x86.c 96 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include "i8254.h"
  20. #include "tss.h"
  21. #include <linux/clocksource.h>
  22. #include <linux/kvm.h>
  23. #include <linux/fs.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/module.h>
  26. #include <linux/mman.h>
  27. #include <linux/highmem.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/msr.h>
  30. #include <asm/desc.h>
  31. #define MAX_IO_MSRS 256
  32. #define CR0_RESERVED_BITS \
  33. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  34. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  35. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  36. #define CR4_RESERVED_BITS \
  37. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  38. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  39. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  40. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  41. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  42. /* EFER defaults:
  43. * - enable syscall per default because its emulated by KVM
  44. * - enable LME and LMA per default on 64 bit KVM
  45. */
  46. #ifdef CONFIG_X86_64
  47. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  48. #else
  49. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  50. #endif
  51. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  52. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  53. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  54. struct kvm_cpuid_entry2 __user *entries);
  55. struct kvm_x86_ops *kvm_x86_ops;
  56. struct kvm_stats_debugfs_item debugfs_entries[] = {
  57. { "pf_fixed", VCPU_STAT(pf_fixed) },
  58. { "pf_guest", VCPU_STAT(pf_guest) },
  59. { "tlb_flush", VCPU_STAT(tlb_flush) },
  60. { "invlpg", VCPU_STAT(invlpg) },
  61. { "exits", VCPU_STAT(exits) },
  62. { "io_exits", VCPU_STAT(io_exits) },
  63. { "mmio_exits", VCPU_STAT(mmio_exits) },
  64. { "signal_exits", VCPU_STAT(signal_exits) },
  65. { "irq_window", VCPU_STAT(irq_window_exits) },
  66. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  67. { "halt_exits", VCPU_STAT(halt_exits) },
  68. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  69. { "hypercalls", VCPU_STAT(hypercalls) },
  70. { "request_irq", VCPU_STAT(request_irq_exits) },
  71. { "irq_exits", VCPU_STAT(irq_exits) },
  72. { "host_state_reload", VCPU_STAT(host_state_reload) },
  73. { "efer_reload", VCPU_STAT(efer_reload) },
  74. { "fpu_reload", VCPU_STAT(fpu_reload) },
  75. { "insn_emulation", VCPU_STAT(insn_emulation) },
  76. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  77. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  78. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  79. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  80. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  81. { "mmu_flooded", VM_STAT(mmu_flooded) },
  82. { "mmu_recycled", VM_STAT(mmu_recycled) },
  83. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  84. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  85. { "largepages", VM_STAT(lpages) },
  86. { NULL }
  87. };
  88. unsigned long segment_base(u16 selector)
  89. {
  90. struct descriptor_table gdt;
  91. struct desc_struct *d;
  92. unsigned long table_base;
  93. unsigned long v;
  94. if (selector == 0)
  95. return 0;
  96. asm("sgdt %0" : "=m"(gdt));
  97. table_base = gdt.base;
  98. if (selector & 4) { /* from ldt */
  99. u16 ldt_selector;
  100. asm("sldt %0" : "=g"(ldt_selector));
  101. table_base = segment_base(ldt_selector);
  102. }
  103. d = (struct desc_struct *)(table_base + (selector & ~7));
  104. v = d->base0 | ((unsigned long)d->base1 << 16) |
  105. ((unsigned long)d->base2 << 24);
  106. #ifdef CONFIG_X86_64
  107. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  108. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  109. #endif
  110. return v;
  111. }
  112. EXPORT_SYMBOL_GPL(segment_base);
  113. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  114. {
  115. if (irqchip_in_kernel(vcpu->kvm))
  116. return vcpu->arch.apic_base;
  117. else
  118. return vcpu->arch.apic_base;
  119. }
  120. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  121. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  122. {
  123. /* TODO: reserve bits check */
  124. if (irqchip_in_kernel(vcpu->kvm))
  125. kvm_lapic_set_base(vcpu, data);
  126. else
  127. vcpu->arch.apic_base = data;
  128. }
  129. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  130. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  131. {
  132. WARN_ON(vcpu->arch.exception.pending);
  133. vcpu->arch.exception.pending = true;
  134. vcpu->arch.exception.has_error_code = false;
  135. vcpu->arch.exception.nr = nr;
  136. }
  137. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  138. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  139. u32 error_code)
  140. {
  141. ++vcpu->stat.pf_guest;
  142. if (vcpu->arch.exception.pending) {
  143. if (vcpu->arch.exception.nr == PF_VECTOR) {
  144. printk(KERN_DEBUG "kvm: inject_page_fault:"
  145. " double fault 0x%lx\n", addr);
  146. vcpu->arch.exception.nr = DF_VECTOR;
  147. vcpu->arch.exception.error_code = 0;
  148. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  149. /* triple fault -> shutdown */
  150. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  151. }
  152. return;
  153. }
  154. vcpu->arch.cr2 = addr;
  155. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  156. }
  157. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  158. {
  159. vcpu->arch.nmi_pending = 1;
  160. }
  161. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  162. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  163. {
  164. WARN_ON(vcpu->arch.exception.pending);
  165. vcpu->arch.exception.pending = true;
  166. vcpu->arch.exception.has_error_code = true;
  167. vcpu->arch.exception.nr = nr;
  168. vcpu->arch.exception.error_code = error_code;
  169. }
  170. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  171. static void __queue_exception(struct kvm_vcpu *vcpu)
  172. {
  173. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  174. vcpu->arch.exception.has_error_code,
  175. vcpu->arch.exception.error_code);
  176. }
  177. /*
  178. * Load the pae pdptrs. Return true is they are all valid.
  179. */
  180. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  181. {
  182. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  183. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  184. int i;
  185. int ret;
  186. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  187. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  188. offset * sizeof(u64), sizeof(pdpte));
  189. if (ret < 0) {
  190. ret = 0;
  191. goto out;
  192. }
  193. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  194. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  195. ret = 0;
  196. goto out;
  197. }
  198. }
  199. ret = 1;
  200. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  201. out:
  202. return ret;
  203. }
  204. EXPORT_SYMBOL_GPL(load_pdptrs);
  205. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  206. {
  207. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  208. bool changed = true;
  209. int r;
  210. if (is_long_mode(vcpu) || !is_pae(vcpu))
  211. return false;
  212. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  213. if (r < 0)
  214. goto out;
  215. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  216. out:
  217. return changed;
  218. }
  219. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  220. {
  221. if (cr0 & CR0_RESERVED_BITS) {
  222. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  223. cr0, vcpu->arch.cr0);
  224. kvm_inject_gp(vcpu, 0);
  225. return;
  226. }
  227. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  228. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  229. kvm_inject_gp(vcpu, 0);
  230. return;
  231. }
  232. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  233. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  234. "and a clear PE flag\n");
  235. kvm_inject_gp(vcpu, 0);
  236. return;
  237. }
  238. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  239. #ifdef CONFIG_X86_64
  240. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  241. int cs_db, cs_l;
  242. if (!is_pae(vcpu)) {
  243. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  244. "in long mode while PAE is disabled\n");
  245. kvm_inject_gp(vcpu, 0);
  246. return;
  247. }
  248. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  249. if (cs_l) {
  250. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  251. "in long mode while CS.L == 1\n");
  252. kvm_inject_gp(vcpu, 0);
  253. return;
  254. }
  255. } else
  256. #endif
  257. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  258. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  259. "reserved bits\n");
  260. kvm_inject_gp(vcpu, 0);
  261. return;
  262. }
  263. }
  264. kvm_x86_ops->set_cr0(vcpu, cr0);
  265. vcpu->arch.cr0 = cr0;
  266. kvm_mmu_reset_context(vcpu);
  267. return;
  268. }
  269. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  270. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  271. {
  272. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  273. KVMTRACE_1D(LMSW, vcpu,
  274. (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
  275. handler);
  276. }
  277. EXPORT_SYMBOL_GPL(kvm_lmsw);
  278. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  279. {
  280. if (cr4 & CR4_RESERVED_BITS) {
  281. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  282. kvm_inject_gp(vcpu, 0);
  283. return;
  284. }
  285. if (is_long_mode(vcpu)) {
  286. if (!(cr4 & X86_CR4_PAE)) {
  287. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  288. "in long mode\n");
  289. kvm_inject_gp(vcpu, 0);
  290. return;
  291. }
  292. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  293. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  294. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  295. kvm_inject_gp(vcpu, 0);
  296. return;
  297. }
  298. if (cr4 & X86_CR4_VMXE) {
  299. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  300. kvm_inject_gp(vcpu, 0);
  301. return;
  302. }
  303. kvm_x86_ops->set_cr4(vcpu, cr4);
  304. vcpu->arch.cr4 = cr4;
  305. kvm_mmu_reset_context(vcpu);
  306. }
  307. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  308. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  309. {
  310. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  311. kvm_mmu_flush_tlb(vcpu);
  312. return;
  313. }
  314. if (is_long_mode(vcpu)) {
  315. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  316. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  317. kvm_inject_gp(vcpu, 0);
  318. return;
  319. }
  320. } else {
  321. if (is_pae(vcpu)) {
  322. if (cr3 & CR3_PAE_RESERVED_BITS) {
  323. printk(KERN_DEBUG
  324. "set_cr3: #GP, reserved bits\n");
  325. kvm_inject_gp(vcpu, 0);
  326. return;
  327. }
  328. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  329. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  330. "reserved bits\n");
  331. kvm_inject_gp(vcpu, 0);
  332. return;
  333. }
  334. }
  335. /*
  336. * We don't check reserved bits in nonpae mode, because
  337. * this isn't enforced, and VMware depends on this.
  338. */
  339. }
  340. /*
  341. * Does the new cr3 value map to physical memory? (Note, we
  342. * catch an invalid cr3 even in real-mode, because it would
  343. * cause trouble later on when we turn on paging anyway.)
  344. *
  345. * A real CPU would silently accept an invalid cr3 and would
  346. * attempt to use it - with largely undefined (and often hard
  347. * to debug) behavior on the guest side.
  348. */
  349. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  350. kvm_inject_gp(vcpu, 0);
  351. else {
  352. vcpu->arch.cr3 = cr3;
  353. vcpu->arch.mmu.new_cr3(vcpu);
  354. }
  355. }
  356. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  357. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  358. {
  359. if (cr8 & CR8_RESERVED_BITS) {
  360. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  361. kvm_inject_gp(vcpu, 0);
  362. return;
  363. }
  364. if (irqchip_in_kernel(vcpu->kvm))
  365. kvm_lapic_set_tpr(vcpu, cr8);
  366. else
  367. vcpu->arch.cr8 = cr8;
  368. }
  369. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  370. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  371. {
  372. if (irqchip_in_kernel(vcpu->kvm))
  373. return kvm_lapic_get_cr8(vcpu);
  374. else
  375. return vcpu->arch.cr8;
  376. }
  377. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  378. /*
  379. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  380. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  381. *
  382. * This list is modified at module load time to reflect the
  383. * capabilities of the host cpu.
  384. */
  385. static u32 msrs_to_save[] = {
  386. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  387. MSR_K6_STAR,
  388. #ifdef CONFIG_X86_64
  389. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  390. #endif
  391. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  392. MSR_IA32_PERF_STATUS,
  393. };
  394. static unsigned num_msrs_to_save;
  395. static u32 emulated_msrs[] = {
  396. MSR_IA32_MISC_ENABLE,
  397. };
  398. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  399. {
  400. if (efer & efer_reserved_bits) {
  401. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  402. efer);
  403. kvm_inject_gp(vcpu, 0);
  404. return;
  405. }
  406. if (is_paging(vcpu)
  407. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  408. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  409. kvm_inject_gp(vcpu, 0);
  410. return;
  411. }
  412. kvm_x86_ops->set_efer(vcpu, efer);
  413. efer &= ~EFER_LMA;
  414. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  415. vcpu->arch.shadow_efer = efer;
  416. }
  417. void kvm_enable_efer_bits(u64 mask)
  418. {
  419. efer_reserved_bits &= ~mask;
  420. }
  421. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  422. /*
  423. * Writes msr value into into the appropriate "register".
  424. * Returns 0 on success, non-0 otherwise.
  425. * Assumes vcpu_load() was already called.
  426. */
  427. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  428. {
  429. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  430. }
  431. /*
  432. * Adapt set_msr() to msr_io()'s calling convention
  433. */
  434. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  435. {
  436. return kvm_set_msr(vcpu, index, *data);
  437. }
  438. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  439. {
  440. static int version;
  441. struct pvclock_wall_clock wc;
  442. struct timespec now, sys, boot;
  443. if (!wall_clock)
  444. return;
  445. version++;
  446. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  447. /*
  448. * The guest calculates current wall clock time by adding
  449. * system time (updated by kvm_write_guest_time below) to the
  450. * wall clock specified here. guest system time equals host
  451. * system time for us, thus we must fill in host boot time here.
