brd.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595
  1. /*
  2. * Ram backed block device driver.
  3. *
  4. * Copyright (C) 2007 Nick Piggin
  5. * Copyright (C) 2007 Novell Inc.
  6. *
  7. * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
  8. * of their respective owners.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/moduleparam.h>
  13. #include <linux/major.h>
  14. #include <linux/blkdev.h>
  15. #include <linux/bio.h>
  16. #include <linux/highmem.h>
  17. #include <linux/gfp.h>
  18. #include <linux/radix-tree.h>
  19. #include <linux/buffer_head.h> /* invalidate_bh_lrus() */
  20. #include <asm/uaccess.h>
  21. #define SECTOR_SHIFT 9
  22. #define PAGE_SECTORS_SHIFT (PAGE_SHIFT - SECTOR_SHIFT)
  23. #define PAGE_SECTORS (1 << PAGE_SECTORS_SHIFT)
  24. /*
  25. * Each block ramdisk device has a radix_tree brd_pages of pages that stores
  26. * the pages containing the block device's contents. A brd page's ->index is
  27. * its offset in PAGE_SIZE units. This is similar to, but in no way connected
  28. * with, the kernel's pagecache or buffer cache (which sit above our block
  29. * device).
  30. */
  31. struct brd_device {
  32. int brd_number;
  33. int brd_refcnt;
  34. loff_t brd_offset;
  35. loff_t brd_sizelimit;
  36. unsigned brd_blocksize;
  37. struct request_queue *brd_queue;
  38. struct gendisk *brd_disk;
  39. struct list_head brd_list;
  40. /*
  41. * Backing store of pages and lock to protect it. This is the contents
  42. * of the block device.
  43. */
  44. spinlock_t brd_lock;
  45. struct radix_tree_root brd_pages;
  46. };
  47. /*
  48. * Look up and return a brd's page for a given sector.
  49. */
  50. static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
  51. {
  52. pgoff_t idx;
  53. struct page *page;
  54. /*
  55. * The page lifetime is protected by the fact that we have opened the
  56. * device node -- brd pages will never be deleted under us, so we
  57. * don't need any further locking or refcounting.
  58. *
  59. * This is strictly true for the radix-tree nodes as well (ie. we
  60. * don't actually need the rcu_read_lock()), however that is not a
  61. * documented feature of the radix-tree API so it is better to be
  62. * safe here (we don't have total exclusion from radix tree updates
  63. * here, only deletes).
  64. */
  65. rcu_read_lock();
  66. idx = sector >> PAGE_SECTORS_SHIFT; /* sector to page index */
  67. page = radix_tree_lookup(&brd->brd_pages, idx);
  68. rcu_read_unlock();
  69. BUG_ON(page && page->index != idx);
  70. return page;
  71. }
  72. /*
  73. * Look up and return a brd's page for a given sector.
  74. * If one does not exist, allocate an empty page, and insert that. Then
  75. * return it.
  76. */
  77. static struct page *brd_insert_page(struct brd_device *brd, sector_t sector)
  78. {
  79. pgoff_t idx;
  80. struct page *page;
  81. gfp_t gfp_flags;
  82. page = brd_lookup_page(brd, sector);
  83. if (page)
  84. return page;
  85. /*
  86. * Must use NOIO because we don't want to recurse back into the
  87. * block or filesystem layers from page reclaim.
  88. *
  89. * Cannot support XIP and highmem, because our ->direct_access
  90. * routine for XIP must return memory that is always addressable.
  91. * If XIP was reworked to use pfns and kmap throughout, this
  92. * restriction might be able to be lifted.
