, val);
  271. }
  272. static void ace_datain_le16(struct ace_device *ace)
  273. {
  274. int i = ACE_FIFO_SIZE / 2;
  275. u16 *dst = ace->data_ptr;
  276. while (i--)
  277. *dst++ = in_be16(ace->baseaddr + 0x40);
  278. ace->data_ptr = dst;
  279. }
  280. static void ace_dataout_le16(struct ace_device *ace)
  281. {
  282. int i = ACE_FIFO_SIZE / 2;
  283. u16 *src = ace->data_ptr;
  284. while (i--)
  285. out_be16(ace->baseaddr + 0x40, *src++);
  286. ace->data_ptr = src;
  287. }
  288. static struct ace_reg_ops ace_reg_be16_ops = {
  289. .in = ace_in_be16,
  290. .out = ace_out_be16,
  291. .datain = ace_datain_be16,
  292. .dataout = ace_dataout_be16,
  293. };
  294. static struct ace_reg_ops ace_reg_le16_ops = {
  295. .in = ace_in_le16,
  296. .out = ace_out_le16,
  297. .datain = ace_datain_le16,
  298. .dataout = ace_dataout_le16,
  299. };
  300. static inline u16 ace_in(struct ace_device *ace, int reg)
  301. {
  302. return ace->reg_ops->in(ace, reg);
  303. }
  304. static inline u32 ace_in32(struct ace_device *ace, int reg)
  305. {
  306. return ace_in(ace, reg) | (ace_in(ace, reg + 2) << 16);
  307. }
  308. static inline void ace_out(struct ace_device *ace, int reg, u16 val)
  309. {
  310. ace->reg_ops->out(ace, reg, val);
  311. }
  312. static inline void ace_out32(struct ace_device *ace, int reg, u32 val)
  313. {
  314. ace_out(ace, reg, val);
  315. ace_out(ace, reg + 2, val >> 16);
  316. }
  317. /* ---------------------------------------------------------------------
  318. * Debug support functions
  319. */
  320. #if defined(DEBUG)
  321. static void ace_dump_mem(void *base, int len)
  322. {
  323. const char *ptr = base;
  324. int i, j;
  325. for (i = 0; i < len; i += 16) {
  326. printk(KERN_INFO "%.8x:", i);
  327. for (j = 0; j < 16; j++) {
  328. if (!(j % 4))
  329. printk(" ");
  330. printk("%.2x", ptr[i + j]);
  331. }
  332. printk(" ");
  333. for (j = 0; j < 16; j++)
  334. printk("%c", isprint(ptr[i + j]) ? ptr[i + j] : '.');
  335. printk("\n");
  336. }
  337. }
  338. #else
  339. static inline void ace_dump_mem(void *base, int len)
  340. {
  341. }
  342. #endif
  343. static void ace_dump_regs(struct ace_device *ace)
  344. {
  345. dev_info(ace->dev, " ctrl: %.8x seccnt/cmd: %.4x ver:%.4x\n"
  346. KERN_INFO " status:%.8x mpu_lba:%.8x busmode:%4x\n"
  347. KERN_INFO " error: %.8x cfg_lba:%.8x fatstat:%.4x\n",
  348. ace_in32(ace, ACE_CTRL),
  349. ace_in(ace, ACE_SECCNTCMD),
  350. ace_in(ace, ACE_VERSION),
  351. ace_in32(ace, ACE_STATUS),
  352. ace_in32(ace, ACE_MPULBA),
  353. ace_in(ace, ACE_BUSMODE),
  354. ace_in32(ace, ACE_ERROR),
  355. ace_in32(ace, ACE_CFGLBA), ace_in(ace, ACE_FATSTAT));
  356. }
  357. void ace_fix_driveid(struct hd_driveid *id)
  358. {
  359. #if defined(__BIG_ENDIAN)
  360. u16 *buf = (void *)id;
  361. int i;
  362. /* All half words have wrong byte order; swap the bytes */
  363. for (i = 0; i < sizeof(struct hd_driveid); i += 2, buf++)
  364. *buf = le16_to_cpu(*buf);
  365. /* Some of the data values are 32bit; swap the half words */
  366. id->lba_capacity = ((id->lba_capacity >> 16) & 0x0000FFFF) |
  367. ((id->lba_capacity << 16) & 0xFFFF0000);
  368. id->spg = ((id->spg >> 16) & 0x0000FFFF) |
  369. ((id->spg << 16) & 0xFFFF0000);
  370. #endif
  371. }
  372. /* ---------------------------------------------------------------------
  373. * Finite State Machine (FSM) implementation
  374. */
  375. /* FSM tasks; used to direct state transitions */
  376. #define ACE_TASK_IDLE 0
  377. #define ACE_TASK_IDENTIFY 1
  378. #define ACE_TASK_READ 2