  452. */
  453. now = current_kernel_time();
  454. ktime_get_ts(&sys);
  455. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  456. wc.sec = boot.tv_sec;
  457. wc.nsec = boot.tv_nsec;
  458. wc.version = version;
  459. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  460. version++;
  461. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  462. }
  463. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  464. {
  465. uint32_t quotient, remainder;
  466. /* Don't try to replace with do_div(), this one calculates
  467. * "(dividend << 32) / divisor" */
  468. __asm__ ( "divl %4"
  469. : "=a" (quotient), "=d" (remainder)
  470. : "0" (0), "1" (dividend), "r" (divisor) );
  471. return quotient;
  472. }
  473. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  474. {
  475. uint64_t nsecs = 1000000000LL;
  476. int32_t shift = 0;
  477. uint64_t tps64;
  478. uint32_t tps32;
  479. tps64 = tsc_khz * 1000LL;
  480. while (tps64 > nsecs*2) {
  481. tps64 >>= 1;
  482. shift--;
  483. }
  484. tps32 = (uint32_t)tps64;
  485. while (tps32 <= (uint32_t)nsecs) {
  486. tps32 <<= 1;
  487. shift++;
  488. }
  489. hv_clock->tsc_shift = shift;
  490. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  491. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  492. __FUNCTION__, tsc_khz, hv_clock->tsc_shift,
  493. hv_clock->tsc_to_system_mul);
  494. }
  495. static void kvm_write_guest_time(struct kvm_vcpu *v)
  496. {
  497. struct timespec ts;
  498. unsigned long flags;
  499. struct kvm_vcpu_arch *vcpu = &v->arch;
  500. void *shared_kaddr;
  501. if ((!vcpu->time_page))
  502. return;
  503. if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
  504. kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
  505. vcpu->hv_clock_tsc_khz = tsc_khz;
  506. }
  507. /* Keep irq disabled to prevent changes to the clock */
  508. local_irq_save(flags);
  509. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  510. &vcpu->hv_clock.tsc_timestamp);
  511. ktime_get_ts(&ts);
  512. local_irq_restore(flags);
  513. /* With all the info we got, fill in the values */
  514. vcpu->hv_clock.system_time = ts.tv_nsec +
  515. (NSEC_PER_SEC * (u64)ts.tv_sec);
  516. /*
  517. * The interface expects us to write an even number signaling that the
  518. * update is finished. Since the guest won't see the intermediate
  519. * state, we just increase by 2 at the end.
  520. */
  521. vcpu->hv_clock.version += 2;
  522. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  523. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  524. sizeof(vcpu->hv_clock));
  525. kunmap_atomic(shared_kaddr, KM_USER0);
  526. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  527. }
  528. static bool msr_mtrr_valid(unsigned msr)
  529. {
  530. switch (msr) {
  531. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  532. case MSR_MTRRfix64K_00000:
  533. case MSR_MTRRfix16K_80000:
  534. case MSR_MTRRfix16K_A0000:
  535. case MSR_MTRRfix4K_C0000:
  536. case MSR_MTRRfix4K_C8000:
  537. case MSR_MTRRfix4K_D0000:
  538. case MSR_MTRRfix4K_D8000:
  539. case MSR_MTRRfix4K_E0000:
  540. case MSR_MTRRfix4K_E8000:
  541. case MSR_MTRRfix4K_F0000:
  542. case MSR_MTRRfix4K_F8000:
  543. case MSR_MTRRdefType:
  544. case MSR_IA32_CR_PAT:
  545. return true;
  546. case 0x2f8:
  547. return true;
  548. }
  549. return false;
  550. }
  551. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  552. {
  553. if (!msr_mtrr_valid(msr))
  554. return 1;
  555. vcpu->arch.mtrr[msr - 0x200] = data;
  556. return 0;
  557. }
  558. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  559. {
  560. switch (msr) {
  561. case MSR_EFER:
  562. set_efer(vcpu, data);
  563. break;
  564. case MSR_IA32_MC0_STATUS:
  565. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  566. __func__, data);
  567. break;
  568. case MSR_IA32_MCG_STATUS:
  569. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  570. __func__, data);
  571. break;
  572. case MSR_IA32_MCG_CTL:
  573. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  574. __func__, data);
  575. break;
  576. case MSR_IA32_UCODE_REV:
  577. case MSR_IA32_UCODE_WRITE:
  578. break;
  579. case 0x200 ... 0x2ff:
  580. return set_msr_mtrr(vcpu, msr, data);
  581. case MSR_IA32_APICBASE:
  582. kvm_set_apic_base(vcpu, data);
  583. break;
  584. case MSR_IA32_MISC_ENABLE:
  585. vcpu->arch.ia32_misc_enable_msr = data;
  586. break;
  587. case MSR_KVM_WALL_CLOCK:
  588. vcpu->kvm->arch.wall_clock = data;
  589. kvm_write_wall_clock(vcpu->kvm, data);
  590. break;
  591. case MSR_KVM_SYSTEM_TIME: {
  592. if (vcpu->arch.time_page) {
  593. kvm_release_page_dirty(vcpu->arch.time_page);
  594. vcpu->arch.time_page = NULL;
  595. }
  596. vcpu->arch.time = data;
  597. /* we verify if the enable bit is set... */
  598. if (!(data & 1))
  599. break;
  600. /* ...but clean it before doing the actual write */
  601. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  602. down_read(&current->mm->mmap_sem);
  603. vcpu->arch.time_page =
  604. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  605. up_read(&current->mm->mmap_sem);
  606. if (is_error_page(vcpu->arch.time_page)) {
  607. kvm_release_page_clean(vcpu->arch.time_page);
  608. vcpu->arch.time_page = NULL;
  609. }
  610. kvm_write_guest_time(vcpu);
  611. break;
  612. }
  613. default:
  614. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  615. return 1;
  616. }
  617. return 0;
  618. }
  619. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  620. /*
  621. * Reads an msr value (of 'msr_index') into 'pdata'.
  622. * Returns 0 on success, non-0 otherwise.
  623. * Assumes vcpu_load() was already called.
  624. */
  625. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  626. {
  627. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  628. }
  629. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  630. {
  631. if (!msr_mtrr_valid(msr))
  632. return 1;
  633. *pdata = vcpu->arch.mtrr[msr - 0x200];
  634. return 0;
  635. }
  636. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  637. {
  638. u64 data;
  639. switch (msr) {
  640. case 0xc0010010: /* SYSCFG */
  641. case 0xc0010015: /* HWCR */
  642. case MSR_IA32_PLATFORM_ID:
  643. case MSR_IA32_P5_MC_ADDR:
  644. case MSR_IA32_P5_MC_TYPE:
  645. case MSR_IA32_MC0_CTL:
  646. case MSR_IA32_MCG_STATUS:
  647. case MSR_IA32_MCG_CAP:
  648. case MSR_IA32_MCG_CTL:
  649. case MSR_IA32_MC0_MISC:
  650. case MSR_IA32_MC0_MISC+4:
  651. case MSR_IA32_MC0_MISC+8:
  652. case MSR_IA32_MC0_MISC+12:
  653. case MSR_IA32_MC0_MISC+16:
  654. case MSR_IA32_UCODE_REV:
  655. case MSR_IA32_EBL_CR_POWERON:
  656. data = 0;
  657. break;
  658. case MSR_MTRRcap:
  659. data = 0x500 | KVM_NR_VAR_MTRR;
  660. break;
  661. case 0x200 ... 0x2ff:
  662. return get_msr_mtrr(vcpu, msr, pdata);
  663. case 0xcd: /* fsb frequency */
  664. data = 3;
  665. break;
  666. case MSR_IA32_APICBASE:
  667. data = kvm_get_apic_base(vcpu);
  668. break;
  669. case MSR_IA32_MISC_ENABLE:
  670. data = vcpu->arch.ia32_misc_enable_msr;
  671. break;
  672. case MSR_IA32_PERF_STATUS:
  673. /* TSC increment by tick */
  674. data = 1000ULL;
  675. /* CPU multiplier */
  676. data |= (((uint64_t)4ULL) << 40);
  677. break;
  678. case MSR_EFER:
  679. data = vcpu->arch.shadow_efer;
  680. break;
  681. case MSR_KVM_WALL_CLOCK:
  682. data = vcpu->kvm->arch.wall_clock;
  683. break;
  684. case MSR_KVM_SYSTEM_TIME:
  685. data = vcpu->arch.time;
  686. break;
  687. default:
  688. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  689. return 1;
  690. }
  691. *pdata = data;
  692. return 0;
  693. }
  694. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  695. /*
  696. * Read or write a bunch of msrs. All parameters are kernel addresses.
  697. *
  698. * @return number of msrs set successfully.
  699. */
  700. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  701. struct kvm_msr_entry *entries,
  702. int (*do_msr)(struct kvm_vcpu *vcpu,
  703. unsigned index, u64 *data))
  704. {
  705. int i;
  706. vcpu_load(vcpu);
  707. down_read(&vcpu->kvm->slots_lock);
  708. for (i = 0; i < msrs->nmsrs; ++i)
  709. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  710. break;
  711. up_read(&vcpu->kvm->slots_lock);
  712. vcpu_put(vcpu);
  713. return i;
  714. }
  715. /*
  716. * Read or write a bunch of msrs. Parameters are user addresses.
  717. *
  718. * @return number of msrs set successfully.
  719. */
  720. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  721. int (*do_msr)(struct kvm_vcpu *vcpu,
  722. unsigned index, u64 *data),
  723. int writeback)
  724. {
  725. struct kvm_msrs msrs;
  726. struct kvm_msr_entry *entries;
  727. int r, n;
  728. unsigned size;
  729. r = -EFAULT;
  730. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  731. goto out;
  732. r = -E2BIG;
  733. if (msrs.nmsrs >= MAX_IO_MSRS)
  734. goto out;
  735. r = -ENOMEM;
  736. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  737. entries = vmalloc(size);
  738. if (!entries)
  739. goto out;
  740. r = -EFAULT;
  741. if (copy_from_user(entries, user_msrs->entries, size))
  742. goto out_free;
  743. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  744. if (r < 0)
  745. goto out_free;
  746. r = -EFAULT;
  747. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  748. goto out_free;
  749. r = n;
  750. out_free:
  751. vfree(entries);
  752. out:
  753. return r;
  754. }
  755. int kvm_dev_ioctl_check_extension(long ext)
  756. {
  757. int r;
  758. switch (ext) {
  759. case KVM_CAP_IRQCHIP:
  760. case KVM_CAP_HLT:
  761. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  762. case KVM_CAP_USER_MEMORY:
  763. case KVM_CAP_SET_TSS_ADDR:
  764. case KVM_CAP_EXT_CPUID:
  765. case KVM_CAP_CLOCKSOURCE:
  766. case KVM_CAP_PIT:
  767. case KVM_CAP_NOP_IO_DELAY:
  768. case KVM_CAP_MP_STATE:
  769. case KVM_CAP_SYNC_MMU:
  770. r = 1;
  771. break;
  772. case KVM_CAP_COALESCED_MMIO:
  773. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  774. break;
  775. case KVM_CAP_VAPIC:
  776. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  777. break;
  778. case KVM_CAP_NR_VCPUS:
  779. r = KVM_MAX_VCPUS;
  780. break;
  781. case KVM_CAP_NR_MEMSLOTS:
  782. r = KVM_MEMORY_SLOTS;
  783. break;
  784. case KVM_CAP_PV_MMU:
  785. r = !tdp_enabled;
  786. break;
  787. default:
  788. r = 0;
  789. break;
  790. }
  791. return r;
  792. }
  793. long kvm_arch_dev_ioctl(struct file *filp,
  794. unsigned int ioctl, unsigned long arg)
  795. {
  796. void __user *argp = (void __user *)arg;
  797. long r;
  798. switch (ioctl) {
  799. case KVM_GET_MSR_INDEX_LIST: {
  800. struct kvm_msr_list __user *user_msr_list = argp;
  801. struct kvm_msr_list msr_list;
  802. unsigned n;
  803. r = -EFAULT;
  804. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  805. goto out;
  806. n = msr_list.nmsrs;
  807. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  808. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  809. goto out;
  810. r = -E2BIG;
  811. if (n < num_msrs_to_save)
  812. goto out;
  813. r = -EFAULT;
  814. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  815. num_msrs_to_save * sizeof(u32)))
  816. goto out;
  817. if (copy_to_user(user_msr_list->indices
  818. + num_msrs_to_save * sizeof(u32),
  819. &emulated_msrs,
  820. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  821. goto out;
  822. r = 0;
  823. break;
  824. }
  825. case KVM_GET_SUPPORTED_CPUID: {
  826. struct kvm_cpuid2 __user *cpuid_arg = argp;
  827. struct kvm_cpuid2 cpuid;
  828. r = -EFAULT;
  829. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  830. goto out;
  831. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  832. cpuid_arg->entries);
  833. if (r)
  834. goto out;
  835. r = -EFAULT;
  836. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  837. goto out;
  838. r = 0;
  839. break;
  840. }
  841. default:
  842. r = -EINVAL;
  843. }
  844. out:
  845. return r;
  846. }
  847. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  848. {
  849. kvm_x86_ops->vcpu_load(vcpu, cpu);
  850. kvm_write_guest_time(vcpu);
  851. }
  852. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  853. {
  854. kvm_x86_ops->vcpu_put(vcpu);
  855. kvm_put_guest_fpu(vcpu);
  856. }
  857. static int is_efer_nx(void)
  858. {
  859. u64 efer;
  860. rdmsrl(MSR_EFER, efer);
  861. return efer & EFER_NX;
  862. }
  863. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  864. {
  865. int i;
  866. struct kvm_cpuid_entry2 *e, *entry;
  867. entry = NULL;
  868. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  869. e = &vcpu->arch.cpuid_entries[i];
  870. if (e->function == 0x80000001) {
  871. entry = e;
  872. break;
  873. }
  874. }
  875. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  876. entry->edx &= ~(1 << 20);
  877. printk(KERN_INFO "kvm: guest NX capability removed\n");
  878. }
  879. }
  880. /* when an old userspace process fills a new kernel module */
  881. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  882. struct kvm_cpuid *cpuid,
  883. struct kvm_cpuid_entry __user *entries)
  884. {
  885. int r, i;
  886. struct kvm_cpuid_entry *cpuid_entries;
  887. r = -E2BIG;
  888. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  889. goto out;
  890. r = -ENOMEM;
  891. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  892. if (!cpuid_entries)
  893. goto out;
  894. r = -EFAULT;
  895. if (copy_from_user(cpuid_entries, entries,
  896. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  897. goto out_free;
  898. for (i = 0; i < cpuid->nent; i++) {
  899. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  900. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  901. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  902. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  903. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  904. vcpu->arch.cpuid_entries[i].index = 0;
  905. vcpu->arch.cpuid_entries[i].flags = 0;
  906. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  907. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  908. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  909. }
  910. vcpu->arch.cpuid_nent = cpuid->nent;
  911. cpuid_fix_nx_cap(vcpu);
  912. r = 0;
  913. out_free:
  914. vfree(cpuid_entries);
  915. out:
  916. return r;
  917. }
  918. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  919. struct kvm_cpuid2 *cpuid,
  920. struct kvm_cpuid_entry2 __user *entries)
  921. {
  922. int r;
  923. r = -E2BIG;
  924. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  925. goto out;
  926. r = -EFAULT;
  927. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  928. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  929. goto out;
  930. vcpu->arch.cpuid_nent = cpuid->nent;
  931. return 0;
  932. out:
  933. return r;
  934. }
  935. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  936. struct kvm_cpuid2 *cpuid,