  93. */
  94. gfp_flags = GFP_NOIO | __GFP_ZERO;
  95. #ifndef CONFIG_BLK_DEV_XIP
  96. gfp_flags |= __GFP_HIGHMEM;
  97. #endif
  98. page = alloc_page(gfp_flags);
  99. if (!page)
  100. return NULL;
  101. if (radix_tree_preload(GFP_NOIO)) {
  102. __free_page(page);
  103. return NULL;
  104. }
  105. spin_lock(&brd->brd_lock);
  106. idx = sector >> PAGE_SECTORS_SHIFT;
  107. if (radix_tree_insert(&brd->brd_pages, idx, page)) {
  108. __free_page(page);
  109. page = radix_tree_lookup(&brd->brd_pages, idx);
  110. BUG_ON(!page);
  111. BUG_ON(page->index != idx);
  112. } else
  113. page->index = idx;
  114. spin_unlock(&brd->brd_lock);
  115. radix_tree_preload_end();
  116. return page;
  117. }
  118. /*
  119. * Free all backing store pages and radix tree. This must only be called when
  120. * there are no other users of the device.
  121. */
  122. #define FREE_BATCH 16
  123. static void brd_free_pages(struct brd_device *brd)
  124. {
  125. unsigned long pos = 0;
  126. struct page *pages[FREE_BATCH];
  127. int nr_pages;
  128. do {
  129. int i;
  130. nr_pages = radix_tree_gang_lookup(&brd->brd_pages,
  131. (void **)pages, pos, FREE_BATCH);
  132. for (i = 0; i < nr_pages; i++) {
  133. void *ret;
  134. BUG_ON(pages[i]->index < pos);
  135. pos = pages[i]->index;
  136. ret = radix_tree_delete(&brd->brd_pages, pos);
  137. BUG_ON(!ret || ret != pages[i]);
  138. __free_page(pages[i]);
  139. }
  140. pos++;
  141. /*
  142. * This assumes radix_tree_gang_lookup always returns as
  143. * many pages as possible. If the radix-tree code changes,
  144. * so will this have to.
  145. */
  146. } while (nr_pages == FREE_BATCH);
  147. }
  148. /*
  149. * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
  150. */
  151. static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n)
  152. {
  153. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  154. size_t copy;
  155. copy = min_t(size_t, n, PAGE_SIZE - offset);
  156. if (!brd_insert_page(brd, sector))
  157. return -ENOMEM;
  158. if (copy < n) {
  159. sector += copy >> SECTOR_SHIFT;
  160. if (!brd_insert_page(brd, sector))
  161. return -ENOMEM;
  162. }
  163. return 0;
  164. }
  165. /*
  166. * Copy n bytes from src to the brd starting at sector. Does not sleep.
  167. */
  168. static void copy_to_brd(struct brd_device *brd, const void *src,
  169. sector_t sector, size_t n)
  170. {
  171. struct page *page;
  172. void *dst;
  173. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  174. size_t copy;
  175. copy = min_t(size_t, n, PAGE_SIZE - offset);
  176. page = brd_lookup_page(brd, sector);
  177. BUG_ON(!page);
  178. dst = kmap_atomic(page, KM_USER1);
  179. memcpy(dst + offset, src, copy);
  180. kunmap_atomic(dst, KM_USER1);
  181. if (copy < n) {
  182. src += copy;
  183. sector += copy >> SECTOR_SHIFT;
  184. copy = n - copy;
  185. page = brd_lookup_page(brd, sector);
  186. BUG_ON(!page);
  187. dst = kmap_atomic(page, KM_USER1);
  188. memcpy(dst, src, copy);
  189. kunmap_atomic(dst, KM_USER1);
  190. }
  191. }
  192. /*
  193. * Copy n bytes to dst from the brd starting at sector. Does not sleep.