  379. #define ACE_TASK_WRITE 3
  380. #define ACE_FSM_NUM_TASKS 4
  381. /* FSM state definitions */
  382. #define ACE_FSM_STATE_IDLE 0
  383. #define ACE_FSM_STATE_REQ_LOCK 1
  384. #define ACE_FSM_STATE_WAIT_LOCK 2
  385. #define ACE_FSM_STATE_WAIT_CFREADY 3
  386. #define ACE_FSM_STATE_IDENTIFY_PREPARE 4
  387. #define ACE_FSM_STATE_IDENTIFY_TRANSFER 5
  388. #define ACE_FSM_STATE_IDENTIFY_COMPLETE 6
  389. #define ACE_FSM_STATE_REQ_PREPARE 7
  390. #define ACE_FSM_STATE_REQ_TRANSFER 8
  391. #define ACE_FSM_STATE_REQ_COMPLETE 9
  392. #define ACE_FSM_STATE_ERROR 10
  393. #define ACE_FSM_NUM_STATES 11
  394. /* Set flag to exit FSM loop and reschedule tasklet */
  395. static inline void ace_fsm_yield(struct ace_device *ace)
  396. {
  397. dev_dbg(ace->dev, "ace_fsm_yield()\n");
  398. tasklet_schedule(&ace->fsm_tasklet);
  399. ace->fsm_continue_flag = 0;
  400. }
  401. /* Set flag to exit FSM loop and wait for IRQ to reschedule tasklet */
  402. static inline void ace_fsm_yieldirq(struct ace_device *ace)
  403. {
  404. dev_dbg(ace->dev, "ace_fsm_yieldirq()\n");
  405. if (ace->irq == NO_IRQ)
  406. /* No IRQ assigned, so need to poll */
  407. tasklet_schedule(&ace->fsm_tasklet);
  408. ace->fsm_continue_flag = 0;
  409. }
  410. /* Get the next read/write request; ending requests that we don't handle */
  411. struct request *ace_get_next_request(struct request_queue * q)
  412. {
  413. struct request *req;
  414. while ((req = elv_next_request(q)) != NULL) {
  415. if (blk_fs_request(req))
  416. break;
  417. end_request(req, 0);
  418. }
  419. return req;
  420. }
  421. static void ace_fsm_dostate(struct ace_device *ace)
  422. {
  423. struct request *req;
  424. u32 status;
  425. u16 val;
  426. int count;
  427. #if defined(DEBUG)
  428. dev_dbg(ace->dev, "fsm_state=%i, id_req_count=%i\n",
  429. ace->fsm_state, ace->id_req_count);
  430. #endif
  431. switch (ace->fsm_state) {
  432. case ACE_FSM_STATE_IDLE:
  433. /* See if there is anything to do */
  434. if (ace->id_req_count || ace_get_next_request(ace->queue)) {
  435. ace->fsm_iter_num++;
  436. ace->fsm_state = ACE_FSM_STATE_REQ_LOCK;
  437. mod_timer(&ace->stall_timer, jiffies + HZ);
  438. if (!timer_pending(&ace->stall_timer))
  439. add_timer(&ace->stall_timer);
  440. break;
  441. }
  442. del_timer(&ace->stall_timer);
  443. ace->fsm_continue_flag = 0;
  444. break;
  445. case ACE_FSM_STATE_REQ_LOCK:
  446. if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
  447. /* Already have the lock, jump to next state */
  448. ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
  449. break;
  450. }
  451. /* Request the lock */
  452. val = ace_in(ace, ACE_CTRL);
  453. ace_out(ace, ACE_CTRL, val | ACE_CTRL_LOCKREQ);
  454. ace->fsm_state = ACE_FSM_STATE_WAIT_LOCK;
  455. break;
  456. case ACE_FSM_STATE_WAIT_LOCK:
  457. if (ace_in(ace, ACE_STATUS) & ACE_STATUS_MPULOCK) {
  458. /* got the lock; move to next state */
  459. ace->fsm_state = ACE_FSM_STATE_WAIT_CFREADY;
  460. break;
  461. }
  462. /* wait a bit for the lock */
  463. ace_fsm_yield(ace);
  464. break;
  465. case ACE_FSM_STATE_WAIT_CFREADY:
  466. status = ace_in32(ace, ACE_STATUS);
  467. if (!(status & ACE_STATUS_RDYFORCFCMD) ||
  468. (status & ACE_STATUS_CFBSY)) {
  469. /* CF card isn't ready; it needs to be polled */
  470. ace_fsm_yield(ace);
  471. break;
  472. }
  473. /* Device is ready for command; determine what to do next */
  474. if (ace->id_req_count)
  475. ace->fsm_state = ACE_FSM_STATE_IDENTIFY_PREPARE;
  476. else
  477. ace->fsm_state = ACE_FSM_STATE_REQ_PREPARE;