  937. struct kvm_cpuid_entry2 __user *entries)
  938. {
  939. int r;
  940. r = -E2BIG;
  941. if (cpuid->nent < vcpu->arch.cpuid_nent)
  942. goto out;
  943. r = -EFAULT;
  944. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  945. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  946. goto out;
  947. return 0;
  948. out:
  949. cpuid->nent = vcpu->arch.cpuid_nent;
  950. return r;
  951. }
  952. static inline u32 bit(int bitno)
  953. {
  954. return 1 << (bitno & 31);
  955. }
  956. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  957. u32 index)
  958. {
  959. entry->function = function;
  960. entry->index = index;
  961. cpuid_count(entry->function, entry->index,
  962. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  963. entry->flags = 0;
  964. }
  965. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  966. u32 index, int *nent, int maxnent)
  967. {
  968. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  969. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  970. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  971. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  972. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  973. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  974. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  975. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  976. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  977. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  978. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  979. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  980. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  981. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  982. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  983. bit(X86_FEATURE_PGE) |
  984. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  985. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  986. bit(X86_FEATURE_SYSCALL) |
  987. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  988. #ifdef CONFIG_X86_64
  989. bit(X86_FEATURE_LM) |
  990. #endif
  991. bit(X86_FEATURE_MMXEXT) |
  992. bit(X86_FEATURE_3DNOWEXT) |
  993. bit(X86_FEATURE_3DNOW);
  994. const u32 kvm_supported_word3_x86_features =
  995. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  996. const u32 kvm_supported_word6_x86_features =
  997. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  998. /* all func 2 cpuid_count() should be called on the same cpu */
  999. get_cpu();
  1000. do_cpuid_1_ent(entry, function, index);
  1001. ++*nent;
  1002. switch (function) {
  1003. case 0:
  1004. entry->eax = min(entry->eax, (u32)0xb);
  1005. break;
  1006. case 1:
  1007. entry->edx &= kvm_supported_word0_x86_features;
  1008. entry->ecx &= kvm_supported_word3_x86_features;
  1009. break;
  1010. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1011. * may return different values. This forces us to get_cpu() before
  1012. * issuing the first command, and also to emulate this annoying behavior
  1013. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1014. case 2: {
  1015. int t, times = entry->eax & 0xff;
  1016. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1017. for (t = 1; t < times && *nent < maxnent; ++t) {
  1018. do_cpuid_1_ent(&entry[t], function, 0);
  1019. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1020. ++*nent;
  1021. }
  1022. break;
  1023. }
  1024. /* function 4 and 0xb have additional index. */
  1025. case 4: {
  1026. int i, cache_type;
  1027. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1028. /* read more entries until cache_type is zero */
  1029. for (i = 1; *nent < maxnent; ++i) {
  1030. cache_type = entry[i - 1].eax & 0x1f;
  1031. if (!cache_type)
  1032. break;
  1033. do_cpuid_1_ent(&entry[i], function, i);
  1034. entry[i].flags |=
  1035. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1036. ++*nent;
  1037. }
  1038. break;
  1039. }
  1040. case 0xb: {
  1041. int i, level_type;
  1042. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1043. /* read more entries until level_type is zero */
  1044. for (i = 1; *nent < maxnent; ++i) {
  1045. level_type = entry[i - 1].ecx & 0xff;
  1046. if (!level_type)
  1047. break;
  1048. do_cpuid_1_ent(&entry[i], function, i);
  1049. entry[i].flags |=
  1050. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1051. ++*nent;
  1052. }
  1053. break;
  1054. }
  1055. case 0x80000000:
  1056. entry->eax = min(entry->eax, 0x8000001a);
  1057. break;
  1058. case 0x80000001:
  1059. entry->edx &= kvm_supported_word1_x86_features;
  1060. entry->ecx &= kvm_supported_word6_x86_features;
  1061. break;
  1062. }
  1063. put_cpu();
  1064. }
  1065. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1066. struct kvm_cpuid_entry2 __user *entries)
  1067. {
  1068. struct kvm_cpuid_entry2 *cpuid_entries;
  1069. int limit, nent = 0, r = -E2BIG;
  1070. u32 func;
  1071. if (cpuid->nent < 1)
  1072. goto out;
  1073. r = -ENOMEM;
  1074. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1075. if (!cpuid_entries)
  1076. goto out;
  1077. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1078. limit = cpuid_entries[0].eax;
  1079. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1080. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1081. &nent, cpuid->nent);
  1082. r = -E2BIG;
  1083. if (nent >= cpuid->nent)
  1084. goto out_free;
  1085. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1086. limit = cpuid_entries[nent - 1].eax;
  1087. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1088. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1089. &nent, cpuid->nent);
  1090. r = -EFAULT;
  1091. if (copy_to_user(entries, cpuid_entries,
  1092. nent * sizeof(struct kvm_cpuid_entry2)))
  1093. goto out_free;
  1094. cpuid->nent = nent;
  1095. r = 0;
  1096. out_free:
  1097. vfree(cpuid_entries);
  1098. out:
  1099. return r;
  1100. }
  1101. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1102. struct kvm_lapic_state *s)
  1103. {
  1104. vcpu_load(vcpu);
  1105. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1106. vcpu_put(vcpu);
  1107. return 0;
  1108. }
  1109. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1110. struct kvm_lapic_state *s)
  1111. {
  1112. vcpu_load(vcpu);
  1113. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1114. kvm_apic_post_state_restore(vcpu);
  1115. vcpu_put(vcpu);
  1116. return 0;
  1117. }
  1118. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1119. struct kvm_interrupt *irq)
  1120. {
  1121. if (irq->irq < 0 || irq->irq >= 256)
  1122. return -EINVAL;
  1123. if (irqchip_in_kernel(vcpu->kvm))
  1124. return -ENXIO;
  1125. vcpu_load(vcpu);
  1126. set_bit(irq->irq, vcpu->arch.irq_pending);
  1127. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1128. vcpu_put(vcpu);
  1129. return 0;
  1130. }
  1131. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1132. struct kvm_tpr_access_ctl *tac)
  1133. {
  1134. if (tac->flags)
  1135. return -EINVAL;
  1136. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1137. return 0;
  1138. }
  1139. long kvm_arch_vcpu_ioctl(struct file *filp,
  1140. unsigned int ioctl, unsigned long arg)
  1141. {
  1142. struct kvm_vcpu *vcpu = filp->private_data;
  1143. void __user *argp = (void __user *)arg;
  1144. int r;
  1145. switch (ioctl) {
  1146. case KVM_GET_LAPIC: {
  1147. struct kvm_lapic_state lapic;
  1148. memset(&lapic, 0, sizeof lapic);
  1149. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  1150. if (r)
  1151. goto out;
  1152. r = -EFAULT;
  1153. if (copy_to_user(argp, &lapic, sizeof lapic))
  1154. goto out;
  1155. r = 0;
  1156. break;
  1157. }
  1158. case KVM_SET_LAPIC: {
  1159. struct kvm_lapic_state lapic;
  1160. r = -EFAULT;
  1161. if (copy_from_user(&lapic, argp, sizeof lapic))
  1162. goto out;
  1163. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  1164. if (r)
  1165. goto out;
  1166. r = 0;
  1167. break;
  1168. }
  1169. case KVM_INTERRUPT: {
  1170. struct kvm_interrupt irq;
  1171. r = -EFAULT;
  1172. if (copy_from_user(&irq, argp, sizeof irq))
  1173. goto out;
  1174. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1175. if (r)
  1176. goto out;
  1177. r = 0;
  1178. break;
  1179. }
  1180. case KVM_SET_CPUID: {
  1181. struct kvm_cpuid __user *cpuid_arg = argp;
  1182. struct kvm_cpuid cpuid;
  1183. r = -EFAULT;
  1184. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1185. goto out;
  1186. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1187. if (r)
  1188. goto out;
  1189. break;
  1190. }
  1191. case KVM_SET_CPUID2: {
  1192. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1193. struct kvm_cpuid2 cpuid;
  1194. r = -EFAULT;
  1195. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1196. goto out;
  1197. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1198. cpuid_arg->entries);
  1199. if (r)
  1200. goto out;
  1201. break;
  1202. }
  1203. case KVM_GET_CPUID2: {
  1204. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1205. struct kvm_cpuid2 cpuid;
  1206. r = -EFAULT;
  1207. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1208. goto out;
  1209. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1210. cpuid_arg->entries);
  1211. if (r)
  1212. goto out;
  1213. r = -EFAULT;
  1214. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1215. goto out;
  1216. r = 0;
  1217. break;
  1218. }
  1219. case KVM_GET_MSRS:
  1220. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1221. break;
  1222. case KVM_SET_MSRS:
  1223. r = msr_io(vcpu, argp, do_set_msr, 0);
  1224. break;
  1225. case KVM_TPR_ACCESS_REPORTING: {
  1226. struct kvm_tpr_access_ctl tac;
  1227. r = -EFAULT;
  1228. if (copy_from_user(&tac, argp, sizeof tac))
  1229. goto out;
  1230. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1231. if (r)
  1232. goto out;
  1233. r = -EFAULT;
  1234. if (copy_to_user(argp, &tac, sizeof tac))
  1235. goto out;
  1236. r = 0;
  1237. break;
  1238. };
  1239. case KVM_SET_VAPIC_ADDR: {
  1240. struct kvm_vapic_addr va;
  1241. r = -EINVAL;
  1242. if (!irqchip_in_kernel(vcpu->kvm))
  1243. goto out;
  1244. r = -EFAULT;
  1245. if (copy_from_user(&va, argp, sizeof va))
  1246. goto out;
  1247. r = 0;
  1248. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1249. break;
  1250. }
  1251. default:
  1252. r = -EINVAL;
  1253. }
  1254. out:
  1255. return r;
  1256. }
  1257. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1258. {
  1259. int ret;
  1260. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1261. return -1;
  1262. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1263. return ret;
  1264. }
  1265. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1266. u32 kvm_nr_mmu_pages)
  1267. {
  1268. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1269. return -EINVAL;
  1270. down_write(&kvm->slots_lock);
  1271. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1272. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1273. up_write(&kvm->slots_lock);
  1274. return 0;
  1275. }
  1276. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1277. {
  1278. return kvm->arch.n_alloc_mmu_pages;
  1279. }
  1280. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1281. {
  1282. int i;
  1283. struct kvm_mem_alias *alias;
  1284. for (i = 0; i < kvm->arch.naliases; ++i) {
  1285. alias = &kvm->arch.aliases[i];
  1286. if (gfn >= alias->base_gfn
  1287. && gfn < alias->base_gfn + alias->npages)
  1288. return alias->target_gfn + gfn - alias->base_gfn;
  1289. }
  1290. return gfn;
  1291. }
  1292. /*
  1293. * Set a new alias region. Aliases map a portion of physical memory into
  1294. * another portion. This is useful for memory windows, for example the PC
  1295. * VGA region.
  1296. */
  1297. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1298. struct kvm_memory_alias *alias)
  1299. {
  1300. int r, n;
  1301. struct kvm_mem_alias *p;
  1302. r = -EINVAL;
  1303. /* General sanity checks */
  1304. if (alias->memory_size & (PAGE_SIZE - 1))
  1305. goto out;
  1306. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1307. goto out;
  1308. if (alias->slot >= KVM_ALIAS_SLOTS)
  1309. goto out;
  1310. if (alias->guest_phys_addr + alias->memory_size
  1311. < alias->guest_phys_addr)
  1312. goto out;
  1313. if (alias->target_phys_addr + alias->memory_size
  1314. < alias->target_phys_addr)
  1315. goto out;
  1316. down_write(&kvm->slots_lock);
  1317. spin_lock(&kvm->mmu_lock);
  1318. p = &kvm->arch.aliases[alias->slot];
  1319. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1320. p->npages = alias->memory_size >> PAGE_SHIFT;
  1321. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1322. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1323. if (kvm->arch.aliases[n - 1].npages)
  1324. break;
  1325. kvm->arch.naliases = n;
  1326. spin_unlock(&kvm->mmu_lock);
  1327. kvm_mmu_zap_all(kvm);
  1328. up_write(&kvm->slots_lock);
  1329. return 0;
  1330. out:
  1331. return r;
  1332. }
  1333. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1334. {
  1335. int r;
  1336. r = 0;
  1337. switch (chip->chip_id) {
  1338. case KVM_IRQCHIP_PIC_MASTER:
  1339. memcpy(&chip->chip.pic,
  1340. &pic_irqchip(kvm)->pics[0],
  1341. sizeof(struct kvm_pic_state));
  1342. break;
  1343. case KVM_IRQCHIP_PIC_SLAVE:
  1344. memcpy(&chip->chip.pic,
  1345. &pic_irqchip(kvm)->pics[1],
  1346. sizeof(struct kvm_pic_state));
  1347. break;
  1348. case KVM_IRQCHIP_IOAPIC:
  1349. memcpy(&chip->chip.ioapic,
  1350. ioapic_irqchip(kvm),
  1351. sizeof(struct kvm_ioapic_state));
  1352. break;
  1353. default:
  1354. r = -EINVAL;
  1355. break;
  1356. }
  1357. return r;
  1358. }
  1359. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1360. {
  1361. int r;
  1362. r = 0;
  1363. switch (chip->chip_id) {
  1364. case KVM_IRQCHIP_PIC_MASTER:
  1365. memcpy(&pic_irqchip(kvm)->pics[0],
  1366. &chip->chip.pic,
  1367. sizeof(struct kvm_pic_state));
  1368. break;
  1369. case KVM_IRQCHIP_PIC_SLAVE:
  1370. memcpy(&pic_irqchip(kvm)->pics[1],
  1371. &chip->chip.pic,
  1372. sizeof(struct kvm_pic_state));
  1373. break;
  1374. case KVM_IRQCHIP_IOAPIC:
  1375. memcpy(ioapic_irqchip(kvm),
  1376. &chip->chip.ioapic,
  1377. sizeof(struct kvm_ioapic_state));
  1378. break;
  1379. default:
  1380. r = -EINVAL;
  1381. break;
  1382. }
  1383. kvm_pic_update_irq(pic_irqchip(kvm));
  1384. return r;
  1385. }
  1386. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1387. {
  1388. int r = 0;
  1389. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1390. return r;
  1391. }
  1392. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1393. {
  1394. int r = 0;
  1395. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1396. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1397. return r;
  1398. }
  1399. /*
  1400. * Get (and clear) the dirty memory log for a memory slot.