  194. */
  195. static void copy_from_brd(void *dst, struct brd_device *brd,
  196. sector_t sector, size_t n)
  197. {
  198. struct page *page;
  199. void *src;
  200. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  201. size_t copy;
  202. copy = min_t(size_t, n, PAGE_SIZE - offset);
  203. page = brd_lookup_page(brd, sector);
  204. if (page) {
  205. src = kmap_atomic(page, KM_USER1);
  206. memcpy(dst, src + offset, copy);
  207. kunmap_atomic(src, KM_USER1);
  208. } else
  209. memset(dst, 0, copy);
  210. if (copy < n) {
  211. dst += copy;
  212. sector += copy >> SECTOR_SHIFT;
  213. copy = n - copy;
  214. page = brd_lookup_page(brd, sector);
  215. if (page) {
  216. src = kmap_atomic(page, KM_USER1);
  217. memcpy(dst, src, copy);
  218. kunmap_atomic(src, KM_USER1);
  219. } else
  220. memset(dst, 0, copy);
  221. }
  222. }
  223. /*
  224. * Process a single bvec of a bio.
  225. */
  226. static int brd_do_bvec(struct brd_device *brd, struct page *page,
  227. unsigned int len, unsigned int off, int rw,
  228. sector_t sector)
  229. {
  230. void *mem;
  231. int err = 0;
  232. if (rw != READ) {
  233. err = copy_to_brd_setup(brd, sector, len);
  234. if (err)
  235. goto out;
  236. }
  237. mem = kmap_atomic(page, KM_USER0);
  238. if (rw == READ) {
  239. copy_from_brd(mem + off, brd, sector, len);
  240. flush_dcache_page(page);
  241. } else
  242. copy_to_brd(brd, mem + off, sector, len);
  243. kunmap_atomic(mem, KM_USER0);
  244. out:
  245. return err;
  246. }
  247. static int brd_make_request(struct request_queue *q, struct bio *bio)
  248. {
  249. struct block_device *bdev = bio->bi_bdev;
  250. struct brd_device *brd = bdev->bd_disk->private_data;
  251. int rw;
  252. struct bio_vec *bvec;
  253. sector_t sector;
  254. int i;
  255. int err = -EIO;
  256. sector = bio->bi_sector;
  257. if (sector + (bio->bi_size >> SECTOR_SHIFT) >
  258. get_capacity(bdev->bd_disk))
  259. goto out;
  260. rw = bio_rw(bio);
  261. if (rw == READA)
  262. rw = READ;
  263. bio_for_each_segment(bvec, bio, i) {
  264. unsigned int len = bvec->bv_len;
  265. err = brd_do_bvec(brd, bvec->bv_page, len,
  266. bvec->bv_offset, rw, sector);
  267. if (err)
  268. break;
  269. sector += len >> SECTOR_SHIFT;
  270. }
  271. out:
  272. bio_endio(bio, err);
  273. return 0;
  274. }
  275. #ifdef CONFIG_BLK_DEV_XIP
  276. static int brd_direct_access (struct block_device *bdev, sector_t sector,
  277. void **kaddr, unsigned long *pfn)
  278. {
  279. struct brd_device *brd = bdev->bd_disk->private_data;
  280. struct page *page;
  281. if (!brd)
  282. return -ENODEV;
  283. if (sector & (PAGE_SECTORS-1))
  284. return -EINVAL;
  285. if (sector + PAGE_SECTORS > get_capacity(bdev->bd_disk))
  286. return -ERANGE;
  287. page = brd_insert_page(brd, sector);
  288. if (!page)
  289. return -ENOMEM;
  290. *kaddr = page_address(page);
  291. *pfn = page_to_pfn(page);
  292. return 0;
  293. }
  294. #endif
  295. static int brd_ioctl(struct inode *inode, struct file *file,
  296. unsigned int cmd, unsigned long arg)
  297. {
  298. int error;
  299. struct block_device *bdev = inode->i_bdev;
  300. struct brd_device *brd = bdev->bd_disk->private_data;
  301. if (cmd != BLKFLSBUF)
  302. return -ENOTTY;
  303. /*
  304. * ram device BLKFLSBUF has special semantics, we want to actually
  305. * release and destroy the ramdisk data.
  306. */
  307. mutex_lock(&bdev->bd_mutex);
  308. error = -EBUSY;
  309. if (bdev->bd_openers <= 1) {
  310. /*
  311. * Invalidate the cache first, so it isn't written
  312. * back to the device.