  478. break;
  479. case ACE_FSM_STATE_IDENTIFY_PREPARE:
  480. /* Send identify command */
  481. ace->fsm_task = ACE_TASK_IDENTIFY;
  482. ace->data_ptr = &ace->cf_id;
  483. ace->data_count = ACE_BUF_PER_SECTOR;
  484. ace_out(ace, ACE_SECCNTCMD, ACE_SECCNTCMD_IDENTIFY);
  485. /* As per datasheet, put config controller in reset */
  486. val = ace_in(ace, ACE_CTRL);
  487. ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
  488. /* irq handler takes over from this point; wait for the
  489. * transfer to complete */
  490. ace->fsm_state = ACE_FSM_STATE_IDENTIFY_TRANSFER;
  491. ace_fsm_yieldirq(ace);
  492. break;
  493. case ACE_FSM_STATE_IDENTIFY_TRANSFER:
  494. /* Check that the sysace is ready to receive data */
  495. status = ace_in32(ace, ACE_STATUS);
  496. if (status & ACE_STATUS_CFBSY) {
  497. dev_dbg(ace->dev, "CFBSY set; t=%i iter=%i dc=%i\n",
  498. ace->fsm_task, ace->fsm_iter_num,
  499. ace->data_count);
  500. ace_fsm_yield(ace);
  501. break;
  502. }
  503. if (!(status & ACE_STATUS_DATABUFRDY)) {
  504. ace_fsm_yield(ace);
  505. break;
  506. }
  507. /* Transfer the next buffer */
  508. ace->reg_ops->datain(ace);
  509. ace->data_count--;
  510. /* If there are still buffers to be transfers; jump out here */
  511. if (ace->data_count != 0) {
  512. ace_fsm_yieldirq(ace);
  513. break;
  514. }
  515. /* transfer finished; kick state machine */
  516. dev_dbg(ace->dev, "identify finished\n");
  517. ace->fsm_state = ACE_FSM_STATE_IDENTIFY_COMPLETE;
  518. break;
  519. case ACE_FSM_STATE_IDENTIFY_COMPLETE:
  520. ace_fix_driveid(&ace->cf_id);
  521. ace_dump_mem(&ace->cf_id, 512); /* Debug: Dump out disk ID */
  522. if (ace->data_result) {
  523. /* Error occured, disable the disk */
  524. ace->media_change = 1;
  525. set_capacity(ace->gd, 0);
  526. dev_err(ace->dev, "error fetching CF id (%i)\n",
  527. ace->data_result);
  528. } else {
  529. ace->media_change = 0;
  530. /* Record disk parameters */
  531. set_capacity(ace->gd, ace->cf_id.lba_capacity);
  532. dev_info(ace->dev, "capacity: %i sectors\n",
  533. ace->cf_id.lba_capacity);
  534. }
  535. /* We're done, drop to IDLE state and notify waiters */
  536. ace->fsm_state = ACE_FSM_STATE_IDLE;
  537. ace->id_result = ace->data_result;
  538. while (ace->id_req_count) {
  539. complete(&ace->id_completion);
  540. ace->id_req_count--;
  541. }
  542. break;
  543. case ACE_FSM_STATE_REQ_PREPARE:
  544. req = ace_get_next_request(ace->queue);
  545. if (!req) {
  546. ace->fsm_state = ACE_FSM_STATE_IDLE;
  547. break;
  548. }
  549. /* Okay, it's a data request, set it up for transfer */
  550. dev_dbg(ace->dev,
  551. "request: sec=%lx hcnt=%lx, ccnt=%x, dir=%i\n",
  552. req->sector, req->hard_nr_sectors,
  553. req->current_nr_sectors, rq_data_dir(req));
  554. ace->req = req;
  555. ace->data_ptr = req->buffer;
  556. ace->data_count = req->current_nr_sectors * ACE_BUF_PER_SECTOR;
  557. ace_out32(ace, ACE_MPULBA, req->sector & 0x0FFFFFFF);
  558. count = req->hard_nr_sectors;
  559. if (rq_data_dir(req)) {
  560. /* Kick off write request */
  561. dev_dbg(ace->dev, "write data\n");
  562. ace->fsm_task = ACE_TASK_WRITE;
  563. ace_out(ace, ACE_SECCNTCMD,
  564. count | ACE_SECCNTCMD_WRITE_DATA);
  565. } else {
  566. /* Kick off read request */
  567. dev_dbg(ace->dev, "read data\n");
  568. ace->fsm_task = ACE_TASK_READ;
  569. ace_out(ace, ACE_SECCNTCMD,
  570. count | ACE_SECCNTCMD_READ_DATA);
  571. }
  572. /* As per datasheet, put config controller in reset */
  573. val = ace_in(ace, ACE_CTRL);