  1401. */
  1402. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1403. struct kvm_dirty_log *log)
  1404. {
  1405. int r;
  1406. int n;
  1407. struct kvm_memory_slot *memslot;
  1408. int is_dirty = 0;
  1409. down_write(&kvm->slots_lock);
  1410. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1411. if (r)
  1412. goto out;
  1413. /* If nothing is dirty, don't bother messing with page tables. */
  1414. if (is_dirty) {
  1415. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1416. kvm_flush_remote_tlbs(kvm);
  1417. memslot = &kvm->memslots[log->slot];
  1418. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1419. memset(memslot->dirty_bitmap, 0, n);
  1420. }
  1421. r = 0;
  1422. out:
  1423. up_write(&kvm->slots_lock);
  1424. return r;
  1425. }
  1426. long kvm_arch_vm_ioctl(struct file *filp,
  1427. unsigned int ioctl, unsigned long arg)
  1428. {
  1429. struct kvm *kvm = filp->private_data;
  1430. void __user *argp = (void __user *)arg;
  1431. int r = -EINVAL;
  1432. switch (ioctl) {
  1433. case KVM_SET_TSS_ADDR:
  1434. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1435. if (r < 0)
  1436. goto out;
  1437. break;
  1438. case KVM_SET_MEMORY_REGION: {
  1439. struct kvm_memory_region kvm_mem;
  1440. struct kvm_userspace_memory_region kvm_userspace_mem;
  1441. r = -EFAULT;
  1442. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1443. goto out;
  1444. kvm_userspace_mem.slot = kvm_mem.slot;
  1445. kvm_userspace_mem.flags = kvm_mem.flags;
  1446. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1447. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1448. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1449. if (r)
  1450. goto out;
  1451. break;
  1452. }
  1453. case KVM_SET_NR_MMU_PAGES:
  1454. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1455. if (r)
  1456. goto out;
  1457. break;
  1458. case KVM_GET_NR_MMU_PAGES:
  1459. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1460. break;
  1461. case KVM_SET_MEMORY_ALIAS: {
  1462. struct kvm_memory_alias alias;
  1463. r = -EFAULT;
  1464. if (copy_from_user(&alias, argp, sizeof alias))
  1465. goto out;
  1466. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  1467. if (r)
  1468. goto out;
  1469. break;
  1470. }
  1471. case KVM_CREATE_IRQCHIP:
  1472. r = -ENOMEM;
  1473. kvm->arch.vpic = kvm_create_pic(kvm);
  1474. if (kvm->arch.vpic) {
  1475. r = kvm_ioapic_init(kvm);
  1476. if (r) {
  1477. kfree(kvm->arch.vpic);
  1478. kvm->arch.vpic = NULL;
  1479. goto out;
  1480. }
  1481. } else
  1482. goto out;
  1483. break;
  1484. case KVM_CREATE_PIT:
  1485. r = -ENOMEM;
  1486. kvm->arch.vpit = kvm_create_pit(kvm);
  1487. if (kvm->arch.vpit)
  1488. r = 0;
  1489. break;
  1490. case KVM_IRQ_LINE: {
  1491. struct kvm_irq_level irq_event;
  1492. r = -EFAULT;
  1493. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1494. goto out;
  1495. if (irqchip_in_kernel(kvm)) {
  1496. mutex_lock(&kvm->lock);
  1497. if (irq_event.irq < 16)
  1498. kvm_pic_set_irq(pic_irqchip(kvm),
  1499. irq_event.irq,
  1500. irq_event.level);
  1501. kvm_ioapic_set_irq(kvm->arch.vioapic,
  1502. irq_event.irq,
  1503. irq_event.level);
  1504. mutex_unlock(&kvm->lock);
  1505. r = 0;
  1506. }
  1507. break;
  1508. }
  1509. case KVM_GET_IRQCHIP: {
  1510. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1511. struct kvm_irqchip chip;
  1512. r = -EFAULT;
  1513. if (copy_from_user(&chip, argp, sizeof chip))
  1514. goto out;
  1515. r = -ENXIO;
  1516. if (!irqchip_in_kernel(kvm))
  1517. goto out;
  1518. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  1519. if (r)
  1520. goto out;
  1521. r = -EFAULT;
  1522. if (copy_to_user(argp, &chip, sizeof chip))
  1523. goto out;
  1524. r = 0;
  1525. break;
  1526. }
  1527. case KVM_SET_IRQCHIP: {
  1528. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1529. struct kvm_irqchip chip;
  1530. r = -EFAULT;
  1531. if (copy_from_user(&chip, argp, sizeof chip))
  1532. goto out;
  1533. r = -ENXIO;
  1534. if (!irqchip_in_kernel(kvm))
  1535. goto out;
  1536. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  1537. if (r)
  1538. goto out;
  1539. r = 0;
  1540. break;
  1541. }
  1542. case KVM_GET_PIT: {
  1543. struct kvm_pit_state ps;
  1544. r = -EFAULT;
  1545. if (copy_from_user(&ps, argp, sizeof ps))
  1546. goto out;
  1547. r = -ENXIO;
  1548. if (!kvm->arch.vpit)
  1549. goto out;
  1550. r = kvm_vm_ioctl_get_pit(kvm, &ps);
  1551. if (r)
  1552. goto out;
  1553. r = -EFAULT;
  1554. if (copy_to_user(argp, &ps, sizeof ps))
  1555. goto out;
  1556. r = 0;
  1557. break;
  1558. }
  1559. case KVM_SET_PIT: {
  1560. struct kvm_pit_state ps;
  1561. r = -EFAULT;
  1562. if (copy_from_user(&ps, argp, sizeof ps))
  1563. goto out;
  1564. r = -ENXIO;
  1565. if (!kvm->arch.vpit)
  1566. goto out;
  1567. r = kvm_vm_ioctl_set_pit(kvm, &ps);
  1568. if (r)
  1569. goto out;
  1570. r = 0;
  1571. break;
  1572. }
  1573. default:
  1574. ;
  1575. }
  1576. out:
  1577. return r;
  1578. }
  1579. static void kvm_init_msr_list(void)
  1580. {
  1581. u32 dummy[2];
  1582. unsigned i, j;
  1583. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1584. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1585. continue;
  1586. if (j < i)
  1587. msrs_to_save[j] = msrs_to_save[i];
  1588. j++;
  1589. }
  1590. num_msrs_to_save = j;
  1591. }
  1592. /*
  1593. * Only apic need an MMIO device hook, so shortcut now..
  1594. */
  1595. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1596. gpa_t addr, int len,
  1597. int is_write)
  1598. {
  1599. struct kvm_io_device *dev;
  1600. if (vcpu->arch.apic) {
  1601. dev = &vcpu->arch.apic->dev;
  1602. if (dev->in_range(dev, addr, len, is_write))
  1603. return dev;
  1604. }
  1605. return NULL;
  1606. }
  1607. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1608. gpa_t addr, int len,
  1609. int is_write)
  1610. {
  1611. struct kvm_io_device *dev;
  1612. dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
  1613. if (dev == NULL)
  1614. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
  1615. is_write);
  1616. return dev;
  1617. }
  1618. int emulator_read_std(unsigned long addr,
  1619. void *val,
  1620. unsigned int bytes,
  1621. struct kvm_vcpu *vcpu)
  1622. {
  1623. void *data = val;
  1624. int r = X86EMUL_CONTINUE;
  1625. while (bytes) {
  1626. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1627. unsigned offset = addr & (PAGE_SIZE-1);
  1628. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1629. int ret;
  1630. if (gpa == UNMAPPED_GVA) {
  1631. r = X86EMUL_PROPAGATE_FAULT;
  1632. goto out;
  1633. }
  1634. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1635. if (ret < 0) {
  1636. r = X86EMUL_UNHANDLEABLE;
  1637. goto out;
  1638. }
  1639. bytes -= tocopy;
  1640. data += tocopy;
  1641. addr += tocopy;
  1642. }
  1643. out:
  1644. return r;
  1645. }
  1646. EXPORT_SYMBOL_GPL(emulator_read_std);
  1647. static int emulator_read_emulated(unsigned long addr,
  1648. void *val,
  1649. unsigned int bytes,
  1650. struct kvm_vcpu *vcpu)
  1651. {
  1652. struct kvm_io_device *mmio_dev;
  1653. gpa_t gpa;
  1654. if (vcpu->mmio_read_completed) {
  1655. memcpy(val, vcpu->mmio_data, bytes);
  1656. vcpu->mmio_read_completed = 0;
  1657. return X86EMUL_CONTINUE;
  1658. }
  1659. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1660. /* For APIC access vmexit */
  1661. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1662. goto mmio;
  1663. if (emulator_read_std(addr, val, bytes, vcpu)
  1664. == X86EMUL_CONTINUE)
  1665. return X86EMUL_CONTINUE;
  1666. if (gpa == UNMAPPED_GVA)
  1667. return X86EMUL_PROPAGATE_FAULT;
  1668. mmio:
  1669. /*
  1670. * Is this MMIO handled locally?
  1671. */
  1672. mutex_lock(&vcpu->kvm->lock);
  1673. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
  1674. if (mmio_dev) {
  1675. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1676. mutex_unlock(&vcpu->kvm->lock);
  1677. return X86EMUL_CONTINUE;
  1678. }
  1679. mutex_unlock(&vcpu->kvm->lock);
  1680. vcpu->mmio_needed = 1;
  1681. vcpu->mmio_phys_addr = gpa;
  1682. vcpu->mmio_size = bytes;
  1683. vcpu->mmio_is_write = 0;
  1684. return X86EMUL_UNHANDLEABLE;
  1685. }
  1686. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1687. const void *val, int bytes)
  1688. {
  1689. int ret;
  1690. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1691. if (ret < 0)
  1692. return 0;
  1693. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1694. return 1;
  1695. }
  1696. static int emulator_write_emulated_onepage(unsigned long addr,
  1697. const void *val,
  1698. unsigned int bytes,
  1699. struct kvm_vcpu *vcpu)
  1700. {
  1701. struct kvm_io_device *mmio_dev;
  1702. gpa_t gpa;
  1703. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1704. if (gpa == UNMAPPED_GVA) {
  1705. kvm_inject_page_fault(vcpu, addr, 2);
  1706. return X86EMUL_PROPAGATE_FAULT;
  1707. }
  1708. /* For APIC access vmexit */
  1709. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1710. goto mmio;
  1711. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1712. return X86EMUL_CONTINUE;
  1713. mmio:
  1714. /*
  1715. * Is this MMIO handled locally?