  313. *
  314. * Another thread might instantiate more buffercache here,
  315. * but there is not much we can do to close that race.
  316. */
  317. invalidate_bh_lrus();
  318. truncate_inode_pages(bdev->bd_inode->i_mapping, 0);
  319. brd_free_pages(brd);
  320. error = 0;
  321. }
  322. mutex_unlock(&bdev->bd_mutex);
  323. return error;
  324. }
  325. static struct block_device_operations brd_fops = {
  326. .owner = THIS_MODULE,
  327. .ioctl = brd_ioctl,
  328. #ifdef CONFIG_BLK_DEV_XIP
  329. .direct_access = brd_direct_access,
  330. #endif
  331. };
  332. /*
  333. * And now the modules code and kernel interface.
  334. */
  335. static int rd_nr;
  336. int rd_size = CONFIG_BLK_DEV_RAM_SIZE;
  337. static int max_part;
  338. static int part_shift;
  339. module_param(rd_nr, int, 0);
  340. MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
  341. module_param(rd_size, int, 0);
  342. MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
  343. module_param(max_part, int, 0);
  344. MODULE_PARM_DESC(max_part, "Maximum number of partitions per RAM disk");
  345. MODULE_LICENSE("GPL");
  346. MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
  347. MODULE_ALIAS("rd");
  348. #ifndef MODULE
  349. /* Legacy boot options - nonmodular */
  350. static int __init ramdisk_size(char *str)
  351. {
  352. rd_size = simple_strtol(str, NULL, 0);
  353. return 1;
  354. }
  355. static int __init ramdisk_size2(char *str)
  356. {
  357. return ramdisk_size(str);
  358. }
  359. __setup("ramdisk=", ramdisk_size);
  360. __setup("ramdisk_size=", ramdisk_size2);
  361. #endif
  362. /*
  363. * The device scheme is derived from loop.c. Keep them in synch where possible
  364. * (should share code eventually).
  365. */
  366. static LIST_HEAD(brd_devices);
  367. static DEFINE_MUTEX(brd_devices_mutex);
  368. static struct brd_device *brd_alloc(int i)
  369. {
  370. struct brd_device *brd;
  371. struct gendisk *disk;
  372. brd = kzalloc(sizeof(*brd), GFP_KERNEL);
  373. if (!brd)
  374. goto out;
  375. brd->brd_number = i;
  376. spin_lock_init(&brd->brd_lock);
  377. INIT_RADIX_TREE(&brd->brd_pages, GFP_ATOMIC);
  378. brd->brd_queue = blk_alloc_queue(GFP_KERNEL);
  379. if (!brd->brd_queue)
  380. goto out_free_dev;
  381. blk_queue_make_request(brd->brd_queue, brd_make_request);
  382. blk_queue_max_sectors(brd->brd_queue, 1024);
  383. blk_queue_bounce_limit(brd->brd_queue, BLK_BOUNCE_ANY);
  384. disk = brd->brd_disk = alloc_disk(1 << part_shift);
  385. if (!disk)
  386. goto out_free_queue;
  387. disk->major = RAMDISK_MAJOR;
  388. disk->first_minor = i << part_shift;
  389. disk->fops = &brd_fops;
  390. disk->private_data = brd;
  391. disk->queue = brd->brd_queue;
  392. disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
  393. sprintf(disk->disk_name, "ram%d", i);
  394. set_capacity(disk, rd_size * 2);
  395. return brd;
  396. out_free_queue:
  397. blk_cleanup_queue(brd->brd_queue);
  398. out_free_dev:
  399. kfree(brd);
  400. out:
  401. return NULL;
  402. }
  403. static void brd_free(struct brd_device *brd)
  404. {
  405. put_disk(brd->brd_disk);
  406. blk_cleanup_queue(brd->brd_queue);
  407. brd_free_pages(brd);
  408. kfree(brd);
  409. }
  410. static struct brd_device *brd_init_one(int i)