  574. ace_out(ace, ACE_CTRL, val | ACE_CTRL_CFGRESET);
  575. /* Move to the transfer state. The systemace will raise
  576. * an interrupt once there is something to do
  577. */
  578. ace->fsm_state = ACE_FSM_STATE_REQ_TRANSFER;
  579. if (ace->fsm_task == ACE_TASK_READ)
  580. ace_fsm_yieldirq(ace); /* wait for data ready */
  581. break;
  582. case ACE_FSM_STATE_REQ_TRANSFER:
  583. /* Check that the sysace is ready to receive data */
  584. status = ace_in32(ace, ACE_STATUS);
  585. if (status & ACE_STATUS_CFBSY) {
  586. dev_dbg(ace->dev,
  587. "CFBSY set; t=%i iter=%i c=%i dc=%i irq=%i\n",
  588. ace->fsm_task, ace->fsm_iter_num,
  589. ace->req->current_nr_sectors * 16,
  590. ace->data_count, ace->in_irq);
  591. ace_fsm_yield(ace); /* need to poll CFBSY bit */
  592. break;
  593. }
  594. if (!(status & ACE_STATUS_DATABUFRDY)) {
  595. dev_dbg(ace->dev,
  596. "DATABUF not set; t=%i iter=%i c=%i dc=%i irq=%i\n",
  597. ace->fsm_task, ace->fsm_iter_num,
  598. ace->req->current_nr_sectors * 16,
  599. ace->data_count, ace->in_irq);
  600. ace_fsm_yieldirq(ace);
  601. break;
  602. }
  603. /* Transfer the next buffer */
  604. if (ace->fsm_task == ACE_TASK_WRITE)
  605. ace->reg_ops->dataout(ace);
  606. else
  607. ace->reg_ops->datain(ace);
  608. ace->data_count--;
  609. /* If there are still buffers to be transfers; jump out here */
  610. if (ace->data_count != 0) {
  611. ace_fsm_yieldirq(ace);
  612. break;
  613. }
  614. /* bio finished; is there another one? */
  615. if (__blk_end_request(ace->req, 0,
  616. blk_rq_cur_bytes(ace->req))) {
  617. /* dev_dbg(ace->dev, "next block; h=%li c=%i\n",
  618. * ace->req->hard_nr_sectors,
  619. * ace->req->current_nr_sectors);
  620. */
  621. ace->data_ptr = ace->req->buffer;
  622. ace->data_count = ace->req->current_nr_sectors * 16;
  623. ace_fsm_yieldirq(ace);
  624. break;
  625. }
  626. ace->fsm_state = ACE_FSM_STATE_REQ_COMPLETE;
  627. break;
  628. case ACE_FSM_STATE_REQ_COMPLETE:
  629. ace->req = NULL;
  630. /* Finished request; go to idle state */
  631. ace->fsm_state = ACE_FSM_STATE_IDLE;
  632. break;
  633. default:
  634. ace->fsm_state = ACE_FSM_STATE_IDLE;
  635. break;
  636. }
  637. }
  638. static void ace_fsm_tasklet(unsigned long data)
  639. {
  640. struct ace_device *ace = (void *)data;
  641. unsigned long flags;
  642. spin_lock_irqsave(&ace->lock, flags);
  643. /* Loop over state machine until told to stop */
  644. ace->fsm_continue_flag = 1;
  645. while (ace->fsm_continue_flag)
  646. ace_fsm_dostate(ace);
  647. spin_unlock_irqrestore(&ace->lock, flags);
  648. }
  649. static void ace_stall_timer(unsigned long data)
  650. {
  651. struct ace_device *ace = (void *)data;
  652. unsigned long flags;
  653. dev_warn(ace->dev,
  654. "kicking stalled fsm; state=%i task=%i iter=%i dc=%i\n",
  655. ace->fsm_state, ace->fsm_task, ace->fsm_iter_num,
  656. ace->data_count);
  657. spin_lock_irqsave(&ace->lock, flags);
  658. /* Rearm the stall timer *before* entering FSM (which may then
  659. * delete the timer) */
  660. mod_timer(&ace->stall_timer, jiffies + HZ);
  661. /* Loop over state machine until told to stop */
  662. ace->fsm_continue_flag = 1;
  663. while (ace->fsm_continue_flag)
  664. ace_fsm_dostate(ace);
  665. spin_unlock_irqrestore(&ace->lock, flags);
  666. }
  667. /* ---------------------------------------------------------------------
  668. * Interrupt handling routines
  669. */
  670. static int ace_interrupt_checkstate(struct ace_device *ace)
  671. {
  672. u32 sreg = ace_in32(ace, ACE_STATUS);