  1716. */
  1717. mutex_lock(&vcpu->kvm->lock);
  1718. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
  1719. if (mmio_dev) {
  1720. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1721. mutex_unlock(&vcpu->kvm->lock);
  1722. return X86EMUL_CONTINUE;
  1723. }
  1724. mutex_unlock(&vcpu->kvm->lock);
  1725. vcpu->mmio_needed = 1;
  1726. vcpu->mmio_phys_addr = gpa;
  1727. vcpu->mmio_size = bytes;
  1728. vcpu->mmio_is_write = 1;
  1729. memcpy(vcpu->mmio_data, val, bytes);
  1730. return X86EMUL_CONTINUE;
  1731. }
  1732. int emulator_write_emulated(unsigned long addr,
  1733. const void *val,
  1734. unsigned int bytes,
  1735. struct kvm_vcpu *vcpu)
  1736. {
  1737. /* Crossing a page boundary? */
  1738. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1739. int rc, now;
  1740. now = -addr & ~PAGE_MASK;
  1741. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1742. if (rc != X86EMUL_CONTINUE)
  1743. return rc;
  1744. addr += now;
  1745. val += now;
  1746. bytes -= now;
  1747. }
  1748. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1749. }
  1750. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1751. static int emulator_cmpxchg_emulated(unsigned long addr,
  1752. const void *old,
  1753. const void *new,
  1754. unsigned int bytes,
  1755. struct kvm_vcpu *vcpu)
  1756. {
  1757. static int reported;
  1758. if (!reported) {
  1759. reported = 1;
  1760. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1761. }
  1762. #ifndef CONFIG_X86_64
  1763. /* guests cmpxchg8b have to be emulated atomically */
  1764. if (bytes == 8) {
  1765. gpa_t gpa;
  1766. struct page *page;
  1767. char *kaddr;
  1768. u64 val;
  1769. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1770. if (gpa == UNMAPPED_GVA ||
  1771. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1772. goto emul_write;
  1773. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1774. goto emul_write;
  1775. val = *(u64 *)new;
  1776. down_read(&current->mm->mmap_sem);
  1777. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1778. up_read(&current->mm->mmap_sem);
  1779. kaddr = kmap_atomic(page, KM_USER0);
  1780. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1781. kunmap_atomic(kaddr, KM_USER0);
  1782. kvm_release_page_dirty(page);
  1783. }
  1784. emul_write:
  1785. #endif
  1786. return emulator_write_emulated(addr, new, bytes, vcpu);
  1787. }
  1788. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1789. {
  1790. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1791. }
  1792. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1793. {
  1794. return X86EMUL_CONTINUE;
  1795. }
  1796. int emulate_clts(struct kvm_vcpu *vcpu)
  1797. {
  1798. KVMTRACE_0D(CLTS, vcpu, handler);
  1799. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1800. return X86EMUL_CONTINUE;
  1801. }
  1802. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1803. {
  1804. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1805. switch (dr) {
  1806. case 0 ... 3:
  1807. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1808. return X86EMUL_CONTINUE;
  1809. default:
  1810. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  1811. return X86EMUL_UNHANDLEABLE;
  1812. }
  1813. }
  1814. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1815. {
  1816. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1817. int exception;
  1818. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1819. if (exception) {
  1820. /* FIXME: better handling */
  1821. return X86EMUL_UNHANDLEABLE;
  1822. }
  1823. return X86EMUL_CONTINUE;
  1824. }
  1825. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1826. {
  1827. u8 opcodes[4];
  1828. unsigned long rip = vcpu->arch.rip;
  1829. unsigned long rip_linear;
  1830. if (!printk_ratelimit())
  1831. return;
  1832. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1833. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1834. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1835. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1836. }
  1837. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1838. static struct x86_emulate_ops emulate_ops = {
  1839. .read_std = emulator_read_std,
  1840. .read_emulated = emulator_read_emulated,
  1841. .write_emulated = emulator_write_emulated,
  1842. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1843. };
  1844. int emulate_instruction(struct kvm_vcpu *vcpu,
  1845. struct kvm_run *run,
  1846. unsigned long cr2,
  1847. u16 error_code,
  1848. int emulation_type)
  1849. {
  1850. int r;
  1851. struct decode_cache *c;
  1852. vcpu->arch.mmio_fault_cr2 = cr2;
  1853. kvm_x86_ops->cache_regs(vcpu);
  1854. vcpu->mmio_is_write = 0;
  1855. vcpu->arch.pio.string = 0;
  1856. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1857. int cs_db, cs_l;
  1858. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1859. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1860. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1861. vcpu->arch.emulate_ctxt.mode =
  1862. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1863. ? X86EMUL_MODE_REAL : cs_l
  1864. ? X86EMUL_MODE_PROT64 : cs_db
  1865. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1866. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1867. /* Reject the instructions other than VMCALL/VMMCALL when
  1868. * try to emulate invalid opcode */
  1869. c = &vcpu->arch.emulate_ctxt.decode;
  1870. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  1871. (!(c->twobyte && c->b == 0x01 &&
  1872. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  1873. c->modrm_mod == 3 && c->modrm_rm == 1)))
  1874. return EMULATE_FAIL;
  1875. ++vcpu->stat.insn_emulation;
  1876. if (r) {
  1877. ++vcpu->stat.insn_emulation_fail;
  1878. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1879. return EMULATE_DONE;
  1880. return EMULATE_FAIL;
  1881. }
  1882. }
  1883. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1884. if (vcpu->arch.pio.string)
  1885. return EMULATE_DO_MMIO;
  1886. if ((r || vcpu->mmio_is_write) && run) {
  1887. run->exit_reason = KVM_EXIT_MMIO;
  1888. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1889. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1890. run->mmio.len = vcpu->mmio_size;
  1891. run->mmio.is_write = vcpu->mmio_is_write;
  1892. }
  1893. if (r) {
  1894. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1895. return EMULATE_DONE;
  1896. if (!vcpu->mmio_needed) {
  1897. kvm_report_emulation_failure(vcpu, "mmio");
  1898. return EMULATE_FAIL;
  1899. }
  1900. return EMULATE_DO_MMIO;
  1901. }
  1902. kvm_x86_ops->decache_regs(vcpu);
  1903. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  1904. if (vcpu->mmio_is_write) {
  1905. vcpu->mmio_needed = 0;
  1906. return EMULATE_DO_MMIO;
  1907. }
  1908. return EMULATE_DONE;
  1909. }
  1910. EXPORT_SYMBOL_GPL(emulate_instruction);
  1911. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1912. {
  1913. int i;
  1914. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  1915. if (vcpu->arch.pio.guest_pages[i]) {
  1916. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  1917. vcpu->arch.pio.guest_pages[i] = NULL;
  1918. }
  1919. }
  1920. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1921. {
  1922. void *p = vcpu->arch.pio_data;
  1923. void *q;
  1924. unsigned bytes;
  1925. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  1926. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1927. PAGE_KERNEL);
  1928. if (!q) {
  1929. free_pio_guest_pages(vcpu);
  1930. return -ENOMEM;
  1931. }
  1932. q += vcpu->arch.pio.guest_page_offset;
  1933. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  1934. if (vcpu->arch.pio.in)
  1935. memcpy(q, p, bytes);
  1936. else
  1937. memcpy(p, q, bytes);
  1938. q -= vcpu->arch.pio.guest_page_offset;
  1939. vunmap(q);
  1940. free_pio_guest_pages(vcpu);
  1941. return 0;
  1942. }
  1943. int complete_pio(struct kvm_vcpu *vcpu)
  1944. {
  1945. struct kvm_pio_request *io = &vcpu->arch.pio;
  1946. long delta;
  1947. int r;
  1948. kvm_x86_ops->cache_regs(vcpu);
  1949. if (!io->string) {
  1950. if (io->in)
  1951. memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
  1952. io->size);
  1953. } else {
  1954. if (io->in) {
  1955. r = pio_copy_data(vcpu);
  1956. if (r) {
  1957. kvm_x86_ops->cache_regs(vcpu);
  1958. return r;
  1959. }
  1960. }
  1961. delta = 1;
  1962. if (io->rep) {
  1963. delta *= io->cur_count;
  1964. /*
  1965. * The size of the register should really depend on
  1966. * current address size.
  1967. */
  1968. vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
  1969. }
  1970. if (io->down)
  1971. delta = -delta;
  1972. delta *= io->size;
  1973. if (io->in)
  1974. vcpu->arch.regs[VCPU_REGS_RDI] += delta;
  1975. else
  1976. vcpu->arch.regs[VCPU_REGS_RSI] += delta;
  1977. }
  1978. kvm_x86_ops->decache_regs(vcpu);
  1979. io->count -= io->cur_count;
  1980. io->cur_count = 0;
  1981. return 0;
  1982. }
  1983. static void kernel_pio(struct kvm_io_device *pio_dev,
  1984. struct kvm_vcpu *vcpu,
  1985. void *pd)
  1986. {
  1987. /* TODO: String I/O for in kernel device */
  1988. mutex_lock(&vcpu->kvm->lock);
  1989. if (vcpu->arch.pio.in)
  1990. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  1991. vcpu->arch.pio.size,
  1992. pd);
  1993. else
  1994. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  1995. vcpu->arch.pio.size,
  1996. pd);
  1997. mutex_unlock(&vcpu->kvm->lock);
  1998. }
  1999. static void pio_string_write(struct kvm_io_device *pio_dev,
  2000. struct kvm_vcpu *vcpu)
  2001. {
  2002. struct kvm_pio_request *io = &vcpu->arch.pio;
  2003. void *pd = vcpu->arch.pio_data;
  2004. int i;
  2005. mutex_lock(&vcpu->kvm->lock);
  2006. for (i = 0; i < io->cur_count; i++) {
  2007. kvm_iodevice_write(pio_dev, io->port,
  2008. io->size,
  2009. pd);
  2010. pd += io->size;
  2011. }
  2012. mutex_unlock(&vcpu->kvm->lock);
  2013. }
  2014. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  2015. gpa_t addr, int len,
  2016. int is_write)
  2017. {
  2018. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
  2019. }
  2020. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2021. int size, unsigned port)
  2022. {
  2023. struct kvm_io_device *pio_dev;
  2024. vcpu->run->exit_reason = KVM_EXIT_IO;
  2025. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2026. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2027. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2028. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2029. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2030. vcpu->arch.pio.in = in;
  2031. vcpu->arch.pio.string = 0;
  2032. vcpu->arch.pio.down = 0;
  2033. vcpu->arch.pio.guest_page_offset = 0;
  2034. vcpu->arch.pio.rep = 0;
  2035. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2036. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2037. handler);
  2038. else
  2039. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2040. handler);
  2041. kvm_x86_ops->cache_regs(vcpu);
  2042. memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
  2043. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2044. pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
  2045. if (pio_dev) {
  2046. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2047. complete_pio(vcpu);
  2048. return 1;
  2049. }
  2050. return 0;
  2051. }
  2052. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2053. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2054. int size, unsigned long count, int down,
  2055. gva_t address, int rep, unsigned port)
  2056. {
  2057. unsigned now, in_page;
  2058. int i, ret = 0;
  2059. int nr_pages = 1;
  2060. struct page *page;
  2061. struct kvm_io_device *pio_dev;
  2062. vcpu->run->exit_reason = KVM_EXIT_IO;
  2063. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2064. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2065. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2066. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2067. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2068. vcpu->arch.pio.in = in;
  2069. vcpu->arch.pio.string = 1;
  2070. vcpu->arch.pio.down = down;
  2071. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  2072. vcpu->arch.pio.rep = rep;
  2073. if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
  2074. KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
  2075. handler);
  2076. else
  2077. KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
  2078. handler);
  2079. if (!count) {
  2080. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2081. return 1;
  2082. }
  2083. if (!down)
  2084. in_page = PAGE_SIZE - offset_in_page(address);
  2085. else
  2086. in_page = offset_in_page(address) + size;
  2087. now = min(count, (unsigned long)in_page / size);
  2088. if (!now) {
  2089. /*
  2090. * String I/O straddles page boundary. Pin two guest pages
  2091. * so that we satisfy atomicity constraints. Do just one
  2092. * transaction to avoid complexity.
  2093. */
  2094. nr_pages = 2;
  2095. now = 1;
  2096. }
  2097. if (down) {
  2098. /*
  2099. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2100. */
  2101. pr_unimpl(vcpu, "guest string pio down\n");
  2102. kvm_inject_gp(vcpu, 0);
  2103. return 1;
  2104. }
  2105. vcpu->run->io.count = now;
  2106. vcpu->arch.pio.cur_count = now;
  2107. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2108. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2109. for (i = 0; i < nr_pages; ++i) {
  2110. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2111. vcpu->arch.pio.guest_pages[i] = page;
  2112. if (!page) {
  2113. kvm_inject_gp(vcpu, 0);
  2114. free_pio_guest_pages(vcpu);
  2115. return 1;
  2116. }
  2117. }
  2118. pio_dev = vcpu_find_pio_dev(vcpu, port,
  2119. vcpu->arch.pio.cur_count,
  2120. !vcpu->arch.pio.in);
  2121. if (!vcpu->arch.pio.in) {
  2122. /* string PIO write */
  2123. ret = pio_copy_data(vcpu);
  2124. if (ret >= 0 && pio_dev) {
  2125. pio_string_write(pio_dev, vcpu);
  2126. complete_pio(vcpu);
  2127. if (vcpu->arch.pio.count == 0)
  2128. ret = 1;
  2129. }
  2130. } else if (pio_dev)
  2131. pr_unimpl(vcpu, "no string pio read support yet, "
  2132. "port %x size %d count %ld\n",
  2133. port, size, count);
  2134. return ret;
  2135. }
  2136. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2137. int kvm_arch_init(void *opaque)
  2138. {
  2139. int r;
  2140. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2141. if (kvm_x86_ops) {
  2142. printk(KERN_ERR "kvm: already loaded the other module\n");
  2143. r = -EEXIST;
  2144. goto out;
  2145. }
  2146. if (!ops->cpu_has_kvm_support()) {
  2147. printk(KERN_ERR "kvm: no hardware support\n");
  2148. r = -EOPNOTSUPP;
  2149. goto out;
  2150. }
  2151. if (ops->disabled_by_bios()) {
  2152. printk(KERN_ERR "kvm: disabled by bios\n");
  2153. r = -EOPNOTSUPP;
  2154. goto out;
  2155. }
  2156. r = kvm_mmu_module_init();
  2157. if (r)
  2158. goto out;
  2159. kvm_init_msr_list();
  2160. kvm_x86_ops = ops;
  2161. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2162. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2163. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2164. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2165. return 0;
  2166. out:
  2167. return r;
  2168. }
  2169. void kvm_arch_exit(void)
  2170. {
  2171. kvm_x86_ops = NULL;
  2172. kvm_mmu_module_exit();
  2173. }
  2174. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2175. {
  2176. ++vcpu->stat.halt_exits;
  2177. KVMTRACE_0D(HLT, vcpu, handler);
  2178. if (irqchip_in_kernel(vcpu->kvm)) {
  2179. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2180. up_read(&vcpu->kvm->slots_lock);
  2181. kvm_vcpu_block(vcpu);
  2182. down_read(&vcpu->kvm->slots_lock);
  2183. if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
  2184. return -EINTR;
  2185. return 1;
  2186. } else {
  2187. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2188. return 0;
  2189. }
  2190. }
  2191. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2192. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2193. unsigned long a1)
  2194. {
  2195. if (is_long_mode(vcpu))
  2196. return a0;
  2197. else
  2198. return a0 | ((gpa_t)a1 << 32);
  2199. }
  2200. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2201. {
  2202. unsigned long nr, a0, a1, a2, a3, ret;
  2203. int r = 1;
  2204. kvm_x86_ops->cache_regs(vcpu);
  2205. nr = vcpu->arch.regs[VCPU_REGS_RAX];
  2206. a0 = vcpu->arch.regs[VCPU_REGS_RBX];
  2207. a1 = vcpu->arch.regs[VCPU_REGS_RCX];
  2208. a2 = vcpu->arch.regs[VCPU_REGS_RDX];
  2209. a3 = vcpu->arch.regs[VCPU_REGS_RSI];
  2210. KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
  2211. if (!is_long_mode(vcpu)) {
  2212. nr &= 0xFFFFFFFF;
  2213. a0 &= 0xFFFFFFFF;
  2214. a1 &= 0xFFFFFFFF;
  2215. a2 &= 0xFFFFFFFF;
  2216. a3 &= 0xFFFFFFFF;
  2217. }
  2218. switch (nr) {
  2219. case KVM_HC_VAPIC_POLL_IRQ:
  2220. ret = 0;
  2221. break;
  2222. case KVM_HC_MMU_OP:
  2223. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2224. break;
  2225. default:
  2226. ret = -KVM_ENOSYS;
  2227. break;
  2228. }
  2229. vcpu->arch.regs[VCPU_REGS_RAX] = ret;
  2230. kvm_x86_ops->decache_regs(vcpu);
  2231. ++vcpu->stat.hypercalls;
  2232. return r;
  2233. }
  2234. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2235. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2236. {
  2237. char instruction[3];
  2238. int ret = 0;
  2239. /*
  2240. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2241. * to ensure that the updated hypercall appears atomically across all
  2242. * VCPUs.
