umem.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147
  1. /*
  2. * mm.c - Micro Memory(tm) PCI memory board block device driver - v2.3
  3. *
  4. * (C) 2001 San Mehat <nettwerk@valinux.com>
  5. * (C) 2001 Johannes Erdfelt <jerdfelt@valinux.com>
  6. * (C) 2001 NeilBrown <neilb@cse.unsw.edu.au>
  7. *
  8. * This driver for the Micro Memory PCI Memory Module with Battery Backup
  9. * is Copyright Micro Memory Inc 2001-2002. All rights reserved.
  10. *
  11. * This driver is released to the public under the terms of the
  12. * GNU GENERAL PUBLIC LICENSE version 2
  13. * See the file COPYING for details.
  14. *
  15. * This driver provides a standard block device interface for Micro Memory(tm)
  16. * PCI based RAM boards.
  17. * 10/05/01: Phap Nguyen - Rebuilt the driver
  18. * 10/22/01: Phap Nguyen - v2.1 Added disk partitioning
  19. * 29oct2001:NeilBrown - Use make_request_fn instead of request_fn
  20. * - use stand disk partitioning (so fdisk works).
  21. * 08nov2001:NeilBrown - change driver name from "mm" to "umem"
  22. * - incorporate into main kernel
  23. * 08apr2002:NeilBrown - Move some of interrupt handle to tasklet
  24. * - use spin_lock_bh instead of _irq
  25. * - Never block on make_request. queue
  26. * bh's instead.
  27. * - unregister umem from devfs at mod unload
  28. * - Change version to 2.3
  29. * 07Nov2001:Phap Nguyen - Select pci read command: 06, 12, 15 (Decimal)
  30. * 07Jan2002: P. Nguyen - Used PCI Memory Write & Invalidate for DMA
  31. * 15May2002:NeilBrown - convert to bio for 2.5
  32. * 17May2002:NeilBrown - remove init_mem initialisation. Instead detect
  33. * - a sequence of writes that cover the card, and
  34. * - set initialised bit then.
  35. */
  36. #undef DEBUG /* #define DEBUG if you want debugging info (pr_debug) */
  37. #include <linux/fs.h>
  38. #include <linux/bio.h>
  39. #include <linux/kernel.h>
  40. #include <linux/mm.h>
  41. #include <linux/mman.h>
  42. #include <linux/ioctl.h>
  43. #include <linux/module.h>
  44. #include <linux/init.h>
  45. #include <linux/interrupt.h>
  46. #include <linux/timer.h>
  47. #include <linux/pci.h>
  48. #include <linux/slab.h>
  49. #include <linux/dma-mapping.h>
  50. #include <linux/fcntl.h> /* O_ACCMODE */
  51. #include <linux/hdreg.h> /* HDIO_GETGEO */
  52. #include "umem.h"
  53. #include <asm/uaccess.h>
  54. #include <asm/io.h>
  55. #define MM_MAXCARDS 4
  56. #define MM_RAHEAD 2 /* two sectors */
  57. #define MM_BLKSIZE 1024 /* 1k blocks */
  58. #define MM_HARDSECT 512 /* 512-byte hardware sectors */
  59. #define MM_SHIFT 6 /* max 64 partitions on 4 cards */
  60. /*
  61. * Version Information
  62. */
  63. #define DRIVER_NAME "umem"
  64. #define DRIVER_VERSION "v2.3"
  65. #define DRIVER_AUTHOR "San Mehat, Johannes Erdfelt, NeilBrown"
  66. #define DRIVER_DESC "Micro Memory(tm) PCI memory board block driver"
  67. static int debug;
  68. /* #define HW_TRACE(x) writeb(x,cards[0].csr_remap + MEMCTRLSTATUS_MAGIC) */
  69. #define HW_TRACE(x)
  70. #define DEBUG_LED_ON_TRANSFER 0x01
  71. #define DEBUG_BATTERY_POLLING 0x02
  72. module_param(debug, int, 0644);
  73. MODULE_PARM_DESC(debug, "Debug bitmask");
  74. static int pci_read_cmd = 0x0C; /* Read Multiple */
  75. module_param(pci_read_cmd, int, 0);
  76. MODULE_PARM_DESC(pci_read_cmd, "PCI read command");
  77. static int pci_write_cmd = 0x0F; /* Write and Invalidate */
  78. module_param(pci_write_cmd, int, 0);
  79. MODULE_PARM_DESC(pci_write_cmd, "PCI write command");
  80. static int pci_cmds;
  81. static int major_nr;
  82. #include <linux/blkdev.h>
  83. #include <linux/blkpg.h>
  84. struct cardinfo {
  85. struct pci_dev *dev;
  86. unsigned char __iomem *csr_remap;
  87. unsigned int mm_size; /* size in kbytes */
  88. unsigned int init_size; /* initial segment, in sectors,
  89. * that we know to
  90. * have been written
  91. */
  92. struct bio *bio, *currentbio, **biotail;
  93. int current_idx;
  94. sector_t current_sector;
  95. struct request_queue *queue;
  96. struct mm_page {