  673. u16 creg = ace_in(ace, ACE_CTRL);
  674. /* Check for error occurance */
  675. if ((sreg & (ACE_STATUS_CFGERROR | ACE_STATUS_CFCERROR)) &&
  676. (creg & ACE_CTRL_ERRORIRQ)) {
  677. dev_err(ace->dev, "transfer failure\n");
  678. ace_dump_regs(ace);
  679. return -EIO;
  680. }
  681. return 0;
  682. }
  683. static irqreturn_t ace_interrupt(int irq, void *dev_id)
  684. {
  685. u16 creg;
  686. struct ace_device *ace = dev_id;
  687. /* be safe and get the lock */
  688. spin_lock(&ace->lock);
  689. ace->in_irq = 1;
  690. /* clear the interrupt */
  691. creg = ace_in(ace, ACE_CTRL);
  692. ace_out(ace, ACE_CTRL, creg | ACE_CTRL_RESETIRQ);
  693. ace_out(ace, ACE_CTRL, creg);
  694. /* check for IO failures */
  695. if (ace_interrupt_checkstate(ace))
  696. ace->data_result = -EIO;
  697. if (ace->fsm_task == 0) {
  698. dev_err(ace->dev,
  699. "spurious irq; stat=%.8x ctrl=%.8x cmd=%.4x\n",
  700. ace_in32(ace, ACE_STATUS), ace_in32(ace, ACE_CTRL),
  701. ace_in(ace, ACE_SECCNTCMD));
  702. dev_err(ace->dev, "fsm_task=%i fsm_state=%i data_count=%i\n",
  703. ace->fsm_task, ace->fsm_state, ace->data_count);
  704. }
  705. /* Loop over state machine until told to stop */
  706. ace->fsm_continue_flag = 1;
  707. while (ace->fsm_continue_flag)
  708. ace_fsm_dostate(ace);
  709. /* done with interrupt; drop the lock */
  710. ace->in_irq = 0;
  711. spin_unlock(&ace->lock);
  712. return IRQ_HANDLED;
  713. }
  714. /* ---------------------------------------------------------------------
  715. * Block ops
  716. */
  717. static void ace_request(struct request_queue * q)
  718. {
  719. struct request *req;
  720. struct ace_device *ace;
  721. req = ace_get_next_request(q);
  722. if (req) {
  723. ace = req->rq_disk->private_data;
  724. tasklet_schedule(&ace->fsm_tasklet);
  725. }
  726. }
  727. static int ace_media_changed(struct gendisk *gd)
  728. {
  729. struct ace_device *ace = gd->private_data;
  730. dev_dbg(ace->dev, "ace_media_changed(): %i\n", ace->media_change);
  731. return ace->media_change;
  732. }
  733. static int ace_revalidate_disk(struct gendisk *gd)
  734. {
  735. struct ace_device *ace = gd->private_data;
  736. unsigned long flags;
  737. dev_dbg(ace->dev, "ace_revalidate_disk()\n");
  738. if (ace->media_change) {
  739. dev_dbg(ace->dev, "requesting cf id and scheduling tasklet\n");
  740. spin_lock_irqsave(&ace->lock, flags);
  741. ace->id_req_count++;
  742. spin_unlock_irqrestore(&ace->lock, flags);
  743. tasklet_schedule(&ace->fsm_tasklet);
  744. wait_for_completion(&ace->id_completion);
  745. }
  746. dev_dbg(ace->dev, "revalidate complete\n");
  747. return ace->id_result;
  748. }
  749. static int ace_open(struct inode *inode, struct file *filp)
  750. {
  751. struct ace_device *ace = inode->i_bdev->bd_disk->private_data;
  752. unsigned long flags;
  753. dev_dbg(ace->dev, "ace_open() users=%i\n", ace->users + 1);
  754. filp->private_data = ace;
  755. spin_lock_irqsave(&ace->lock, flags);
  756. ace->users++;
  757. spin_unlock_irqrestore(&ace->lock, flags);
  758. check_disk_change(inode->i_bdev);
  759. return 0;
  760. }
  761. static int ace_release(struct inode *inode, struct file *filp)
  762. {
  763. struct ace_device *ace = inode->i_bdev->bd_disk->private_data;
  764. unsigned long flags;
  765. u16 val;
  766. dev_dbg(ace->dev, "ace_release() users=%i\n", ace->users - 1);
  767. spin_lock_irqsave(&ace->lock, flags);
  768. ace->users--;
  769. if (ace->users == 0) {
  770. val = ace_in(ace, ACE_CTRL);
  771. ace_out(ace, ACE_CTRL, val & ~ACE_CTRL_LOCKREQ);
  772. }