  2243. */
  2244. kvm_mmu_zap_all(vcpu->kvm);
  2245. kvm_x86_ops->cache_regs(vcpu);
  2246. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2247. if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
  2248. != X86EMUL_CONTINUE)
  2249. ret = -EFAULT;
  2250. return ret;
  2251. }
  2252. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2253. {
  2254. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2255. }
  2256. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2257. {
  2258. struct descriptor_table dt = { limit, base };
  2259. kvm_x86_ops->set_gdt(vcpu, &dt);
  2260. }
  2261. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2262. {
  2263. struct descriptor_table dt = { limit, base };
  2264. kvm_x86_ops->set_idt(vcpu, &dt);
  2265. }
  2266. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2267. unsigned long *rflags)
  2268. {
  2269. kvm_lmsw(vcpu, msw);
  2270. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2271. }
  2272. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2273. {
  2274. unsigned long value;
  2275. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2276. switch (cr) {
  2277. case 0:
  2278. value = vcpu->arch.cr0;
  2279. break;
  2280. case 2:
  2281. value = vcpu->arch.cr2;
  2282. break;
  2283. case 3:
  2284. value = vcpu->arch.cr3;
  2285. break;
  2286. case 4:
  2287. value = vcpu->arch.cr4;
  2288. break;
  2289. case 8:
  2290. value = kvm_get_cr8(vcpu);
  2291. break;
  2292. default:
  2293. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2294. return 0;
  2295. }
  2296. KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
  2297. (u32)((u64)value >> 32), handler);
  2298. return value;
  2299. }
  2300. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2301. unsigned long *rflags)
  2302. {
  2303. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
  2304. (u32)((u64)val >> 32), handler);
  2305. switch (cr) {
  2306. case 0:
  2307. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2308. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2309. break;
  2310. case 2:
  2311. vcpu->arch.cr2 = val;
  2312. break;
  2313. case 3:
  2314. kvm_set_cr3(vcpu, val);
  2315. break;
  2316. case 4:
  2317. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2318. break;
  2319. case 8:
  2320. kvm_set_cr8(vcpu, val & 0xfUL);
  2321. break;
  2322. default:
  2323. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2324. }
  2325. }
  2326. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2327. {
  2328. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2329. int j, nent = vcpu->arch.cpuid_nent;
  2330. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2331. /* when no next entry is found, the current entry[i] is reselected */
  2332. for (j = i + 1; j == i; j = (j + 1) % nent) {
  2333. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2334. if (ej->function == e->function) {
  2335. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2336. return j;
  2337. }
  2338. }
  2339. return 0; /* silence gcc, even though control never reaches here */
  2340. }
  2341. /* find an entry with matching function, matching index (if needed), and that
  2342. * should be read next (if it's stateful) */
  2343. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2344. u32 function, u32 index)
  2345. {
  2346. if (e->function != function)
  2347. return 0;
  2348. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2349. return 0;
  2350. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2351. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2352. return 0;
  2353. return 1;
  2354. }
  2355. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2356. {
  2357. int i;
  2358. u32 function, index;
  2359. struct kvm_cpuid_entry2 *e, *best;
  2360. kvm_x86_ops->cache_regs(vcpu);
  2361. function = vcpu->arch.regs[VCPU_REGS_RAX];
  2362. index = vcpu->arch.regs[VCPU_REGS_RCX];
  2363. vcpu->arch.regs[VCPU_REGS_RAX] = 0;
  2364. vcpu->arch.regs[VCPU_REGS_RBX] = 0;
  2365. vcpu->arch.regs[VCPU_REGS_RCX] = 0;
  2366. vcpu->arch.regs[VCPU_REGS_RDX] = 0;
  2367. best = NULL;
  2368. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2369. e = &vcpu->arch.cpuid_entries[i];
  2370. if (is_matching_cpuid_entry(e, function, index)) {
  2371. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2372. move_to_next_stateful_cpuid_entry(vcpu, i);
  2373. best = e;
  2374. break;
  2375. }
  2376. /*
  2377. * Both basic or both extended?
  2378. */
  2379. if (((e->function ^ function) & 0x80000000) == 0)
  2380. if (!best || e->function > best->function)
  2381. best = e;
  2382. }
  2383. if (best) {
  2384. vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
  2385. vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
  2386. vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
  2387. vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
  2388. }
  2389. kvm_x86_ops->decache_regs(vcpu);
  2390. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2391. KVMTRACE_5D(CPUID, vcpu, function,
  2392. (u32)vcpu->arch.regs[VCPU_REGS_RAX],
  2393. (u32)vcpu->arch.regs[VCPU_REGS_RBX],
  2394. (u32)vcpu->arch.regs[VCPU_REGS_RCX],
  2395. (u32)vcpu->arch.regs[VCPU_REGS_RDX], handler);
  2396. }
  2397. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2398. /*
  2399. * Check if userspace requested an interrupt window, and that the
  2400. * interrupt window is open.
  2401. *
  2402. * No need to exit to userspace if we already have an interrupt queued.
  2403. */
  2404. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2405. struct kvm_run *kvm_run)
  2406. {
  2407. return (!vcpu->arch.irq_summary &&
  2408. kvm_run->request_interrupt_window &&
  2409. vcpu->arch.interrupt_window_open &&
  2410. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2411. }
  2412. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2413. struct kvm_run *kvm_run)
  2414. {
  2415. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2416. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2417. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2418. if (irqchip_in_kernel(vcpu->kvm))
  2419. kvm_run->ready_for_interrupt_injection = 1;
  2420. else
  2421. kvm_run->ready_for_interrupt_injection =
  2422. (vcpu->arch.interrupt_window_open &&
  2423. vcpu->arch.irq_summary == 0);
  2424. }
  2425. static void vapic_enter(struct kvm_vcpu *vcpu)
  2426. {
  2427. struct kvm_lapic *apic = vcpu->arch.apic;
  2428. struct page *page;
  2429. if (!apic || !apic->vapic_addr)
  2430. return;
  2431. down_read(&current->mm->mmap_sem);
  2432. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2433. up_read(&current->mm->mmap_sem);
  2434. vcpu->arch.apic->vapic_page = page;
  2435. }
  2436. static void vapic_exit(struct kvm_vcpu *vcpu)
  2437. {
  2438. struct kvm_lapic *apic = vcpu->arch.apic;
  2439. if (!apic || !apic->vapic_addr)
  2440. return;
  2441. down_read(&vcpu->kvm->slots_lock);
  2442. kvm_release_page_dirty(apic->vapic_page);
  2443. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2444. up_read(&vcpu->kvm->slots_lock);
  2445. }
  2446. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2447. {
  2448. int r;
  2449. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  2450. pr_debug("vcpu %d received sipi with vector # %x\n",
  2451. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2452. kvm_lapic_reset(vcpu);
  2453. r = kvm_x86_ops->vcpu_reset(vcpu);
  2454. if (r)
  2455. return r;
  2456. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  2457. }
  2458. down_read(&vcpu->kvm->slots_lock);
  2459. vapic_enter(vcpu);
  2460. preempted:
  2461. if (vcpu->guest_debug.enabled)
  2462. kvm_x86_ops->guest_debug_pre(vcpu);
  2463. again:
  2464. if (vcpu->requests)
  2465. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2466. kvm_mmu_unload(vcpu);
  2467. r = kvm_mmu_reload(vcpu);
  2468. if (unlikely(r))
  2469. goto out;
  2470. if (vcpu->requests) {
  2471. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2472. __kvm_migrate_timers(vcpu);
  2473. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2474. kvm_x86_ops->tlb_flush(vcpu);
  2475. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2476. &vcpu->requests)) {
  2477. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2478. r = 0;
  2479. goto out;
  2480. }
  2481. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2482. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2483. r = 0;
  2484. goto out;
  2485. }
  2486. }
  2487. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  2488. kvm_inject_pending_timer_irqs(vcpu);
  2489. preempt_disable();
  2490. kvm_x86_ops->prepare_guest_switch(vcpu);
  2491. kvm_load_guest_fpu(vcpu);
  2492. local_irq_disable();
  2493. if (vcpu->requests || need_resched()) {
  2494. local_irq_enable();
  2495. preempt_enable();
  2496. r = 1;
  2497. goto out;
  2498. }
  2499. if (signal_pending(current)) {
  2500. local_irq_enable();
  2501. preempt_enable();
  2502. r = -EINTR;
  2503. kvm_run->exit_reason = KVM_EXIT_INTR;
  2504. ++vcpu->stat.signal_exits;
  2505. goto out;
  2506. }
  2507. vcpu->guest_mode = 1;
  2508. /*
  2509. * Make sure that guest_mode assignment won't happen after
  2510. * testing the pending IRQ vector bitmap.
  2511. */
  2512. smp_wmb();
  2513. if (vcpu->arch.exception.pending)
  2514. __queue_exception(vcpu);
  2515. else if (irqchip_in_kernel(vcpu->kvm))
  2516. kvm_x86_ops->inject_pending_irq(vcpu);
  2517. else
  2518. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2519. kvm_lapic_sync_to_vapic(vcpu);
  2520. up_read(&vcpu->kvm->slots_lock);
  2521. kvm_guest_enter();
  2522. KVMTRACE_0D(VMENTRY, vcpu, entryexit);
  2523. kvm_x86_ops->run(vcpu, kvm_run);
  2524. vcpu->guest_mode = 0;
  2525. local_irq_enable();
  2526. ++vcpu->stat.exits;
  2527. /*
  2528. * We must have an instruction between local_irq_enable() and
  2529. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2530. * the interrupt shadow. The stat.exits increment will do nicely.
  2531. * But we need to prevent reordering, hence this barrier():
  2532. */
  2533. barrier();
  2534. kvm_guest_exit();
  2535. preempt_enable();
  2536. down_read(&vcpu->kvm->slots_lock);
  2537. /*
  2538. * Profile KVM exit RIPs:
  2539. */
  2540. if (unlikely(prof_on == KVM_PROFILING)) {
  2541. kvm_x86_ops->cache_regs(vcpu);
  2542. profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
  2543. }
  2544. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2545. vcpu->arch.exception.pending = false;
  2546. kvm_lapic_sync_from_vapic(vcpu);
  2547. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2548. if (r > 0) {
  2549. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2550. r = -EINTR;
  2551. kvm_run->exit_reason = KVM_EXIT_INTR;
  2552. ++vcpu->stat.request_irq_exits;
  2553. goto out;
  2554. }
  2555. if (!need_resched())
  2556. goto again;
  2557. }
  2558. out:
  2559. up_read(&vcpu->kvm->slots_lock);
  2560. if (r > 0) {
  2561. kvm_resched(vcpu);
  2562. down_read(&vcpu->kvm->slots_lock);
  2563. goto preempted;
  2564. }
  2565. post_kvm_run_save(vcpu, kvm_run);
  2566. vapic_exit(vcpu);
  2567. return r;
  2568. }
  2569. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2570. {
  2571. int r;
  2572. sigset_t sigsaved;
  2573. vcpu_load(vcpu);
  2574. if (vcpu->sigset_active)
  2575. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2576. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  2577. kvm_vcpu_block(vcpu);
  2578. r = -EAGAIN;
  2579. goto out;
  2580. }
  2581. /* re-sync apic's tpr */
  2582. if (!irqchip_in_kernel(vcpu->kvm))
  2583. kvm_set_cr8(vcpu, kvm_run->cr8);
  2584. if (vcpu->arch.pio.cur_count) {
  2585. r = complete_pio(vcpu);
  2586. if (r)
  2587. goto out;
  2588. }
  2589. #if CONFIG_HAS_IOMEM
  2590. if (vcpu->mmio_needed) {
  2591. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2592. vcpu->mmio_read_completed = 1;
  2593. vcpu->mmio_needed = 0;
  2594. down_read(&vcpu->kvm->slots_lock);
  2595. r = emulate_instruction(vcpu, kvm_run,
  2596. vcpu->arch.mmio_fault_cr2, 0,
  2597. EMULTYPE_NO_DECODE);
  2598. up_read(&vcpu->kvm->slots_lock);
  2599. if (r == EMULATE_DO_MMIO) {
  2600. /*
  2601. * Read-modify-write. Back to userspace.
