svm.c 50 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * AMD SVM support
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Yaniv Kamay <yaniv@qumranet.com>
  10. * Avi Kivity <avi@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "kvm_svm.h"
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/vmalloc.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <asm/desc.h>
  26. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  27. MODULE_AUTHOR("Qumranet");
  28. MODULE_LICENSE("GPL");
  29. #define IOPM_ALLOC_ORDER 2
  30. #define MSRPM_ALLOC_ORDER 1
  31. #define DB_VECTOR 1
  32. #define UD_VECTOR 6
  33. #define GP_VECTOR 13
  34. #define DR7_GD_MASK (1 << 13)
  35. #define DR6_BD_MASK (1 << 13)
  36. #define SEG_TYPE_LDT 2
  37. #define SEG_TYPE_BUSY_TSS16 3
  38. #define SVM_FEATURE_NPT (1 << 0)
  39. #define SVM_FEATURE_LBRV (1 << 1)
  40. #define SVM_DEATURE_SVML (1 << 2)
  41. #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  42. /* enable NPT for AMD64 and X86 with PAE */
  43. #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
  44. static bool npt_enabled = true;
  45. #else
  46. static bool npt_enabled = false;
  47. #endif
  48. static int npt = 1;
  49. module_param(npt, int, S_IRUGO);
  50. static void kvm_reput_irq(struct vcpu_svm *svm);
  51. static void svm_flush_tlb(struct kvm_vcpu *vcpu);
  52. static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
  53. {
  54. return container_of(vcpu, struct vcpu_svm, vcpu);
  55. }
  56. static unsigned long iopm_base;
  57. struct kvm_ldttss_desc {
  58. u16 limit0;
  59. u16 base0;
  60. unsigned base1 : 8, type : 5, dpl : 2, p : 1;
  61. unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8;
  62. u32 base3;
  63. u32 zero1;
  64. } __attribute__((packed));
  65. struct svm_cpu_data {
  66. int cpu;
  67. u64 asid_generation;
  68. u32 max_asid;
  69. u32 next_asid;
  70. struct kvm_ldttss_desc *tss_desc;
  71. struct page *save_area;
  72. };
  73. static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
  74. static uint32_t svm_features;
  75. struct svm_init_data {
  76. int cpu;
  77. int r;
  78. };
  79. static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
  80. #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
  81. #define MSRS_RANGE_SIZE 2048
  82. #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
  83. #define MAX_INST_SIZE 15
  84. static inline u32 svm_has(u32 feat)
  85. {
  86. return svm_features & feat;
  87. }
  88. static inline u8 pop_irq(struct kvm_vcpu *vcpu)
  89. {
  90. int word_index = __ffs(vcpu->arch.irq_summary);
  91. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  92. int irq = word_index * BITS_PER_LONG + bit_index;
  93. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  94. if (!vcpu->arch.irq_pending[word_index])
  95. clear_bit(word_index, &vcpu->arch.irq_summary);
  96. return irq;
  97. }
  98. static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq)
  99. {
  100. set_bit(irq, vcpu->arch.irq_pending);
  101. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  102. }
  103. static inline void clgi(void)
  104. {
  105. asm volatile (__ex(SVM_CLGI));
  106. }
  107. static inline void stgi(void)
  108. {
  109. asm volatile (__ex(SVM_STGI));
  110. }
  111. static inline void invlpga(unsigned long addr, u32 asid)
  112. {
  113. asm volatile (__ex(SVM_INVLPGA) :: "a"(addr), "c"(asid));
  114. }
  115. static inline unsigned long kvm_read_cr2(void)
  116. {
  117. unsigned long cr2;
  118. asm volatile ("mov %%cr2, %0" : "=r" (cr2));
  119. return cr2;
  120. }
  121. static inline void kvm_write_cr2(unsigned long val)
  122. {
  123. asm volatile ("mov %0, %%cr2" :: "r" (val));
  124. }
  125. static inline unsigned long read_dr6(void)
  126. {
  127. unsigned long dr6;
  128. asm volatile ("mov %%dr6, %0" : "=r" (dr6));