  773. spin_unlock_irqrestore(&ace->lock, flags);
  774. return 0;
  775. }
  776. static int ace_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  777. {
  778. struct ace_device *ace = bdev->bd_disk->private_data;
  779. dev_dbg(ace->dev, "ace_getgeo()\n");
  780. geo->heads = ace->cf_id.heads;
  781. geo->sectors = ace->cf_id.sectors;
  782. geo->cylinders = ace->cf_id.cyls;
  783. return 0;
  784. }
  785. static struct block_device_operations ace_fops = {
  786. .owner = THIS_MODULE,
  787. .open = ace_open,
  788. .release = ace_release,
  789. .media_changed = ace_media_changed,
  790. .revalidate_disk = ace_revalidate_disk,
  791. .getgeo = ace_getgeo,
  792. };
  793. /* --------------------------------------------------------------------
  794. * SystemACE device setup/teardown code
  795. */
  796. static int __devinit ace_setup(struct ace_device *ace)
  797. {
  798. u16 version;
  799. u16 val;
  800. int rc;
  801. dev_dbg(ace->dev, "ace_setup(ace=0x%p)\n", ace);
  802. dev_dbg(ace->dev, "physaddr=0x%lx irq=%i\n", ace->physaddr, ace->irq);
  803. spin_lock_init(&ace->lock);
  804. init_completion(&ace->id_completion);
  805. /*
  806. * Map the device
  807. */
  808. ace->baseaddr = ioremap(ace->physaddr, 0x80);
  809. if (!ace->baseaddr)
  810. goto err_ioremap;
  811. /*
  812. * Initialize the state machine tasklet and stall timer
  813. */
  814. tasklet_init(&ace->fsm_tasklet, ace_fsm_tasklet, (unsigned long)ace);
  815. setup_timer(&ace->stall_timer, ace_stall_timer, (unsigned long)ace);
  816. /*
  817. * Initialize the request queue
  818. */
  819. ace->queue = blk_init_queue(ace_request, &ace->lock);
  820. if (ace->queue == NULL)
  821. goto err_blk_initq;
  822. blk_queue_hardsect_size(ace->queue, 512);
  823. /*
  824. * Allocate and initialize GD structure
  825. */
  826. ace->gd = alloc_disk(ACE_NUM_MINORS);
  827. if (!ace->gd)
  828. goto err_alloc_disk;
  829. ace->gd->major = ace_major;
  830. ace->gd->first_minor = ace->id * ACE_NUM_MINORS;
  831. ace->gd->fops = &ace_fops;
  832. ace->gd->queue = ace->queue;
  833. ace->gd->private_data = ace;
  834. snprintf(ace->gd->disk_name, 32, "xs%c", ace->id + 'a');
  835. /* set bus width */
  836. if (ace->bus_width == ACE_BUS_WIDTH_16) {
  837. /* 0x0101 should work regardless of endianess */
  838. ace_out_le16(ace, ACE_BUSMODE, 0x0101);
  839. /* read it back to determine endianess */
  840. if (ace_in_le16(ace, ACE_BUSMODE) == 0x0001)
  841. ace->reg_ops = &ace_reg_le16_ops;
  842. else
  843. ace->reg_ops = &ace_reg_be16_ops;
  844. } else {
  845. ace_out_8(ace, ACE_BUSMODE, 0x00);
  846. ace->reg_ops = &ace_reg_8_ops;
  847. }
  848. /* Make sure version register is sane */
  849. version = ace_in(ace, ACE_VERSION);
  850. if ((version == 0) || (version == 0xFFFF))
  851. goto err_read;
  852. /* Put sysace in a sane state by clearing most control reg bits */
  853. ace_out(ace, ACE_CTRL, ACE_CTRL_FORCECFGMODE |
  854. ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ);
  855. /* Now we can hook up the irq handler */
  856. if (ace->irq != NO_IRQ) {
  857. rc = request_irq(ace->irq, ace_interrupt, 0, "systemace", ace);
  858. if (rc) {
  859. /* Failure - fall back to polled mode */
  860. dev_err(ace->dev, "request_irq failed\n");
  861. ace->irq = NO_IRQ;
  862. }
  863. }
  864. /* Enable interrupts */
  865. val = ace_in(ace, ACE_CTRL);
  866. val |= ACE_CTRL_DATABUFRDYIRQ | ACE_CTRL_ERRORIRQ;
  867. ace_out(ace, ACE_CTRL, val);
  868. /* Print the identification */
  869. dev_info(ace->dev, "Xilinx SystemACE revision %i.%i.%i\n",