  2602. */
  2603. r = 0;
  2604. goto out;
  2605. }
  2606. }
  2607. #endif
  2608. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  2609. kvm_x86_ops->cache_regs(vcpu);
  2610. vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  2611. kvm_x86_ops->decache_regs(vcpu);
  2612. }
  2613. r = __vcpu_run(vcpu, kvm_run);
  2614. out:
  2615. if (vcpu->sigset_active)
  2616. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2617. vcpu_put(vcpu);
  2618. return r;
  2619. }
  2620. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2621. {
  2622. vcpu_load(vcpu);
  2623. kvm_x86_ops->cache_regs(vcpu);
  2624. regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2625. regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
  2626. regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
  2627. regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
  2628. regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
  2629. regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
  2630. regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2631. regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
  2632. #ifdef CONFIG_X86_64
  2633. regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
  2634. regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
  2635. regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
  2636. regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
  2637. regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
  2638. regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
  2639. regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
  2640. regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
  2641. #endif
  2642. regs->rip = vcpu->arch.rip;
  2643. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2644. /*
  2645. * Don't leak debug flags in case they were set for guest debugging
  2646. */
  2647. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2648. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2649. vcpu_put(vcpu);
  2650. return 0;
  2651. }
  2652. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2653. {
  2654. vcpu_load(vcpu);
  2655. vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
  2656. vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
  2657. vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
  2658. vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
  2659. vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
  2660. vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
  2661. vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
  2662. vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
  2663. #ifdef CONFIG_X86_64
  2664. vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
  2665. vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
  2666. vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
  2667. vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
  2668. vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
  2669. vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
  2670. vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
  2671. vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
  2672. #endif
  2673. vcpu->arch.rip = regs->rip;
  2674. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2675. kvm_x86_ops->decache_regs(vcpu);
  2676. vcpu->arch.exception.pending = false;
  2677. vcpu_put(vcpu);
  2678. return 0;
  2679. }
  2680. void kvm_get_segment(struct kvm_vcpu *vcpu,
  2681. struct kvm_segment *var, int seg)
  2682. {
  2683. kvm_x86_ops->get_segment(vcpu, var, seg);
  2684. }
  2685. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2686. {
  2687. struct kvm_segment cs;
  2688. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2689. *db = cs.db;
  2690. *l = cs.l;
  2691. }
  2692. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2693. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2694. struct kvm_sregs *sregs)
  2695. {
  2696. struct descriptor_table dt;
  2697. int pending_vec;
  2698. vcpu_load(vcpu);
  2699. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2700. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2701. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2702. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2703. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2704. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2705. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2706. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2707. kvm_x86_ops->get_idt(vcpu, &dt);
  2708. sregs->idt.limit = dt.limit;
  2709. sregs->idt.base = dt.base;
  2710. kvm_x86_ops->get_gdt(vcpu, &dt);
  2711. sregs->gdt.limit = dt.limit;
  2712. sregs->gdt.base = dt.base;
  2713. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2714. sregs->cr0 = vcpu->arch.cr0;
  2715. sregs->cr2 = vcpu->arch.cr2;
  2716. sregs->cr3 = vcpu->arch.cr3;
  2717. sregs->cr4 = vcpu->arch.cr4;
  2718. sregs->cr8 = kvm_get_cr8(vcpu);
  2719. sregs->efer = vcpu->arch.shadow_efer;
  2720. sregs->apic_base = kvm_get_apic_base(vcpu);
  2721. if (irqchip_in_kernel(vcpu->kvm)) {
  2722. memset(sregs->interrupt_bitmap, 0,
  2723. sizeof sregs->interrupt_bitmap);
  2724. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2725. if (pending_vec >= 0)
  2726. set_bit(pending_vec,
  2727. (unsigned long *)sregs->interrupt_bitmap);
  2728. } else
  2729. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2730. sizeof sregs->interrupt_bitmap);
  2731. vcpu_put(vcpu);
  2732. return 0;
  2733. }
  2734. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  2735. struct kvm_mp_state *mp_state)
  2736. {
  2737. vcpu_load(vcpu);
  2738. mp_state->mp_state = vcpu->arch.mp_state;
  2739. vcpu_put(vcpu);
  2740. return 0;
  2741. }
  2742. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  2743. struct kvm_mp_state *mp_state)
  2744. {
  2745. vcpu_load(vcpu);
  2746. vcpu->arch.mp_state = mp_state->mp_state;
  2747. vcpu_put(vcpu);
  2748. return 0;
  2749. }
  2750. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  2751. struct kvm_segment *var, int seg)
  2752. {
  2753. kvm_x86_ops->set_segment(vcpu, var, seg);
  2754. }
  2755. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  2756. struct kvm_segment *kvm_desct)
  2757. {
  2758. kvm_desct->base = seg_desc->base0;
  2759. kvm_desct->base |= seg_desc->base1 << 16;
  2760. kvm_desct->base |= seg_desc->base2 << 24;
  2761. kvm_desct->limit = seg_desc->limit0;
  2762. kvm_desct->limit |= seg_desc->limit << 16;
  2763. if (seg_desc->g) {
  2764. kvm_desct->limit <<= 12;
  2765. kvm_desct->limit |= 0xfff;
  2766. }
  2767. kvm_desct->selector = selector;
  2768. kvm_desct->type = seg_desc->type;
  2769. kvm_desct->present = seg_desc->p;
  2770. kvm_desct->dpl = seg_desc->dpl;
  2771. kvm_desct->db = seg_desc->d;
  2772. kvm_desct->s = seg_desc->s;
  2773. kvm_desct->l = seg_desc->l;
  2774. kvm_desct->g = seg_desc->g;
  2775. kvm_desct->avl = seg_desc->avl;
  2776. if (!selector)
  2777. kvm_desct->unusable = 1;
  2778. else
  2779. kvm_desct->unusable = 0;
  2780. kvm_desct->padding = 0;
  2781. }
  2782. static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
  2783. u16 selector,
  2784. struct descriptor_table *dtable)
  2785. {
  2786. if (selector & 1 << 2) {
  2787. struct kvm_segment kvm_seg;
  2788. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  2789. if (kvm_seg.unusable)
  2790. dtable->limit = 0;
  2791. else
  2792. dtable->limit = kvm_seg.limit;
  2793. dtable->base = kvm_seg.base;
  2794. }
  2795. else
  2796. kvm_x86_ops->get_gdt(vcpu, dtable);
  2797. }
  2798. /* allowed just for 8 bytes segments */
  2799. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2800. struct desc_struct *seg_desc)
  2801. {
  2802. gpa_t gpa;
  2803. struct descriptor_table dtable;
  2804. u16 index = selector >> 3;
  2805. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2806. if (dtable.limit < index * 8 + 7) {
  2807. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  2808. return 1;
  2809. }
  2810. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  2811. gpa += index * 8;
  2812. return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
  2813. }
  2814. /* allowed just for 8 bytes segments */
  2815. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2816. struct desc_struct *seg_desc)
  2817. {
  2818. gpa_t gpa;
  2819. struct descriptor_table dtable;
  2820. u16 index = selector >> 3;
  2821. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2822. if (dtable.limit < index * 8 + 7)
  2823. return 1;
  2824. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
  2825. gpa += index * 8;
  2826. return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
  2827. }
  2828. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  2829. struct desc_struct *seg_desc)
  2830. {
  2831. u32 base_addr;
  2832. base_addr = seg_desc->base0;
  2833. base_addr |= (seg_desc->base1 << 16);
  2834. base_addr |= (seg_desc->base2 << 24);
  2835. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  2836. }
  2837. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  2838. {
  2839. struct kvm_segment kvm_seg;
  2840. kvm_get_segment(vcpu, &kvm_seg, seg);
  2841. return kvm_seg.selector;
  2842. }
  2843. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  2844. u16 selector,
  2845. struct kvm_segment *kvm_seg)
  2846. {
  2847. struct desc_struct seg_desc;
  2848. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  2849. return 1;
  2850. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  2851. return 0;
  2852. }
  2853. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2854. int type_bits, int seg)
  2855. {
  2856. struct kvm_segment kvm_seg;
  2857. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  2858. return 1;
  2859. kvm_seg.type |= type_bits;
  2860. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  2861. seg != VCPU_SREG_LDTR)
  2862. if (!kvm_seg.s)
  2863. kvm_seg.unusable = 1;
  2864. kvm_set_segment(vcpu, &kvm_seg, seg);
  2865. return 0;
  2866. }
  2867. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  2868. struct tss_segment_32 *tss)
  2869. {
  2870. tss->cr3 = vcpu->arch.cr3;
  2871. tss->eip = vcpu->arch.rip;
  2872. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  2873. tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
  2874. tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2875. tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
  2876. tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
  2877. tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
  2878. tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
  2879. tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
  2880. tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
  2881. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  2882. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  2883. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  2884. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  2885. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  2886. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  2887. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  2888. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  2889. }
  2890. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  2891. struct tss_segment_32 *tss)
  2892. {
  2893. kvm_set_cr3(vcpu, tss->cr3);
  2894. vcpu->arch.rip = tss->eip;
  2895. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  2896. vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
  2897. vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
  2898. vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
  2899. vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
  2900. vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
  2901. vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
  2902. vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
  2903. vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
  2904. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  2905. return 1;
  2906. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  2907. return 1;
  2908. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  2909. return 1;
  2910. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  2911. return 1;
  2912. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  2913. return 1;
  2914. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  2915. return 1;
  2916. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  2917. return 1;
  2918. return 0;
  2919. }
  2920. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  2921. struct tss_segment_16 *tss)
  2922. {
  2923. tss->ip = vcpu->arch.rip;
  2924. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  2925. tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
  2926. tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
  2927. tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
  2928. tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
  2929. tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
  2930. tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
  2931. tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
  2932. tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
  2933. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  2934. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  2935. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  2936. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  2937. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  2938. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  2939. }
  2940. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  2941. struct tss_segment_16 *tss)
  2942. {
  2943. vcpu->arch.rip = tss->ip;
  2944. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  2945. vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
  2946. vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
  2947. vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
  2948. vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
  2949. vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
  2950. vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
  2951. vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
  2952. vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
  2953. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  2954. return 1;
  2955. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  2956. return 1;
  2957. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  2958. return 1;
  2959. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  2960. return 1;
  2961. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  2962. return 1;
  2963. return 0;
  2964. }
  2965. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  2966. u32 old_tss_base,
  2967. struct desc_struct *nseg_desc)
  2968. {
  2969. struct tss_segment_16 tss_segment_16;
  2970. int ret = 0;
  2971. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  2972. sizeof tss_segment_16))
  2973. goto out;
  2974. save_state_to_tss16(vcpu, &tss_segment_16);
  2975. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  2976. sizeof tss_segment_16))
  2977. goto out;
  2978. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  2979. &tss_segment_16, sizeof tss_segment_16))
  2980. goto out;
  2981. if (load_state_from_tss16(vcpu, &tss_segment_16))
  2982. goto out;
  2983. ret = 1;
  2984. out:
  2985. return ret;
  2986. }
  2987. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  2988. u32 old_tss_base,
  2989. struct desc_struct *nseg_desc)
  2990. {
  2991. struct tss_segment_32 tss_segment_32;
  2992. int ret = 0;
  2993. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  2994. sizeof tss_segment_32))
  2995. goto out;
  2996. save_state_to_tss32(vcpu, &tss_segment_32);
  2997. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  2998. sizeof tss_segment_32))
  2999. goto out;
  3000. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3001. &tss_segment_32, sizeof tss_segment_32))
  3002. goto out;
  3003. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3004. goto out;
  3005. ret = 1;
  3006. out:
  3007. return ret;
  3008. }
  3009. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3010. {
  3011. struct kvm_segment tr_seg;
  3012. struct desc_struct cseg_desc;
  3013. struct desc_struct nseg_desc;
  3014. int ret = 0;
  3015. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3016. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3017. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3018. /* FIXME: Handle errors. Failure to read either TSS or their
  3019. * descriptors should generate a pagefault.