  97. dma_addr_t page_dma;
  98. struct mm_dma_desc *desc;
  99. int cnt, headcnt;
  100. struct bio *bio, **biotail;
  101. int idx;
  102. } mm_pages[2];
  103. #define DESC_PER_PAGE ((PAGE_SIZE*2)/sizeof(struct mm_dma_desc))
  104. int Active, Ready;
  105. struct tasklet_struct tasklet;
  106. unsigned int dma_status;
  107. struct {
  108. int good;
  109. int warned;
  110. unsigned long last_change;
  111. } battery[2];
  112. spinlock_t lock;
  113. int check_batteries;
  114. int flags;
  115. };
  116. static struct cardinfo cards[MM_MAXCARDS];
  117. static struct block_device_operations mm_fops;
  118. static struct timer_list battery_timer;
  119. static int num_cards;
  120. static struct gendisk *mm_gendisk[MM_MAXCARDS];
  121. static void check_batteries(struct cardinfo *card);
  122. static int get_userbit(struct cardinfo *card, int bit)
  123. {
  124. unsigned char led;
  125. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  126. return led & bit;
  127. }
  128. static int set_userbit(struct cardinfo *card, int bit, unsigned char state)
  129. {
  130. unsigned char led;
  131. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  132. if (state)
  133. led |= bit;
  134. else
  135. led &= ~bit;
  136. writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
  137. return 0;
  138. }
  139. /*
  140. * NOTE: For the power LED, use the LED_POWER_* macros since they differ
  141. */
  142. static void set_led(struct cardinfo *card, int shift, unsigned char state)
  143. {
  144. unsigned char led;
  145. led = readb(card->csr_remap + MEMCTRLCMD_LEDCTRL);
  146. if (state == LED_FLIP)
  147. led ^= (1<<shift);
  148. else {
  149. led &= ~(0x03 << shift);
  150. led |= (state << shift);
  151. }
  152. writeb(led, card->csr_remap + MEMCTRLCMD_LEDCTRL);
  153. }
  154. #ifdef MM_DIAG
  155. static void dump_regs(struct cardinfo *card)
  156. {
  157. unsigned char *p;
  158. int i, i1;
  159. p = card->csr_remap;
  160. for (i = 0; i < 8; i++) {
  161. printk(KERN_DEBUG "%p ", p);
  162. for (i1 = 0; i1 < 16; i1++)
  163. printk("%02x ", *p++);
  164. printk("\n");
  165. }
  166. }
  167. #endif
  168. static void dump_dmastat(struct cardinfo *card, unsigned int dmastat)
  169. {
  170. dev_printk(KERN_DEBUG, &card->dev->dev, "DMAstat - ");
  171. if (dmastat & DMASCR_ANY_ERR)
  172. printk(KERN_CONT "ANY_ERR ");
  173. if (dmastat & DMASCR_MBE_ERR)
  174. printk(KERN_CONT "MBE_ERR ");
  175. if (dmastat & DMASCR_PARITY_ERR_REP)
  176. printk(KERN_CONT "PARITY_ERR_REP ");
  177. if (dmastat & DMASCR_PARITY_ERR_DET)
  178. printk(KERN_CONT "PARITY_ERR_DET ");
  179. if (dmastat & DMASCR_SYSTEM_ERR_SIG)
  180. printk(KERN_CONT "SYSTEM_ERR_SIG ");
  181. if (dmastat & DMASCR_TARGET_ABT)
  182. printk(KERN_CONT "TARGET_ABT ");
  183. if (dmastat & DMASCR_MASTER_ABT)
  184. printk(KERN_CONT "MASTER_ABT ");
  185. if (dmastat & DMASCR_CHAIN_COMPLETE)
  186. printk(KERN_CONT "CHAIN_COMPLETE ");
  187. if (dmastat & DMASCR_DMA_COMPLETE)
  188. printk(KERN_CONT "DMA_COMPLETE ");
  189. printk("\n");
  190. }
  191. /*
  192. * Theory of request handling
  193. *
  194. * Each bio is assigned to one mm_dma_desc - which may not be enough FIXME
  195. * We have two pages of mm_dma_desc, holding about 64 descriptors
  196. * each. These are allocated at init time.
  197. * One page is "Ready" and is either full, or can have request added.
  198. * The other page might be "Active", which DMA is happening on it.
  199. *
  200. * Whenever IO on the active page completes, the Ready page is activated
  201. * and the ex-Active page is clean out and made Ready.
  202. * Otherwise the Ready page is only activated when it becomes full, or
  203. * when mm_unplug_device is called via the unplug_io_fn.
  204. *
  205. * If a request arrives while both pages a full, it is queued, and b_rdev is
  206. * overloaded to record whether it was a read or a write.
  207. *
  208. * The interrupt handler only polls the device to clear the interrupt.
  209. * The processing of the result is done in a tasklet.