  870. (version >> 12) & 0xf, (version >> 8) & 0x0f, version & 0xff);
  871. dev_dbg(ace->dev, "physaddr 0x%lx, mapped to 0x%p, irq=%i\n",
  872. ace->physaddr, ace->baseaddr, ace->irq);
  873. ace->media_change = 1;
  874. ace_revalidate_disk(ace->gd);
  875. /* Make the sysace device 'live' */
  876. add_disk(ace->gd);
  877. return 0;
  878. err_read:
  879. put_disk(ace->gd);
  880. err_alloc_disk:
  881. blk_cleanup_queue(ace->queue);
  882. err_blk_initq:
  883. iounmap(ace->baseaddr);
  884. err_ioremap:
  885. dev_info(ace->dev, "xsysace: error initializing device at 0x%lx\n",
  886. ace->physaddr);
  887. return -ENOMEM;
  888. }
  889. static void __devexit ace_teardown(struct ace_device *ace)
  890. {
  891. if (ace->gd) {
  892. del_gendisk(ace->gd);
  893. put_disk(ace->gd);
  894. }
  895. if (ace->queue)
  896. blk_cleanup_queue(ace->queue);
  897. tasklet_kill(&ace->fsm_tasklet);
  898. if (ace->irq != NO_IRQ)
  899. free_irq(ace->irq, ace);
  900. iounmap(ace->baseaddr);
  901. }
  902. static int __devinit
  903. ace_alloc(struct device *dev, int id, unsigned long physaddr,
  904. int irq, int bus_width)
  905. {
  906. struct ace_device *ace;
  907. int rc;
  908. dev_dbg(dev, "ace_alloc(%p)\n", dev);
  909. if (!physaddr) {
  910. rc = -ENODEV;
  911. goto err_noreg;
  912. }
  913. /* Allocate and initialize the ace device structure */
  914. ace = kzalloc(sizeof(struct ace_device), GFP_KERNEL);
  915. if (!ace) {
  916. rc = -ENOMEM;
  917. goto err_alloc;
  918. }
  919. ace->dev = dev;
  920. ace->id = id;
  921. ace->physaddr = physaddr;
  922. ace->irq = irq;
  923. ace->bus_width = bus_width;
  924. /* Call the setup code */
  925. rc = ace_setup(ace);
  926. if (rc)
  927. goto err_setup;
  928. dev_set_drvdata(dev, ace);
  929. return 0;
  930. err_setup:
  931. dev_set_drvdata(dev, NULL);
  932. kfree(ace);
  933. err_alloc:
  934. err_noreg:
  935. dev_err(dev, "could not initialize device, err=%i\n", rc);
  936. return rc;
  937. }
  938. static void __devexit ace_free(struct device *dev)
  939. {
  940. struct ace_device *ace = dev_get_drvdata(dev);
  941. dev_dbg(dev, "ace_free(%p)\n", dev);
  942. if (ace) {
  943. ace_teardown(ace);
  944. dev_set_drvdata(dev, NULL);
  945. kfree(ace);
  946. }
  947. }
  948. /* ---------------------------------------------------------------------
  949. * Platform Bus Support
  950. */
  951. static int __devinit ace_probe(struct platform_device *dev)
  952. {
  953. unsigned long physaddr = 0;
  954. int bus_width = ACE_BUS_WIDTH_16; /* FIXME: should not be hard coded */
  955. int id = dev->id;
  956. int irq = NO_IRQ;
  957. int i;
  958. dev_dbg(&dev->dev, "ace_probe(%p)\n", dev);
  959. for (i = 0; i < dev->num_resources; i++) {
  960. if (dev->resource[i].flags & IORESOURCE_MEM)
  961. physaddr = dev->resource[i].start;
  962. if (dev->resource[i].flags & IORESOURCE_IRQ)
  963. irq = dev->resource[i].start;
  964. }
  965. /* Call the bus-independant setup code */
  966. return ace_alloc(&dev->dev, id, physaddr, irq, bus_width);
  967. }
  968. /*
  969. * Platform bus remove() method
  970. */
  971. static int __devexit ace_remove(struct platform_device *dev)
  972. {
  973. ace_free(&dev->dev);
  974. return 0;
  975. }
  976. static struct platform_driver ace_platform_driver = {
  977. .probe = ace_probe,
  978. .remove = __devexit_p(ace_remove),
  979. .driver = {
  980. .owner = THIS_MODULE,
  981. .name = "xsysace",
  982. },
  983. };
  984. /* ---------------------------------------------------------------------
  985. * OF_Platform Bus Support
  986. */