  3020. */
  3021. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3022. goto out;
  3023. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3024. goto out;
  3025. if (reason != TASK_SWITCH_IRET) {
  3026. int cpl;
  3027. cpl = kvm_x86_ops->get_cpl(vcpu);
  3028. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3029. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3030. return 1;
  3031. }
  3032. }
  3033. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  3034. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3035. return 1;
  3036. }
  3037. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3038. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3039. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3040. }
  3041. if (reason == TASK_SWITCH_IRET) {
  3042. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3043. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3044. }
  3045. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3046. kvm_x86_ops->cache_regs(vcpu);
  3047. if (nseg_desc.type & 8)
  3048. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
  3049. &nseg_desc);
  3050. else
  3051. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
  3052. &nseg_desc);
  3053. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3054. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3055. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3056. }
  3057. if (reason != TASK_SWITCH_IRET) {
  3058. nseg_desc.type |= (1 << 1);
  3059. save_guest_segment_descriptor(vcpu, tss_selector,
  3060. &nseg_desc);
  3061. }
  3062. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3063. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3064. tr_seg.type = 11;
  3065. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3066. out:
  3067. kvm_x86_ops->decache_regs(vcpu);
  3068. return ret;
  3069. }
  3070. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3071. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3072. struct kvm_sregs *sregs)
  3073. {
  3074. int mmu_reset_needed = 0;
  3075. int i, pending_vec, max_bits;
  3076. struct descriptor_table dt;
  3077. vcpu_load(vcpu);
  3078. dt.limit = sregs->idt.limit;
  3079. dt.base = sregs->idt.base;
  3080. kvm_x86_ops->set_idt(vcpu, &dt);
  3081. dt.limit = sregs->gdt.limit;
  3082. dt.base = sregs->gdt.base;
  3083. kvm_x86_ops->set_gdt(vcpu, &dt);
  3084. vcpu->arch.cr2 = sregs->cr2;
  3085. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3086. vcpu->arch.cr3 = sregs->cr3;
  3087. kvm_set_cr8(vcpu, sregs->cr8);
  3088. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3089. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3090. kvm_set_apic_base(vcpu, sregs->apic_base);
  3091. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3092. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3093. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3094. vcpu->arch.cr0 = sregs->cr0;
  3095. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3096. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3097. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3098. load_pdptrs(vcpu, vcpu->arch.cr3);
  3099. if (mmu_reset_needed)
  3100. kvm_mmu_reset_context(vcpu);
  3101. if (!irqchip_in_kernel(vcpu->kvm)) {
  3102. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3103. sizeof vcpu->arch.irq_pending);
  3104. vcpu->arch.irq_summary = 0;
  3105. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3106. if (vcpu->arch.irq_pending[i])
  3107. __set_bit(i, &vcpu->arch.irq_summary);
  3108. } else {
  3109. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3110. pending_vec = find_first_bit(
  3111. (const unsigned long *)sregs->interrupt_bitmap,
  3112. max_bits);
  3113. /* Only pending external irq is handled here */
  3114. if (pending_vec < max_bits) {
  3115. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3116. pr_debug("Set back pending irq %d\n",
  3117. pending_vec);
  3118. }
  3119. }
  3120. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3121. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3122. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3123. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3124. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3125. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3126. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3127. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3128. vcpu_put(vcpu);
  3129. return 0;
  3130. }
  3131. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  3132. struct kvm_debug_guest *dbg)
  3133. {
  3134. int r;
  3135. vcpu_load(vcpu);
  3136. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3137. vcpu_put(vcpu);
  3138. return r;
  3139. }
  3140. /*
  3141. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3142. * we have asm/x86/processor.h
  3143. */
  3144. struct fxsave {
  3145. u16 cwd;
  3146. u16 swd;
  3147. u16 twd;
  3148. u16 fop;
  3149. u64 rip;
  3150. u64 rdp;
  3151. u32 mxcsr;
  3152. u32 mxcsr_mask;
  3153. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3154. #ifdef CONFIG_X86_64
  3155. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3156. #else
  3157. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3158. #endif
  3159. };
  3160. /*
  3161. * Translate a guest virtual address to a guest physical address.
  3162. */
  3163. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3164. struct kvm_translation *tr)
  3165. {
  3166. unsigned long vaddr = tr->linear_address;
  3167. gpa_t gpa;
  3168. vcpu_load(vcpu);
  3169. down_read(&vcpu->kvm->slots_lock);
  3170. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3171. up_read(&vcpu->kvm->slots_lock);
  3172. tr->physical_address = gpa;
  3173. tr->valid = gpa != UNMAPPED_GVA;
  3174. tr->writeable = 1;
  3175. tr->usermode = 0;
  3176. vcpu_put(vcpu);
  3177. return 0;
  3178. }
  3179. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3180. {
  3181. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3182. vcpu_load(vcpu);
  3183. memcpy(fpu->fpr, fxsave->st_space, 128);
  3184. fpu->fcw = fxsave->cwd;
  3185. fpu->fsw = fxsave->swd;
  3186. fpu->ftwx = fxsave->twd;
  3187. fpu->last_opcode = fxsave->fop;
  3188. fpu->last_ip = fxsave->rip;
  3189. fpu->last_dp = fxsave->rdp;
  3190. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3191. vcpu_put(vcpu);
  3192. return 0;
  3193. }
  3194. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3195. {
  3196. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3197. vcpu_load(vcpu);
  3198. memcpy(fxsave->st_space, fpu->fpr, 128);
  3199. fxsave->cwd = fpu->fcw;
  3200. fxsave->swd = fpu->fsw;
  3201. fxsave->twd = fpu->ftwx;
  3202. fxsave->fop = fpu->last_opcode;
  3203. fxsave->rip = fpu->last_ip;
  3204. fxsave->rdp = fpu->last_dp;
  3205. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3206. vcpu_put(vcpu);
  3207. return 0;
  3208. }
  3209. void fx_init(struct kvm_vcpu *vcpu)
  3210. {
  3211. unsigned after_mxcsr_mask;
  3212. /*
  3213. * Touch the fpu the first time in non atomic context as if
  3214. * this is the first fpu instruction the exception handler
  3215. * will fire before the instruction returns and it'll have to
  3216. * allocate ram with GFP_KERNEL.
  3217. */
  3218. if (!used_math())
  3219. kvm_fx_save(&vcpu->arch.host_fx_image);
  3220. /* Initialize guest FPU by resetting ours and saving into guest's */
  3221. preempt_disable();
  3222. kvm_fx_save(&vcpu->arch.host_fx_image);
  3223. kvm_fx_finit();
  3224. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3225. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3226. preempt_enable();
  3227. vcpu->arch.cr0 |= X86_CR0_ET;
  3228. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3229. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3230. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3231. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3232. }
  3233. EXPORT_SYMBOL_GPL(fx_init);
  3234. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3235. {
  3236. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3237. return;
  3238. vcpu->guest_fpu_loaded = 1;
  3239. kvm_fx_save(&vcpu->arch.host_fx_image);
  3240. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  3241. }
  3242. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3243. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3244. {
  3245. if (!vcpu->guest_fpu_loaded)
  3246. return;
  3247. vcpu->guest_fpu_loaded = 0;
  3248. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3249. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3250. ++vcpu->stat.fpu_reload;
  3251. }
  3252. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3253. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3254. {
  3255. kvm_x86_ops->vcpu_free(vcpu);
  3256. }
  3257. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3258. unsigned int id)
  3259. {
  3260. return kvm_x86_ops->vcpu_create(kvm, id);
  3261. }
  3262. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3263. {
  3264. int r;
  3265. /* We do fxsave: this must be aligned. */
  3266. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3267. vcpu_load(vcpu);
  3268. r = kvm_arch_vcpu_reset(vcpu);
  3269. if (r == 0)
  3270. r = kvm_mmu_setup(vcpu);
  3271. vcpu_put(vcpu);
  3272. if (r < 0)
  3273. goto free_vcpu;
  3274. return 0;
  3275. free_vcpu:
  3276. kvm_x86_ops->vcpu_free(vcpu);
  3277. return r;
  3278. }
  3279. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3280. {
  3281. vcpu_load(vcpu);
  3282. kvm_mmu_unload(vcpu);
  3283. vcpu_put(vcpu);
  3284. kvm_x86_ops->vcpu_free(vcpu);
  3285. }
  3286. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3287. {
  3288. return kvm_x86_ops->vcpu_reset(vcpu);
  3289. }
  3290. void kvm_arch_hardware_enable(void *garbage)
  3291. {
  3292. kvm_x86_ops->hardware_enable(garbage);
  3293. }
  3294. void kvm_arch_hardware_disable(void *garbage)
  3295. {
  3296. kvm_x86_ops->hardware_disable(garbage);
  3297. }
  3298. int kvm_arch_hardware_setup(void)
  3299. {
  3300. return kvm_x86_ops->hardware_setup();
  3301. }
  3302. void kvm_arch_hardware_unsetup(void)
  3303. {
  3304. kvm_x86_ops->hardware_unsetup();
  3305. }
  3306. void kvm_arch_check_processor_compat(void *rtn)
  3307. {
  3308. kvm_x86_ops->check_processor_compatibility(rtn);
  3309. }
  3310. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3311. {
  3312. struct page *page;
  3313. struct kvm *kvm;
  3314. int r;
  3315. BUG_ON(vcpu->kvm == NULL);
  3316. kvm = vcpu->kvm;
  3317. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3318. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3319. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3320. else
  3321. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  3322. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3323. if (!page) {
  3324. r = -ENOMEM;
  3325. goto fail;
  3326. }
  3327. vcpu->arch.pio_data = page_address(page);
  3328. r = kvm_mmu_create(vcpu);
  3329. if (r < 0)
  3330. goto fail_free_pio_data;
  3331. if (irqchip_in_kernel(kvm)) {
  3332. r = kvm_create_lapic(vcpu);
  3333. if (r < 0)
  3334. goto fail_mmu_destroy;
  3335. }
  3336. return 0;
  3337. fail_mmu_destroy:
  3338. kvm_mmu_destroy(vcpu);
  3339. fail_free_pio_data:
  3340. free_page((unsigned long)vcpu->arch.pio_data);
  3341. fail:
  3342. return r;
  3343. }
  3344. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3345. {
  3346. kvm_free_lapic(vcpu);
  3347. down_read(&vcpu->kvm->slots_lock);
  3348. kvm_mmu_destroy(vcpu);
  3349. up_read(&vcpu->kvm->slots_lock);
  3350. free_page((unsigned long)vcpu->arch.pio_data);
  3351. }
  3352. struct kvm *kvm_arch_create_vm(void)
  3353. {
  3354. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3355. if (!kvm)
  3356. return ERR_PTR(-ENOMEM);
  3357. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3358. return kvm;
  3359. }
  3360. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3361. {
  3362. vcpu_load(vcpu);
  3363. kvm_mmu_unload(vcpu);
  3364. vcpu_put(vcpu);
  3365. }
  3366. static void kvm_free_vcpus(struct kvm *kvm)
  3367. {
  3368. unsigned int i;
  3369. /*
  3370. * Unpin any mmu pages first.
  3371. */
  3372. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3373. if (kvm->vcpus[i])
  3374. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3375. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3376. if (kvm->vcpus[i]) {
  3377. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3378. kvm->vcpus[i] = NULL;
  3379. }
  3380. }
  3381. }
  3382. void kvm_arch_destroy_vm(struct kvm *kvm)
  3383. {
  3384. kvm_free_pit(kvm);
  3385. kfree(kvm->arch.vpic);
  3386. kfree(kvm->arch.vioapic);
  3387. kvm_free_vcpus(kvm);
  3388. kvm_free_physmem(kvm);
  3389. if (kvm->arch.apic_access_page)
  3390. put_page(kvm->arch.apic_access_page);
  3391. if (kvm->arch.ept_identity_pagetable)
  3392. put_page(kvm->arch.ept_identity_pagetable);
  3393. kfree(kvm);
  3394. }
  3395. int kvm_arch_set_memory_region(struct kvm *kvm,
  3396. struct kvm_userspace_memory_region *mem,
  3397. struct kvm_memory_slot old,
  3398. int user_alloc)
  3399. {
  3400. int npages = mem->memory_size >> PAGE_SHIFT;
  3401. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3402. /*To keep backward compatibility with older userspace,
  3403. *x86 needs to hanlde !user_alloc case.
  3404. */
  3405. if (!user_alloc) {
  3406. if (npages && !old.rmap) {
  3407. unsigned long userspace_addr;
  3408. down_write(&current->mm->mmap_sem);
  3409. userspace_addr = do_mmap(NULL, 0,
  3410. npages * PAGE_SIZE,
  3411. PROT_READ | PROT_WRITE,
  3412. MAP_SHARED | MAP_ANONYMOUS,
  3413. 0);
  3414. up_write(&current->mm->mmap_sem);
  3415. if (IS_ERR((void *)userspace_addr))
  3416. return PTR_ERR((void *)userspace_addr);
  3417. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  3418. spin_lock(&kvm->mmu_lock);
  3419. memslot->userspace_addr = userspace_addr;
  3420. spin_unlock(&kvm->mmu_lock);
  3421. } else {
  3422. if (!old.user_alloc && old.rmap) {
  3423. int ret;
  3424. down_write(&current->mm->mmap_sem);
  3425. ret = do_munmap(current->mm, old.userspace_addr,
  3426. old.npages * PAGE_SIZE);
  3427. up_write(&current->mm->mmap_sem);
  3428. if (ret < 0)
  3429. printk(KERN_WARNING
  3430. "kvm_vm_ioctl_set_memory_region: "
  3431. "failed to munmap memory\n");
  3432. }
  3433. }
  3434. }
  3435. if (!kvm->arch.n_requested_mmu_pages) {
  3436. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3437. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3438. }
  3439. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3440. kvm_flush_remote_tlbs(kvm);
  3441. return 0;
  3442. }
  3443. void kvm_arch_flush_shadow(struct kvm *kvm)
  3444. {
  3445. kvm_mmu_zap_all(kvm);
  3446. }
  3447. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3448. {
  3449. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  3450. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED;
  3451. }
  3452. static void vcpu_kick_intr(void *info)
  3453. {
  3454. #ifdef DEBUG
  3455. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3456. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3457. #endif
  3458. }
  3459. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3460. {
  3461. int ipi_pcpu = vcpu->cpu;
  3462. int cpu = get_cpu();
  3463. if (waitqueue_active(&vcpu->wq)) {
  3464. wake_up_interruptible(&vcpu->wq);
  3465. ++vcpu->stat.halt_wakeup;
  3466. }
  3467. /*
  3468. * We may be called synchronously with irqs disabled in guest mode,
  3469. * So need not to call smp_call_function_single() in that case.
  3470. */
  3471. if (vcpu->guest_mode && vcpu->cpu != cpu)
  3472. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
  3473. put_cpu();
  3474. }