  210. */
  211. static void mm_start_io(struct cardinfo *card)
  212. {
  213. /* we have the lock, we know there is
  214. * no IO active, and we know that card->Active
  215. * is set
  216. */
  217. struct mm_dma_desc *desc;
  218. struct mm_page *page;
  219. int offset;
  220. /* make the last descriptor end the chain */
  221. page = &card->mm_pages[card->Active];
  222. pr_debug("start_io: %d %d->%d\n",
  223. card->Active, page->headcnt, page->cnt - 1);
  224. desc = &page->desc[page->cnt-1];
  225. desc->control_bits |= cpu_to_le32(DMASCR_CHAIN_COMP_EN);
  226. desc->control_bits &= ~cpu_to_le32(DMASCR_CHAIN_EN);
  227. desc->sem_control_bits = desc->control_bits;
  228. if (debug & DEBUG_LED_ON_TRANSFER)
  229. set_led(card, LED_REMOVE, LED_ON);
  230. desc = &page->desc[page->headcnt];
  231. writel(0, card->csr_remap + DMA_PCI_ADDR);
  232. writel(0, card->csr_remap + DMA_PCI_ADDR + 4);
  233. writel(0, card->csr_remap + DMA_LOCAL_ADDR);
  234. writel(0, card->csr_remap + DMA_LOCAL_ADDR + 4);
  235. writel(0, card->csr_remap + DMA_TRANSFER_SIZE);
  236. writel(0, card->csr_remap + DMA_TRANSFER_SIZE + 4);
  237. writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR);
  238. writel(0, card->csr_remap + DMA_SEMAPHORE_ADDR + 4);
  239. offset = ((char *)desc) - ((char *)page->desc);
  240. writel(cpu_to_le32((page->page_dma+offset) & 0xffffffff),
  241. card->csr_remap + DMA_DESCRIPTOR_ADDR);
  242. /* Force the value to u64 before shifting otherwise >> 32 is undefined C
  243. * and on some ports will do nothing ! */
  244. writel(cpu_to_le32(((u64)page->page_dma)>>32),
  245. card->csr_remap + DMA_DESCRIPTOR_ADDR + 4);
  246. /* Go, go, go */
  247. writel(cpu_to_le32(DMASCR_GO | DMASCR_CHAIN_EN | pci_cmds),
  248. card->csr_remap + DMA_STATUS_CTRL);
  249. }
  250. static int add_bio(struct cardinfo *card);
  251. static void activate(struct cardinfo *card)
  252. {
  253. /* if No page is Active, and Ready is
  254. * not empty, then switch Ready page
  255. * to active and start IO.
  256. * Then add any bh's that are available to Ready
  257. */
  258. do {
  259. while (add_bio(card))
  260. ;
  261. if (card->Active == -1 &&
  262. card->mm_pages[card->Ready].cnt > 0) {
  263. card->Active = card->Ready;
  264. card->Ready = 1-card->Ready;
  265. mm_start_io(card);
  266. }
  267. } while (card->Active == -1 && add_bio(card));
  268. }
  269. static inline void reset_page(struct mm_page *page)
  270. {
  271. page->cnt = 0;
  272. page->headcnt = 0;
  273. page->bio = NULL;
  274. page->biotail = &page->bio;
  275. }
  276. static void mm_unplug_device(struct request_queue *q)
  277. {
  278. struct cardinfo *card = q->queuedata;
  279. unsigned long flags;
  280. spin_lock_irqsave(&card->lock, flags);
  281. if (blk_remove_plug(q))
  282. activate(card);
  283. spin_unlock_irqrestore(&card->lock, flags);
  284. }
  285. /*
  286. * If there is room on Ready page, take
  287. * one bh off list and add it.
  288. * return 1 if there was room, else 0.
  289. */
  290. static int add_bio(struct cardinfo *card)
  291. {
  292. struct mm_page *p;
  293. struct mm_dma_desc *desc;
  294. dma_addr_t dma_handle;
  295. int offset;
  296. struct bio *bio;
  297. struct bio_vec *vec;
  298. int idx;
  299. int rw;
  300. int len;
  301. bio = card->currentbio;
  302. if (!bio && card->bio) {
  303. card->currentbio = card->bio;
  304. card->current_idx = card->bio->bi_idx;
  305. card->current_sector = card->bio->bi_sector;
  306. card->bio = card->bio->bi_next;
  307. if (card->bio == NULL)
  308. card->biotail = &card->bio;
  309. card->currentbio->bi_next = NULL;
  310. return 1;
  311. }
  312. if (!bio)
  313. return 0;
  314. idx = card->current_idx;
  315. rw = bio_rw(bio);
  316. if (card->mm_pages[card->Ready].cnt >= DESC_PER_PAGE)
  317. return 0;
  318. vec = bio_iovec_idx(bio, idx);
  319. len = vec->bv_len;
  320. dma_handle = pci_map_page(card->dev,
  321. vec->bv_page,
  322. vec->bv_offset,
  323. len,
  324. (rw == READ) ?
  325. PCI_DMA_FROMDEVICE : PCI_DMA_TODEVICE);
  326. p = &card->mm_pages[card->Ready];
  327. desc = &p->desc[p->cnt];
  328. p->cnt++;
  329. if (p->bio == NULL)
  330. p->idx = idx;
  331. if ((p->biotail) != &bio->bi_next) {
  332. *(p->biotail) = bio;
  333. p->biotail = &(bio->bi_next);
  334. bio->bi_next = NULL;
  335. }
  336. desc->data_dma_handle = dma_handle;
  337. desc->pci_addr = cpu_to_le64((u64)desc->data_dma_handle);
  338. desc->local_addr = cpu_to_le64(card->current_sector << 9);
  339. desc->transfer_size = cpu_to_le32(len);
  340. offset = (((char *)&desc->sem_control_bits) - ((char *)p->desc));
  341. desc->sem_addr = cpu_to_le64((u64)(p->page_dma+offset));
  342. desc->zero1 = desc->zero2 = 0;
  343. offset = (((char *)(desc+1)) - ((char *)p->desc));
  344. desc->next_desc_addr = cpu_to_le64(p->page_dma+offset);
  345. desc->control_bits = cpu_to_le32(DMASCR_GO|DMASCR_ERR_INT_EN|
  346. DMASCR_PARITY_INT_EN|
  347. DMASCR_CHAIN_EN |
  348. DMASCR_SEM_EN |
  349. pci_cmds);
  350. if (rw == WRITE)
  351. desc->control_bits |= cpu_to_le32(DMASCR_TRANSFER_READ);
  352. desc->sem_control_bits = desc->control_bits;
  353. card->current_sector += (len >> 9);
  354. idx++;
  355. card->current_idx = idx;
  356. if (idx >= bio->bi_vcnt)
  357. card->currentbio = NULL;
  358. return 1;
  359. }
  360. static void process_page(unsigned long data)
  361. {
  362. /* check if any of the requests in the page are DMA_COMPLETE,
  363. * and deal with them appropriately.