  129. return dr6;
  130. }
  131. static inline void write_dr6(unsigned long val)
  132. {
  133. asm volatile ("mov %0, %%dr6" :: "r" (val));
  134. }
  135. static inline unsigned long read_dr7(void)
  136. {
  137. unsigned long dr7;
  138. asm volatile ("mov %%dr7, %0" : "=r" (dr7));
  139. return dr7;
  140. }
  141. static inline void write_dr7(unsigned long val)
  142. {
  143. asm volatile ("mov %0, %%dr7" :: "r" (val));
  144. }
  145. static inline void force_new_asid(struct kvm_vcpu *vcpu)
  146. {
  147. to_svm(vcpu)->asid_generation--;
  148. }
  149. static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
  150. {
  151. force_new_asid(vcpu);
  152. }
  153. static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  154. {
  155. if (!npt_enabled && !(efer & EFER_LMA))
  156. efer &= ~EFER_LME;
  157. to_svm(vcpu)->vmcb->save.efer = efer | MSR_EFER_SVME_MASK;
  158. vcpu->arch.shadow_efer = efer;
  159. }
  160. static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  161. bool has_error_code, u32 error_code)
  162. {
  163. struct vcpu_svm *svm = to_svm(vcpu);
  164. svm->vmcb->control.event_inj = nr
  165. | SVM_EVTINJ_VALID
  166. | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
  167. | SVM_EVTINJ_TYPE_EXEPT;
  168. svm->vmcb->control.event_inj_err = error_code;
  169. }
  170. static bool svm_exception_injected(struct kvm_vcpu *vcpu)
  171. {
  172. struct vcpu_svm *svm = to_svm(vcpu);
  173. return !(svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID);
  174. }
  175. static int is_external_interrupt(u32 info)
  176. {
  177. info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
  178. return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
  179. }
  180. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  181. {
  182. struct vcpu_svm *svm = to_svm(vcpu);
  183. if (!svm->next_rip) {
  184. printk(KERN_DEBUG "%s: NOP\n", __func__);
  185. return;
  186. }
  187. if (svm->next_rip - svm->vmcb->save.rip > MAX_INST_SIZE)
  188. printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n",
  189. __func__,
  190. svm->vmcb->save.rip,
  191. svm->next_rip);
  192. vcpu->arch.rip = svm->vmcb->save.rip = svm->next_rip;
  193. svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
  194. vcpu->arch.interrupt_window_open = 1;
  195. }
  196. static int has_svm(void)
  197. {
  198. uint32_t eax, ebx, ecx, edx;
  199. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) {
  200. printk(KERN_INFO "has_svm: not amd\n");
  201. return 0;
  202. }
  203. cpuid(0x80000000, &eax, &ebx, &ecx, &edx);
  204. if (eax < SVM_CPUID_FUNC) {
  205. printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n");
  206. return 0;
  207. }
  208. cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
  209. if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) {
  210. printk(KERN_DEBUG "has_svm: svm not available\n");
  211. return 0;
  212. }
  213. return 1;
  214. }
  215. static void svm_hardware_disable(void *garbage)
  216. {
  217. uint64_t efer;
  218. wrmsrl(MSR_VM_HSAVE_PA, 0);
  219. rdmsrl(MSR_EFER, efer);
  220. wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK);
  221. }
  222. static void svm_hardware_enable(void *garbage)
  223. {
  224. struct svm_cpu_data *svm_data;
  225. uint64_t efer;
  226. struct desc_ptr gdt_descr;
  227. struct desc_struct *gdt;
  228. int me = raw_smp_processor_id();
  229. if (!has_svm()) {
  230. printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me);
  231. return;
  232. }
  233. svm_data = per_cpu(svm_data, me);
  234. if (!svm_data) {
  235. printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n",
  236. me);
  237. return;
  238. }
  239. svm_data->asid_generation = 1;
  240. svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