  411. {
  412. struct brd_device *brd;
  413. list_for_each_entry(brd, &brd_devices, brd_list) {
  414. if (brd->brd_number == i)
  415. goto out;
  416. }
  417. brd = brd_alloc(i);
  418. if (brd) {
  419. add_disk(brd->brd_disk);
  420. list_add_tail(&brd->brd_list, &brd_devices);
  421. }
  422. out:
  423. return brd;
  424. }
  425. static void brd_del_one(struct brd_device *brd)
  426. {
  427. list_del(&brd->brd_list);
  428. del_gendisk(brd->brd_disk);
  429. brd_free(brd);
  430. }
  431. static struct kobject *brd_probe(dev_t dev, int *part, void *data)
  432. {
  433. struct brd_device *brd;
  434. struct kobject *kobj;
  435. mutex_lock(&brd_devices_mutex);
  436. brd = brd_init_one(dev & MINORMASK);
  437. kobj = brd ? get_disk(brd->brd_disk) : ERR_PTR(-ENOMEM);
  438. mutex_unlock(&brd_devices_mutex);
  439. *part = 0;
  440. return kobj;
  441. }
  442. static int __init brd_init(void)
  443. {
  444. int i, nr;
  445. unsigned long range;
  446. struct brd_device *brd, *next;
  447. /*
  448. * brd module now has a feature to instantiate underlying device
  449. * structure on-demand, provided that there is an access dev node.
  450. * However, this will not work well with user space tool that doesn't
  451. * know about such "feature". In order to not break any existing
  452. * tool, we do the following:
  453. *
  454. * (1) if rd_nr is specified, create that many upfront, and this
  455. * also becomes a hard limit.
  456. * (2) if rd_nr is not specified, create 1 rd device on module
  457. * load, user can further extend brd device by create dev node
  458. * themselves and have kernel automatically instantiate actual
  459. * device on-demand.
  460. */
  461. part_shift = 0;
  462. if (max_part > 0)
  463. part_shift = fls(max_part);
  464. if (rd_nr > 1UL << (MINORBITS - part_shift))
  465. return -EINVAL;
  466. if (rd_nr) {
  467. nr = rd_nr;
  468. range = rd_nr;
  469. } else {
  470. nr = CONFIG_BLK_DEV_RAM_COUNT;
  471. range = 1UL << (MINORBITS - part_shift);
  472. }
  473. if (register_blkdev(RAMDISK_MAJOR, "ramdisk"))
  474. return -EIO;
  475. for (i = 0; i < nr; i++) {
  476. brd = brd_alloc(i);
  477. if (!brd)
  478. goto out_free;
  479. list_add_tail(&brd->brd_list, &brd_devices);
  480. }
  481. /* point of no return */
  482. list_for_each_entry(brd, &brd_devices, brd_list)
  483. add_disk(brd->brd_disk);
  484. blk_register_region(MKDEV(RAMDISK_MAJOR, 0), range,
  485. THIS_MODULE, brd_probe, NULL, NULL);
  486. printk(KERN_INFO "brd: module loaded\n");
  487. return 0;
  488. out_free:
  489. list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
  490. list_del(&brd->brd_list);
  491. brd_free(brd);
  492. }
  493. unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
  494. return -ENOMEM;
  495. }
  496. static void __exit brd_exit(void)
  497. {
  498. unsigned long range;
  499. struct brd_device *brd, *next;
  500. range = rd_nr ? rd_nr : 1UL << (MINORBITS - part_shift);
  501. list_for_each_entry_safe(brd, next, &brd_devices, brd_list)
  502. brd_del_one(brd);
  503. blk_unregister_region(MKDEV(RAMDISK_MAJOR, 0), range);
  504. unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
  505. }
  506. module_init(brd_init);
  507. module_exit(brd_exit);