  364. * If we find a descriptor without DMA_COMPLETE in the semaphore, then
  365. * dma must have hit an error on that descriptor, so use dma_status
  366. * instead and assume that all following descriptors must be re-tried.
  367. */
  368. struct mm_page *page;
  369. struct bio *return_bio = NULL;
  370. struct cardinfo *card = (struct cardinfo *)data;
  371. unsigned int dma_status = card->dma_status;
  372. spin_lock_bh(&card->lock);
  373. if (card->Active < 0)
  374. goto out_unlock;
  375. page = &card->mm_pages[card->Active];
  376. while (page->headcnt < page->cnt) {
  377. struct bio *bio = page->bio;
  378. struct mm_dma_desc *desc = &page->desc[page->headcnt];
  379. int control = le32_to_cpu(desc->sem_control_bits);
  380. int last = 0;
  381. int idx;
  382. if (!(control & DMASCR_DMA_COMPLETE)) {
  383. control = dma_status;
  384. last = 1;
  385. }
  386. page->headcnt++;
  387. idx = page->idx;
  388. page->idx++;
  389. if (page->idx >= bio->bi_vcnt) {
  390. page->bio = bio->bi_next;
  391. if (page->bio)
  392. page->idx = page->bio->bi_idx;
  393. }
  394. pci_unmap_page(card->dev, desc->data_dma_handle,
  395. bio_iovec_idx(bio, idx)->bv_len,
  396. (control & DMASCR_TRANSFER_READ) ?
  397. PCI_DMA_TODEVICE : PCI_DMA_FROMDEVICE);
  398. if (control & DMASCR_HARD_ERROR) {
  399. /* error */
  400. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  401. dev_printk(KERN_WARNING, &card->dev->dev,
  402. "I/O error on sector %d/%d\n",
  403. le32_to_cpu(desc->local_addr)>>9,
  404. le32_to_cpu(desc->transfer_size));
  405. dump_dmastat(card, control);
  406. } else if (test_bit(BIO_RW, &bio->bi_rw) &&
  407. le32_to_cpu(desc->local_addr) >> 9 ==
  408. card->init_size) {
  409. card->init_size += le32_to_cpu(desc->transfer_size) >> 9;
  410. if (card->init_size >> 1 >= card->mm_size) {
  411. dev_printk(KERN_INFO, &card->dev->dev,
  412. "memory now initialised\n");
  413. set_userbit(card, MEMORY_INITIALIZED, 1);
  414. }
  415. }
  416. if (bio != page->bio) {
  417. bio->bi_next = return_bio;
  418. return_bio = bio;
  419. }
  420. if (last)
  421. break;
  422. }
  423. if (debug & DEBUG_LED_ON_TRANSFER)
  424. set_led(card, LED_REMOVE, LED_OFF);
  425. if (card->check_batteries) {
  426. card->check_batteries = 0;
  427. check_batteries(card);
  428. }
  429. if (page->headcnt >= page->cnt) {
  430. reset_page(page);
  431. card->Active = -1;
  432. activate(card);
  433. } else {
  434. /* haven't finished with this one yet */
  435. pr_debug("do some more\n");
  436. mm_start_io(card);
  437. }
  438. out_unlock:
  439. spin_unlock_bh(&card->lock);
  440. while (return_bio) {
  441. struct bio *bio = return_bio;
  442. return_bio = bio->bi_next;
  443. bio->bi_next = NULL;
  444. bio_endio(bio, 0);
  445. }
  446. }
  447. static int mm_make_request(struct request_queue *q, struct bio *bio)
  448. {
  449. struct cardinfo *card = q->queuedata;
  450. pr_debug("mm_make_request %llu %u\n",
  451. (unsigned long long)bio->bi_sector, bio->bi_size);
  452. spin_lock_irq(&card->lock);
  453. *card->biotail = bio;
  454. bio->bi_next = NULL;
  455. card->biotail = &bio->bi_next;
  456. blk_plug_device(q);
  457. spin_unlock_irq(&card->lock);
  458. return 0;
  459. }
  460. static irqreturn_t mm_interrupt(int irq, void *__card)
  461. {
  462. struct cardinfo *card = (struct cardinfo *) __card;
  463. unsigned int dma_status;
  464. unsigned short cfg_status;
  465. HW_TRACE(0x30);
  466. dma_status = le32_to_cpu(readl(card->csr_remap + DMA_STATUS_CTRL));
  467. if (!(dma_status & (DMASCR_ERROR_MASK | DMASCR_CHAIN_COMPLETE))) {
  468. /* interrupt wasn't for me ... */
  469. return IRQ_NONE;
  470. }
  471. /* clear COMPLETION interrupts */
  472. if (card->flags & UM_FLAG_NO_BYTE_STATUS)
  473. writel(cpu_to_le32(DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE),
  474. card->csr_remap + DMA_STATUS_CTRL);
  475. else
  476. writeb((DMASCR_DMA_COMPLETE|DMASCR_CHAIN_COMPLETE) >> 16,
  477. card->csr_remap + DMA_STATUS_CTRL + 2);
  478. /* log errors and clear interrupt status */
  479. if (dma_status & DMASCR_ANY_ERR) {
  480. unsigned int data_log1, data_log2;
  481. unsigned int addr_log1, addr_log2;
  482. unsigned char stat, count, syndrome, check;
  483. stat = readb(card->csr_remap + MEMCTRLCMD_ERRSTATUS);
  484. data_log1 = le32_to_cpu(readl(card->csr_remap +