  241. svm_data->next_asid = svm_data->max_asid + 1;
  242. asm volatile ("sgdt %0" : "=m"(gdt_descr));
  243. gdt = (struct desc_struct *)gdt_descr.address;
  244. svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
  245. rdmsrl(MSR_EFER, efer);
  246. wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK);
  247. wrmsrl(MSR_VM_HSAVE_PA,
  248. page_to_pfn(svm_data->save_area) << PAGE_SHIFT);
  249. }
  250. static void svm_cpu_uninit(int cpu)
  251. {
  252. struct svm_cpu_data *svm_data
  253. = per_cpu(svm_data, raw_smp_processor_id());
  254. if (!svm_data)
  255. return;
  256. per_cpu(svm_data, raw_smp_processor_id()) = NULL;
  257. __free_page(svm_data->save_area);
  258. kfree(svm_data);
  259. }
  260. static int svm_cpu_init(int cpu)
  261. {
  262. struct svm_cpu_data *svm_data;
  263. int r;
  264. svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
  265. if (!svm_data)
  266. return -ENOMEM;
  267. svm_data->cpu = cpu;
  268. svm_data->save_area = alloc_page(GFP_KERNEL);
  269. r = -ENOMEM;
  270. if (!svm_data->save_area)
  271. goto err_1;
  272. per_cpu(svm_data, cpu) = svm_data;
  273. return 0;
  274. err_1:
  275. kfree(svm_data);
  276. return r;
  277. }
  278. static void set_msr_interception(u32 *msrpm, unsigned msr,
  279. int read, int write)
  280. {
  281. int i;
  282. for (i = 0; i < NUM_MSR_MAPS; i++) {
  283. if (msr >= msrpm_ranges[i] &&
  284. msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
  285. u32 msr_offset = (i * MSRS_IN_RANGE + msr -
  286. msrpm_ranges[i]) * 2;
  287. u32 *base = msrpm + (msr_offset / 32);
  288. u32 msr_shift = msr_offset % 32;
  289. u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
  290. *base = (*base & ~(0x3 << msr_shift)) |
  291. (mask << msr_shift);
  292. return;
  293. }
  294. }
  295. BUG();
  296. }
  297. static void svm_vcpu_init_msrpm(u32 *msrpm)
  298. {
  299. memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
  300. #ifdef CONFIG_X86_64
  301. set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
  302. set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
  303. set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
  304. set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
  305. set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
  306. set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
  307. #endif
  308. set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
  309. set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
  310. set_msr_interception(msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
  311. set_msr_interception(msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
  312. }
  313. static void svm_enable_lbrv(struct vcpu_svm *svm)
  314. {
  315. u32 *msrpm = svm->msrpm;
  316. svm->vmcb->control.lbr_ctl = 1;
  317. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
  318. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
  319. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
  320. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
  321. }
  322. static void svm_disable_lbrv(struct vcpu_svm *svm)
  323. {
  324. u32 *msrpm = svm->msrpm;
  325. svm->vmcb->control.lbr_ctl = 0;
  326. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
  327. set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
  328. set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
  329. set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
  330. }
  331. static __init int svm_hardware_setup(void)
  332. {
  333. int cpu;
  334. struct page *iopm_pages;
  335. void *iopm_va;
  336. int r;
  337. iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
  338. if (!iopm_pages)
  339. return -ENOMEM;
  340. iopm_va = page_address(iopm_pages);
  341. memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
  342. clear_bit(0x80, iopm_va); /* allow direct access to PC debug port */