  987. #if defined(CONFIG_OF)
  988. static int __devinit
  989. ace_of_probe(struct of_device *op, const struct of_device_id *match)
  990. {
  991. struct resource res;
  992. unsigned long physaddr;
  993. const u32 *id;
  994. int irq, bus_width, rc;
  995. dev_dbg(&op->dev, "ace_of_probe(%p, %p)\n", op, match);
  996. /* device id */
  997. id = of_get_property(op->node, "port-number", NULL);
  998. /* physaddr */
  999. rc = of_address_to_resource(op->node, 0, &res);
  1000. if (rc) {
  1001. dev_err(&op->dev, "invalid address\n");
  1002. return rc;
  1003. }
  1004. physaddr = res.start;
  1005. /* irq */
  1006. irq = irq_of_parse_and_map(op->node, 0);
  1007. /* bus width */
  1008. bus_width = ACE_BUS_WIDTH_16;
  1009. if (of_find_property(op->node, "8-bit", NULL))
  1010. bus_width = ACE_BUS_WIDTH_8;
  1011. /* Call the bus-independant setup code */
  1012. return ace_alloc(&op->dev, id ? *id : 0, physaddr, irq, bus_width);
  1013. }
  1014. static int __devexit ace_of_remove(struct of_device *op)
  1015. {
  1016. ace_free(&op->dev);
  1017. return 0;
  1018. }
  1019. /* Match table for of_platform binding */
  1020. static struct of_device_id ace_of_match[] __devinitdata = {
  1021. { .compatible = "xlnx,opb-sysace-1.00.b", },
  1022. { .compatible = "xlnx,opb-sysace-1.00.c", },
  1023. { .compatible = "xlnx,xps-sysace-1.00.a", },
  1024. {},
  1025. };
  1026. MODULE_DEVICE_TABLE(of, ace_of_match);
  1027. static struct of_platform_driver ace_of_driver = {
  1028. .owner = THIS_MODULE,
  1029. .name = "xsysace",
  1030. .match_table = ace_of_match,
  1031. .probe = ace_of_probe,
  1032. .remove = __devexit_p(ace_of_remove),
  1033. .driver = {
  1034. .name = "xsysace",
  1035. },
  1036. };
  1037. /* Registration helpers to keep the number of #ifdefs to a minimum */
  1038. static inline int __init ace_of_register(void)
  1039. {
  1040. pr_debug("xsysace: registering OF binding\n");
  1041. return of_register_platform_driver(&ace_of_driver);
  1042. }
  1043. static inline void __exit ace_of_unregister(void)
  1044. {
  1045. of_unregister_platform_driver(&ace_of_driver);
  1046. }
  1047. #else /* CONFIG_OF */
  1048. /* CONFIG_OF not enabled; do nothing helpers */
  1049. static inline int __init ace_of_register(void) { return 0; }
  1050. static inline void __exit ace_of_unregister(void) { }
  1051. #endif /* CONFIG_OF */
  1052. /* ---------------------------------------------------------------------
  1053. * Module init/exit routines
  1054. */
  1055. static int __init ace_init(void)
  1056. {
  1057. int rc;
  1058. ace_major = register_blkdev(ace_major, "xsysace");
  1059. if (ace_major <= 0) {
  1060. rc = -ENOMEM;
  1061. goto err_blk;
  1062. }
  1063. rc = ace_of_register();
  1064. if (rc)
  1065. goto err_of;
  1066. pr_debug("xsysace: registering platform binding\n");
  1067. rc = platform_driver_register(&ace_platform_driver);
  1068. if (rc)
  1069. goto err_plat;
  1070. pr_info("Xilinx SystemACE device driver, major=%i\n", ace_major);
  1071. return 0;
  1072. err_plat:
  1073. ace_of_unregister();
  1074. err_of:
  1075. unregister_blkdev(ace_major, "xsysace");
  1076. err_blk:
  1077. printk(KERN_ERR "xsysace: registration failed; err=%i\n", rc);
  1078. return rc;
  1079. }
  1080. static void __exit ace_exit(void)
  1081. {
  1082. pr_debug("Unregistering Xilinx SystemACE driver\n");
  1083. platform_driver_unregister(&ace_platform_driver);
  1084. ace_of_unregister();
  1085. unregister_blkdev(ace_major, "xsysace");
  1086. }
  1087. module_init(ace_init);
  1088. module_exit(ace_exit);