  485. ERROR_DATA_LOG));
  486. data_log2 = le32_to_cpu(readl(card->csr_remap +
  487. ERROR_DATA_LOG + 4));
  488. addr_log1 = le32_to_cpu(readl(card->csr_remap +
  489. ERROR_ADDR_LOG));
  490. addr_log2 = readb(card->csr_remap + ERROR_ADDR_LOG + 4);
  491. count = readb(card->csr_remap + ERROR_COUNT);
  492. syndrome = readb(card->csr_remap + ERROR_SYNDROME);
  493. check = readb(card->csr_remap + ERROR_CHECK);
  494. dump_dmastat(card, dma_status);
  495. if (stat & 0x01)
  496. dev_printk(KERN_ERR, &card->dev->dev,
  497. "Memory access error detected (err count %d)\n",
  498. count);
  499. if (stat & 0x02)
  500. dev_printk(KERN_ERR, &card->dev->dev,
  501. "Multi-bit EDC error\n");
  502. dev_printk(KERN_ERR, &card->dev->dev,
  503. "Fault Address 0x%02x%08x, Fault Data 0x%08x%08x\n",
  504. addr_log2, addr_log1, data_log2, data_log1);
  505. dev_printk(KERN_ERR, &card->dev->dev,
  506. "Fault Check 0x%02x, Fault Syndrome 0x%02x\n",
  507. check, syndrome);
  508. writeb(0, card->csr_remap + ERROR_COUNT);
  509. }
  510. if (dma_status & DMASCR_PARITY_ERR_REP) {
  511. dev_printk(KERN_ERR, &card->dev->dev,
  512. "PARITY ERROR REPORTED\n");
  513. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  514. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  515. }
  516. if (dma_status & DMASCR_PARITY_ERR_DET) {
  517. dev_printk(KERN_ERR, &card->dev->dev,
  518. "PARITY ERROR DETECTED\n");
  519. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  520. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  521. }
  522. if (dma_status & DMASCR_SYSTEM_ERR_SIG) {
  523. dev_printk(KERN_ERR, &card->dev->dev, "SYSTEM ERROR\n");
  524. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  525. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  526. }
  527. if (dma_status & DMASCR_TARGET_ABT) {
  528. dev_printk(KERN_ERR, &card->dev->dev, "TARGET ABORT\n");
  529. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  530. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  531. }
  532. if (dma_status & DMASCR_MASTER_ABT) {
  533. dev_printk(KERN_ERR, &card->dev->dev, "MASTER ABORT\n");
  534. pci_read_config_word(card->dev, PCI_STATUS, &cfg_status);
  535. pci_write_config_word(card->dev, PCI_STATUS, cfg_status);
  536. }
  537. /* and process the DMA descriptors */
  538. card->dma_status = dma_status;
  539. tasklet_schedule(&card->tasklet);
  540. HW_TRACE(0x36);
  541. return IRQ_HANDLED;
  542. }
  543. /*
  544. * If both batteries are good, no LED
  545. * If either battery has been warned, solid LED
  546. * If both batteries are bad, flash the LED quickly
  547. * If either battery is bad, flash the LED semi quickly
  548. */
  549. static void set_fault_to_battery_status(struct cardinfo *card)
  550. {
  551. if (card->battery[0].good && card->battery[1].good)
  552. set_led(card, LED_FAULT, LED_OFF);
  553. else if (card->battery[0].warned || card->battery[1].warned)
  554. set_led(card, LED_FAULT, LED_ON);
  555. else if (!card->battery[0].good && !card->battery[1].good)
  556. set_led(card, LED_FAULT, LED_FLASH_7_0);
  557. else
  558. set_led(card, LED_FAULT, LED_FLASH_3_5);
  559. }
  560. static void init_battery_timer(void);
  561. static int check_battery(struct cardinfo *card, int battery, int status)
  562. {
  563. if (status != card->battery[battery].good) {
  564. card->battery[battery].good = !card->battery[battery].good;
  565. card->battery[battery].last_change = jiffies;
  566. if (card->battery[battery].good) {
  567. dev_printk(KERN_ERR, &card->dev->dev,
  568. "Battery %d now good\n", battery + 1);
  569. card->battery[battery].warned = 0;
  570. } else
  571. dev_printk(KERN_ERR, &card->dev->dev,
  572. "Battery %d now FAILED\n", battery + 1);
  573. return 1;
  574. } else if (!card->battery[battery].good &&
  575. !card->battery[battery].warned &&
  576. time_after_eq(jiffies, card->battery[battery].last_change +
  577. (HZ * 60 * 60 * 5))) {
  578. dev_printk(KERN_ERR, &card->dev->dev,
  579. "Battery %d still FAILED after 5 hours\n", battery + 1);
  580. card->battery[battery].warned = 1;
  581. return 1;
  582. }
  583. return 0;
  584. }
  585. static void check_batteries(struct cardinfo *card)
  586. {
  587. /* NOTE: this must *never* be called while the card
  588. * is doing (bus-to-card) DMA, or you will need the
  589. * reset switch
  590. */
  591. unsigned char status;