  343. iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
  344. if (boot_cpu_has(X86_FEATURE_NX))
  345. kvm_enable_efer_bits(EFER_NX);
  346. for_each_online_cpu(cpu) {
  347. r = svm_cpu_init(cpu);
  348. if (r)
  349. goto err;
  350. }
  351. svm_features = cpuid_edx(SVM_CPUID_FUNC);
  352. if (!svm_has(SVM_FEATURE_NPT))
  353. npt_enabled = false;
  354. if (npt_enabled && !npt) {
  355. printk(KERN_INFO "kvm: Nested Paging disabled\n");
  356. npt_enabled = false;
  357. }
  358. if (npt_enabled) {
  359. printk(KERN_INFO "kvm: Nested Paging enabled\n");
  360. kvm_enable_tdp();
  361. } else
  362. kvm_disable_tdp();
  363. return 0;
  364. err:
  365. __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
  366. iopm_base = 0;
  367. return r;
  368. }
  369. static __exit void svm_hardware_unsetup(void)
  370. {
  371. int cpu;
  372. for_each_online_cpu(cpu)
  373. svm_cpu_uninit(cpu);
  374. __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
  375. iopm_base = 0;
  376. }
  377. static void init_seg(struct vmcb_seg *seg)
  378. {
  379. seg->selector = 0;
  380. seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
  381. SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
  382. seg->limit = 0xffff;
  383. seg->base = 0;
  384. }
  385. static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
  386. {
  387. seg->selector = 0;
  388. seg->attrib = SVM_SELECTOR_P_MASK | type;
  389. seg->limit = 0xffff;
  390. seg->base = 0;
  391. }
  392. static void init_vmcb(struct vcpu_svm *svm)
  393. {
  394. struct vmcb_control_area *control = &svm->vmcb->control;
  395. struct vmcb_save_area *save = &svm->vmcb->save;
  396. control->intercept_cr_read = INTERCEPT_CR0_MASK |
  397. INTERCEPT_CR3_MASK |
  398. INTERCEPT_CR4_MASK;
  399. control->intercept_cr_write = INTERCEPT_CR0_MASK |
  400. INTERCEPT_CR3_MASK |
  401. INTERCEPT_CR4_MASK |
  402. INTERCEPT_CR8_MASK;
  403. control->intercept_dr_read = INTERCEPT_DR0_MASK |
  404. INTERCEPT_DR1_MASK |
  405. INTERCEPT_DR2_MASK |
  406. INTERCEPT_DR3_MASK;
  407. control->intercept_dr_write = INTERCEPT_DR0_MASK |
  408. INTERCEPT_DR1_MASK |
  409. INTERCEPT_DR2_MASK |
  410. INTERCEPT_DR3_MASK |
  411. INTERCEPT_DR5_MASK |
  412. INTERCEPT_DR7_MASK;
  413. control->intercept_exceptions = (1 << PF_VECTOR) |
  414. (1 << UD_VECTOR) |
  415. (1 << MC_VECTOR);
  416. control->intercept = (1ULL << INTERCEPT_INTR) |
  417. (1ULL << INTERCEPT_NMI) |
  418. (1ULL << INTERCEPT_SMI) |
  419. (1ULL << INTERCEPT_CPUID) |
  420. (1ULL << INTERCEPT_INVD) |
  421. (1ULL << INTERCEPT_HLT) |
  422. (1ULL << INTERCEPT_INVLPGA) |
  423. (1ULL << INTERCEPT_IOIO_PROT) |
  424. (1ULL << INTERCEPT_MSR_PROT) |
  425. (1ULL << INTERCEPT_TASK_SWITCH) |
  426. (1ULL << INTERCEPT_SHUTDOWN) |
  427. (1ULL << INTERCEPT_VMRUN) |
  428. (1ULL << INTERCEPT_VMMCALL) |
  429. (1ULL << INTERCEPT_VMLOAD) |
  430. (1ULL << INTERCEPT_VMSAVE) |
  431. (1ULL << INTERCEPT_STGI) |
  432. (1ULL << INTERCEPT_CLGI) |
  433. (1ULL << INTERCEPT_SKINIT) |
  434. (1ULL << INTERCEPT_WBINVD) |
  435. (1ULL << INTERCEPT_MONITOR) |
  436. (1ULL << INTERCEPT_MWAIT);
  437. control->iopm_base_pa = iopm_base;
  438. control->msrpm_base_pa = __pa(svm->msrpm);
  439. control->tsc_offset = 0;
  440. control->int_ctl = V_INTR_MASKING_MASK;
  441. init_seg(&save->es);
  442. init_seg(&save->ss);
  443. init_seg(&save->ds);
  444. init_seg(&save->fs);
  445. init_seg(&save->gs);
  446. save->cs.selector = 0xf000;
  447. /* Executable/Readable Code Segment */
  448. save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
  449. SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
  450. save->cs.limit = 0xffff;
  451. /*
  452. * cs.base should really be 0xffff0000, but vmx can't handle that, so
  453. * be consistent with it.