  592. int ret1, ret2;
  593. status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
  594. if (debug & DEBUG_BATTERY_POLLING)
  595. dev_printk(KERN_DEBUG, &card->dev->dev,
  596. "checking battery status, 1 = %s, 2 = %s\n",
  597. (status & BATTERY_1_FAILURE) ? "FAILURE" : "OK",
  598. (status & BATTERY_2_FAILURE) ? "FAILURE" : "OK");
  599. ret1 = check_battery(card, 0, !(status & BATTERY_1_FAILURE));
  600. ret2 = check_battery(card, 1, !(status & BATTERY_2_FAILURE));
  601. if (ret1 || ret2)
  602. set_fault_to_battery_status(card);
  603. }
  604. static void check_all_batteries(unsigned long ptr)
  605. {
  606. int i;
  607. for (i = 0; i < num_cards; i++)
  608. if (!(cards[i].flags & UM_FLAG_NO_BATT)) {
  609. struct cardinfo *card = &cards[i];
  610. spin_lock_bh(&card->lock);
  611. if (card->Active >= 0)
  612. card->check_batteries = 1;
  613. else
  614. check_batteries(card);
  615. spin_unlock_bh(&card->lock);
  616. }
  617. init_battery_timer();
  618. }
  619. static void init_battery_timer(void)
  620. {
  621. init_timer(&battery_timer);
  622. battery_timer.function = check_all_batteries;
  623. battery_timer.expires = jiffies + (HZ * 60);
  624. add_timer(&battery_timer);
  625. }
  626. static void del_battery_timer(void)
  627. {
  628. del_timer(&battery_timer);
  629. }
  630. /*
  631. * Note no locks taken out here. In a worst case scenario, we could drop
  632. * a chunk of system memory. But that should never happen, since validation
  633. * happens at open or mount time, when locks are held.
  634. *
  635. * That's crap, since doing that while some partitions are opened
  636. * or mounted will give you really nasty results.
  637. */
  638. static int mm_revalidate(struct gendisk *disk)
  639. {
  640. struct cardinfo *card = disk->private_data;
  641. set_capacity(disk, card->mm_size << 1);
  642. return 0;
  643. }
  644. static int mm_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  645. {
  646. struct cardinfo *card = bdev->bd_disk->private_data;
  647. int size = card->mm_size * (1024 / MM_HARDSECT);
  648. /*
  649. * get geometry: we have to fake one... trim the size to a
  650. * multiple of 2048 (1M): tell we have 32 sectors, 64 heads,
  651. * whatever cylinders.
  652. */
  653. geo->heads = 64;
  654. geo->sectors = 32;
  655. geo->cylinders = size / (geo->heads * geo->sectors);
  656. return 0;
  657. }
  658. /*
  659. * Future support for removable devices
  660. */
  661. static int mm_check_change(struct gendisk *disk)
  662. {
  663. /* struct cardinfo *dev = disk->private_data; */
  664. return 0;
  665. }
  666. static struct block_device_operations mm_fops = {
  667. .owner = THIS_MODULE,
  668. .getgeo = mm_getgeo,
  669. .revalidate_disk = mm_revalidate,
  670. .media_changed = mm_check_change,
  671. };
  672. static int __devinit mm_pci_probe(struct pci_dev *dev,
  673. const struct pci_device_id *id)
  674. {
  675. int ret = -ENODEV;
  676. struct cardinfo *card = &cards[num_cards];
  677. unsigned char mem_present;
  678. unsigned char batt_status;
  679. unsigned int saved_bar, data;
  680. unsigned long csr_base;
  681. unsigned long csr_len;
  682. int magic_number;
  683. static int printed_version;
  684. if (!printed_version++)
  685. printk(KERN_INFO DRIVER_VERSION " : " DRIVER_DESC "\n");
  686. ret = pci_enable_device(dev);
  687. if (ret)
  688. return ret;
  689. pci_write_config_byte(dev, PCI_LATENCY_TIMER, 0xF8);
  690. pci_set_master(dev);
  691. card->dev = dev;
  692. csr_base = pci_resource_start(dev, 0);
  693. csr_len = pci_resource_len(dev, 0);
  694. if (!csr_base || !csr_len)
  695. return -ENODEV;
  696. dev_printk(KERN_INFO, &dev->dev,
  697. "Micro Memory(tm) controller found (PCI Mem Module (Battery Backup))\n");
  698. if (pci_set_dma_mask(dev, DMA_64BIT_MASK) &&
  699. pci_set_dma_mask(dev, DMA_32BIT_MASK)) {
  700. dev_printk(KERN_WARNING, &dev->dev, "NO suitable DMA found\n");
  701. return -ENOMEM;
  702. }
  703. ret = pci_request_regions(dev, DRIVER_NAME);
  704. if (ret) {
  705. dev_printk(KERN_ERR, &card->dev->dev,
  706. "Unable to request memory region\n");
  707. goto failed_req_csr;
  708. }
  709. card->csr_remap = ioremap_nocache(csr_base, csr_len);
  710. if (!card->csr_remap) {
  711. dev_printk(KERN_ERR, &card->dev->dev,
  712. "Unable to remap memory region\n");
  713. ret = -ENOMEM;
  714. goto failed_remap_csr;
  715. }
  716. dev_printk(KERN_INFO, &card->dev->dev,
  717. "CSR 0x%08lx -> 0x%p (0x%lx)\n",
  718. csr_base, card->csr_remap, csr_len);
  719. switch (card->dev->device) {
  720. case 0x5415:
  721. card->flags |= UM_FLAG_NO_BYTE_STATUS | UM_FLAG_NO_BATTREG;
  722. magic_number = 0x59;
  723. break;
  724. case 0x5425:
  725. card->flags |= UM_FLAG_NO_BYTE_STATUS;
  726. magic_number = 0x5C;
  727. break;
  728. case 0x6155:
  729. card->flags |= UM_FLAG_NO_BYTE_STATUS |
  730. UM_FLAG_NO_BATTREG | UM_FLAG_NO_BATT;
  731. magic_number = 0x99;
  732. break;
  733. default:
  734. magic_number = 0x100;
  735. break;
  736. }
  737. if (readb(card->csr_remap + MEMCTRLSTATUS_MAGIC) != magic_number) {
  738. dev_printk(KERN_ERR, &card->dev->dev, "Magic number invalid\n");
  739. ret = -ENOMEM;
  740. goto failed_magic;
  741. }
  742. card->mm_pages[0].desc = pci_alloc_consistent(card->dev,
  743. PAGE_SIZE * 2,
  744. &card->mm_pages[0].page_dma);
  745. card->mm_pages[1].desc = pci_alloc_consistent(card->dev,
  746. PAGE_SIZE * 2,
  747. &card->mm_pages[1].page_dma);
  748. if (card->mm_pages[0].desc == NULL ||
  749. card->mm_pages[1].desc == NULL) {
  750. dev_printk(KERN_ERR, &card->dev->dev, "alloc failed\n");
  751. goto failed_alloc;
  752. }
  753. reset_page(&card->mm_pages[0]);
  754. reset_page(&card->mm_pages[1]);
  755. card->Ready = 0; /* page 0 is ready */
  756. card->Active = -1; /* no page is active */
  757. card->bio = NULL;
  758. card->biotail = &card->bio;
  759. card->queue = blk_alloc_queue(GFP_KERNEL);
  760. if (!card->queue)
  761. goto failed_alloc;
  762. blk_queue_make_request(card->queue, mm_make_request);
  763. card->queue->queuedata = card;
  764. card->queue->unplug_fn = mm_unplug_device;
  765. tasklet_init(&card->tasklet, process_page, (unsigned long)card);
  766. card->check_batteries = 0;
  767. mem_present = readb(card->csr_remap + MEMCTRLSTATUS_MEMORY);
  768. switch (mem_present) {
  769. case MEM_128_MB:
  770. card->mm_size = 1024 * 128;
  771. break;
  772. case MEM_256_MB:
  773. card->mm_size = 1024 * 256;
  774. break;
  775. case MEM_512_MB:
  776. card->mm_size = 1024 * 512;
  777. break;
  778. case MEM_1_GB:
  779. card->mm_size = 1024 * 1024;
  780. break;
  781. case MEM_2_GB:
  782. card->mm_size = 1024 * 2048;
  783. break;
  784. default:
  785. card->mm_size = 0;
  786. break;
  787. }
  788. /* Clear the LED's we control */
  789. set_led(card, LED_REMOVE, LED_OFF);
  790. set_led(card, LED_FAULT, LED_OFF);
  791. batt_status = readb(card->csr_remap + MEMCTRLSTATUS_BATTERY);
  792. card->battery[0].good = !(batt_status & BATTERY_1_FAILURE);
  793. card->battery[1].good = !(batt_status & BATTERY_2_FAILURE);
  794. card->battery[0].last_change = card->battery[1].last_change = jiffies;
  795. if (card->flags & UM_FLAG_NO_BATT)
  796. dev_printk(KERN_INFO, &card->dev->dev,
  797. "Size %d KB\n", card->mm_size);
  798. else {
  799. dev_printk(KERN_INFO, &card->dev->dev,
  800. "Size %d KB, Battery 1 %s (%s), Battery 2 %s (%s)\n",
  801. card->mm_size,
  802. batt_status & BATTERY_1_DISABLED ? "Disabled" : "Enabled",
  803. card->battery[0].good ? "OK" : "FAILURE",
  804. batt_status & BATTERY_2_DISABLED ? "Disabled" : "Enabled",
  805. card->battery[1].good ? "OK" : "FAILURE");
  806. set_fault_to_battery_status(card);
  807. }
  808. pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &saved_bar);
  809. data = 0xffffffff;
  810. pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, data);
  811. pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &data);
  812. pci_write_config_dword(dev, PCI_BASE_ADDRESS_1, saved_bar);
  813. data &= 0xfffffff0;
  814. data = ~data;
  815. data += 1;
  816. if (request_irq(dev->irq, mm_interrupt, IRQF_SHARED, DRIVER_NAME,
  817. card)) {
  818. dev_printk(KERN_ERR, &card->dev->dev,
  819. "Unable to allocate IRQ\n");
  820. ret = -ENODEV;
  821. goto failed_req_irq;
  822. }
  823. dev_printk(KERN_INFO, &card->dev->dev,
  824. "Window size %d bytes, IRQ %d\n", data, dev->irq);
  825. spin_lock_init(&card->lock);
  826. pci_set_drvdata(dev, card);
  827. if (pci_write_cmd != 0x0F) /* If not Memory Write & Invalidate */
  828. pci_write_cmd = 0x07; /* then Memory Write command */
  829. if (pci_write_cmd & 0x08) { /* use Memory Write and Invalidate */
  830. unsigned short cfg_command;