  454. *
  455. * Replace when we have real mode working for vmx.
  456. */
  457. save->cs.base = 0xf0000;
  458. save->gdtr.limit = 0xffff;
  459. save->idtr.limit = 0xffff;
  460. init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
  461. init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
  462. save->efer = MSR_EFER_SVME_MASK;
  463. save->dr6 = 0xffff0ff0;
  464. save->dr7 = 0x400;
  465. save->rflags = 2;
  466. save->rip = 0x0000fff0;
  467. /*
  468. * cr0 val on cpu init should be 0x60000010, we enable cpu
  469. * cache by default. the orderly way is to enable cache in bios.
  470. */
  471. save->cr0 = 0x00000010 | X86_CR0_PG | X86_CR0_WP;
  472. save->cr4 = X86_CR4_PAE;
  473. /* rdx = ?? */
  474. if (npt_enabled) {
  475. /* Setup VMCB for Nested Paging */
  476. control->nested_ctl = 1;
  477. control->intercept &= ~(1ULL << INTERCEPT_TASK_SWITCH);
  478. control->intercept_exceptions &= ~(1 << PF_VECTOR);
  479. control->intercept_cr_read &= ~(INTERCEPT_CR0_MASK|
  480. INTERCEPT_CR3_MASK);
  481. control->intercept_cr_write &= ~(INTERCEPT_CR0_MASK|
  482. INTERCEPT_CR3_MASK);
  483. save->g_pat = 0x0007040600070406ULL;
  484. /* enable caching because the QEMU Bios doesn't enable it */
  485. save->cr0 = X86_CR0_ET;
  486. save->cr3 = 0;
  487. save->cr4 = 0;
  488. }
  489. force_new_asid(&svm->vcpu);
  490. }
  491. static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
  492. {
  493. struct vcpu_svm *svm = to_svm(vcpu);
  494. init_vmcb(svm);
  495. if (vcpu->vcpu_id != 0) {
  496. svm->vmcb->save.rip = 0;
  497. svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
  498. svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
  499. }
  500. return 0;
  501. }
  502. static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
  503. {
  504. struct vcpu_svm *svm;
  505. struct page *page;
  506. struct page *msrpm_pages;
  507. int err;
  508. svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  509. if (!svm) {
  510. err = -ENOMEM;
  511. goto out;
  512. }
  513. err = kvm_vcpu_init(&svm->vcpu, kvm, id);
  514. if (err)
  515. goto free_svm;
  516. page = alloc_page(GFP_KERNEL);
  517. if (!page) {
  518. err = -ENOMEM;
  519. goto uninit;
  520. }
  521. err = -ENOMEM;
  522. msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
  523. if (!msrpm_pages)
  524. goto uninit;
  525. svm->msrpm = page_address(msrpm_pages);
  526. svm_vcpu_init_msrpm(svm->msrpm);
  527. svm->vmcb = page_address(page);
  528. clear_page(svm->vmcb);
  529. svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
  530. svm->asid_generation = 0;
  531. memset(svm->db_regs, 0, sizeof(svm->db_regs));
  532. init_vmcb(svm);
  533. fx_init(&svm->vcpu);
  534. svm->vcpu.fpu_active = 1;
  535. svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  536. if (svm->vcpu.vcpu_id == 0)
  537. svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
  538. return &svm->vcpu;
  539. uninit:
  540. kvm_vcpu_uninit(&svm->vcpu);
  541. free_svm:
  542. kmem_cache_free(kvm_vcpu_cache, svm);
  543. out:
  544. return ERR_PTR(err);
  545. }
  546. static void svm_free_vcpu(struct kvm_vcpu *vcpu)
  547. {
  548. struct vcpu_svm *svm = to_svm(vcpu);
  549. __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
  550. __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
  551. kvm_vcpu_uninit(vcpu);
  552. kmem_cache_free(kvm_vcpu_cache, svm);
  553. }
  554. static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  555. {
  556. struct vcpu_svm *svm = to_svm(vcpu);
  557. int i;
  558. if (unlikely(cpu != vcpu->cpu)) {
  559. u64 tsc_this, delta;
  560. /*
  561. * Make sure that the guest sees a monotonically
  562. * increasing TSC.