  831. pci_read_config_word(dev, PCI_COMMAND, &cfg_command);
  832. cfg_command |= 0x10; /* Memory Write & Invalidate Enable */
  833. pci_write_config_word(dev, PCI_COMMAND, cfg_command);
  834. }
  835. pci_cmds = (pci_read_cmd << 28) | (pci_write_cmd << 24);
  836. num_cards++;
  837. if (!get_userbit(card, MEMORY_INITIALIZED)) {
  838. dev_printk(KERN_INFO, &card->dev->dev,
  839. "memory NOT initialized. Consider over-writing whole device.\n");
  840. card->init_size = 0;
  841. } else {
  842. dev_printk(KERN_INFO, &card->dev->dev,
  843. "memory already initialized\n");
  844. card->init_size = card->mm_size;
  845. }
  846. /* Enable ECC */
  847. writeb(EDC_STORE_CORRECT, card->csr_remap + MEMCTRLCMD_ERRCTRL);
  848. return 0;
  849. failed_req_irq:
  850. failed_alloc:
  851. if (card->mm_pages[0].desc)
  852. pci_free_consistent(card->dev, PAGE_SIZE*2,
  853. card->mm_pages[0].desc,
  854. card->mm_pages[0].page_dma);
  855. if (card->mm_pages[1].desc)
  856. pci_free_consistent(card->dev, PAGE_SIZE*2,
  857. card->mm_pages[1].desc,
  858. card->mm_pages[1].page_dma);
  859. failed_magic:
  860. iounmap(card->csr_remap);
  861. failed_remap_csr:
  862. pci_release_regions(dev);
  863. failed_req_csr:
  864. return ret;
  865. }
  866. static void mm_pci_remove(struct pci_dev *dev)
  867. {
  868. struct cardinfo *card = pci_get_drvdata(dev);
  869. tasklet_kill(&card->tasklet);
  870. free_irq(dev->irq, card);
  871. iounmap(card->csr_remap);
  872. if (card->mm_pages[0].desc)
  873. pci_free_consistent(card->dev, PAGE_SIZE*2,
  874. card->mm_pages[0].desc,
  875. card->mm_pages[0].page_dma);
  876. if (card->mm_pages[1].desc)
  877. pci_free_consistent(card->dev, PAGE_SIZE*2,
  878. card->mm_pages[1].desc,
  879. card->mm_pages[1].page_dma);
  880. blk_cleanup_queue(card->queue);
  881. pci_release_regions(dev);
  882. pci_disable_device(dev);
  883. }
  884. static const struct pci_device_id mm_pci_ids[] = {
  885. {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5415CN)},
  886. {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_5425CN)},
  887. {PCI_DEVICE(PCI_VENDOR_ID_MICRO_MEMORY, PCI_DEVICE_ID_MICRO_MEMORY_6155)},
  888. {
  889. .vendor = 0x8086,
  890. .device = 0xB555,
  891. .subvendor = 0x1332,
  892. .subdevice = 0x5460,
  893. .class = 0x050000,
  894. .class_mask = 0,
  895. }, { /* end: all zeroes */ }
  896. };
  897. MODULE_DEVICE_TABLE(pci, mm_pci_ids);
  898. static struct pci_driver mm_pci_driver = {
  899. .name = DRIVER_NAME,
  900. .id_table = mm_pci_ids,
  901. .probe = mm_pci_probe,
  902. .remove = mm_pci_remove,
  903. };
  904. static int __init mm_init(void)
  905. {
  906. int retval, i;
  907. int err;
  908. retval = pci_register_driver(&mm_pci_driver);
  909. if (retval)
  910. return -ENOMEM;
  911. err = major_nr = register_blkdev(0, DRIVER_NAME);
  912. if (err < 0) {
  913. pci_unregister_driver(&mm_pci_driver);
  914. return -EIO;
  915. }
  916. for (i = 0; i < num_cards; i++) {
  917. mm_gendisk[i] = alloc_disk(1 << MM_SHIFT);
  918. if (!mm_gendisk[i])
  919. goto out;
  920. }
  921. for (i = 0; i < num_cards; i++) {
  922. struct gendisk *disk = mm_gendisk[i];
  923. sprintf(disk->disk_name, "umem%c", 'a'+i);
  924. spin_lock_init(&cards[i].lock);
  925. disk->major = major_nr;
  926. disk->first_minor = i << MM_SHIFT;
  927. disk->fops = &mm_fops;
  928. disk->private_data = &cards[i];
  929. disk->queue = cards[i].queue;
  930. set_capacity(disk, cards[i].mm_size << 1);
  931. add_disk(disk);
  932. }
  933. init_battery_timer();
  934. printk(KERN_INFO "MM: desc_per_page = %ld\n", DESC_PER_PAGE);
  935. /* printk("mm_init: Done. 10-19-01 9:00\n"); */
  936. return 0;
  937. out:
  938. pci_unregister_driver(&mm_pci_driver);
  939. unregister_blkdev(major_nr, DRIVER_NAME);
  940. while (i--)
  941. put_disk(mm_gendisk[i]);
  942. return -ENOMEM;
  943. }
  944. static void __exit mm_cleanup(void)
  945. {
  946. int i;
  947. del_battery_timer();
  948. for (i = 0; i < num_cards ; i++) {
  949. del_gendisk(mm_gendisk[i]);
  950. put_disk(mm_gendisk[i]);
  951. }
  952. pci_unregister_driver(&mm_pci_driver);
  953. unregister_blkdev(major_nr, DRIVER_NAME);
  954. }
  955. module_init(mm_init);
  956. module_exit(mm_cleanup);
  957. MODULE_AUTHOR(DRIVER_AUTHOR);
  958. MODULE_DESCRIPTION(DRIVER_DESC);
  959. MODULE_LICENSE("GPL");