  563. */
  564. rdtscll(tsc_this);
  565. delta = vcpu->arch.host_tsc - tsc_this;
  566. svm->vmcb->control.tsc_offset += delta;
  567. vcpu->cpu = cpu;
  568. kvm_migrate_timers(vcpu);
  569. }
  570. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  571. rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  572. }
  573. static void svm_vcpu_put(struct kvm_vcpu *vcpu)
  574. {
  575. struct vcpu_svm *svm = to_svm(vcpu);
  576. int i;
  577. ++vcpu->stat.host_state_reload;
  578. for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
  579. wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
  580. rdtscll(vcpu->arch.host_tsc);
  581. }
  582. static void svm_cache_regs(struct kvm_vcpu *vcpu)
  583. {
  584. struct vcpu_svm *svm = to_svm(vcpu);
  585. vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
  586. vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
  587. vcpu->arch.rip = svm->vmcb->save.rip;
  588. }
  589. static void svm_decache_regs(struct kvm_vcpu *vcpu)
  590. {
  591. struct vcpu_svm *svm = to_svm(vcpu);
  592. svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
  593. svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  594. svm->vmcb->save.rip = vcpu->arch.rip;
  595. }
  596. static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
  597. {
  598. return to_svm(vcpu)->vmcb->save.rflags;
  599. }
  600. static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  601. {
  602. to_svm(vcpu)->vmcb->save.rflags = rflags;
  603. }
  604. static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
  605. {
  606. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  607. switch (seg) {
  608. case VCPU_SREG_CS: return &save->cs;
  609. case VCPU_SREG_DS: return &save->ds;
  610. case VCPU_SREG_ES: return &save->es;
  611. case VCPU_SREG_FS: return &save->fs;
  612. case VCPU_SREG_GS: return &save->gs;
  613. case VCPU_SREG_SS: return &save->ss;
  614. case VCPU_SREG_TR: return &save->tr;
  615. case VCPU_SREG_LDTR: return &save->ldtr;
  616. }
  617. BUG();
  618. return NULL;
  619. }
  620. static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  621. {
  622. struct vmcb_seg *s = svm_seg(vcpu, seg);
  623. return s->base;
  624. }
  625. static void svm_get_segment(struct kvm_vcpu *vcpu,
  626. struct kvm_segment *var, int seg)
  627. {
  628. struct vmcb_seg *s = svm_seg(vcpu, seg);
  629. var->base = s->base;
  630. var->limit = s->limit;
  631. var->selector = s->selector;
  632. var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
  633. var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
  634. var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
  635. var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
  636. var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
  637. var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
  638. var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
  639. var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
  640. var->unusable = !var->present;
  641. }
  642. static int svm_get_cpl(struct kvm_vcpu *vcpu)
  643. {
  644. struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
  645. return save->cpl;
  646. }
  647. static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  648. {
  649. struct vcpu_svm *svm = to_svm(vcpu);
  650. dt->limit = svm->vmcb->save.idtr.limit;
  651. dt->base = svm->vmcb->save.idtr.base;
  652. }
  653. static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  654. {
  655. struct vcpu_svm *svm = to_svm(vcpu);
  656. svm->vmcb->save.idtr.limit = dt->limit;
  657. svm->vmcb->save.idtr.base = dt->base ;
  658. }
  659. static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  660. {
  661. struct vcpu_svm *svm = to_svm(vcpu);
  662. dt->limit = svm->vmcb->save.gdtr.limit;
  663. dt->base = svm->vmcb->save.gdtr.base;
  664. }
  665. static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  666. {
  667. struct vcpu_svm *svm = to_svm(vcpu);
  668. svm->vmcb->save.gdtr.limit = dt->limit;
  669. svm->vmcb->save.gdtr.base = dt->base ;
  670. }
  671. static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  672. {
  673. }
  674. static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  675. {
  676. struct vcpu_svm *svm = to_svm(vcpu);
  677. #ifdef CONFIG_X86_64
  678. if (vcpu->arch.shadow_efer & EFER_LME) {
  679. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  680. vcpu->arch.shadow_efer |= EFER_LMA;
  681. svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
  682. }
  683. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
  684. vcpu->arch.shadow_efer &= ~EFER_LMA;
  685. svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
  686. }
  687. }
  688. #endif
  689. if (npt_enabled)
  690. goto set;
  691. if ((vcpu->arch.cr0 & X86_CR0_TS) && !(cr0 & X86_CR0_TS)) {
  692. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  693. vcpu->fpu_active = 1;
  694. }
  695. vcpu->arch.cr0 = cr0;
  696. cr0 |= X86_CR0_PG | X86_CR0_WP;
  697. if (!vcpu->fpu_active) {
  698. svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
  699. cr0 |= X86_CR0_TS;
  700. }
  701. set:
  702. /*
  703. * re-enable caching here because the QEMU bios
  704. * does not do it - this results in some delay at
  705. * reboot
  706. */
  707. cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
  708. svm->vmcb->save.cr0 = cr0;
  709. }
  710. static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  711. {
  712. unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
  713. unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
  714. if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
  715. force_new_asid(vcpu);
  716. vcpu->arch.cr4 = cr4;
  717. if (!npt_enabled)
  718. cr4 |= X86_CR4_PAE;
  719. cr4 |= host_cr4_mce;
  720. to_svm(vcpu)->vmcb->save.cr4 = cr4;
  721. }
  722. static void svm_set_segment(struct kvm_vcpu *vcpu,
  723. struct kvm_segment *var, int seg)
  724. {
  725. struct vcpu_svm *svm = to_svm(vcpu);
  726. struct vmcb_seg *s = svm_seg(vcpu, seg);
  727. s->base = var->base;
  728. s->limit = var->limit;
  729. s->selector = var->selector;
  730. if (var->unusable)
  731. s->attrib = 0;
  732. else {
  733. s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
  734. s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
  735. s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
  736. s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
  737. s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
  738. s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
  739. s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
  740. s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
  741. }
  742. if (seg == VCPU_SREG_CS)
  743. svm->vmcb->save.cpl
  744. = (svm->vmcb->save.cs.attrib
  745. >> SVM_SELECTOR_DPL_SHIFT) & 3;
  746. }
  747. static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  748. {
  749. return -EOPNOTSUPP;
  750. }
  751. static int svm_get_irq(struct kvm_vcpu *vcpu)
  752. {
  753. struct vcpu_svm *svm = to_svm(vcpu);
  754. u32 exit_int_info = svm->vmcb->control.exit_int_info;
  755. if (is_external_interrupt(exit_int_info))
  756. return exit_int_info & SVM_EVTINJ_VEC_MASK;
  757. return -1;
  758. }
  759. static void load_host_msrs(struct kvm_vcpu *vcpu)
  760. {
  761. #ifdef CONFIG_X86_64
  762. wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  763. #endif
  764. }
  765. static void save_host_msrs(struct kvm_vcpu *vcpu)
  766. {
  767. #ifdef CONFIG_X86_64
  768. rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
  769. #endif
  770. }
  771. static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *svm_data)
  772. {
  773. if (svm_data->next_asid > svm_data->max_asid) {
  774. ++svm_data->asid_generation;
  775. svm_data->next_asid = 1;
  776. svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
  777. }
  778. svm->vcpu.cpu = svm_data->cpu;
  779. svm->asid_generation = svm_data->asid_generation;
  780. svm->vmcb->control.asid = svm_data->next_asid++;
  781. }
  782. static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr)
  783. {
  784. unsigned long val = to_svm(vcpu)->db_regs[dr];
  785. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  786. return val;
  787. }
  788. static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value,
  789. int *exception)
  790. {
  791. struct vcpu_svm *svm = to_svm(vcpu);
  792. *exception = 0;
  793. if (svm->vmcb->save.dr7 & DR7_GD_MASK) {
  794. svm->vmcb->save.dr7 &= ~DR7_GD_MASK;
  795. svm->vmcb->save.dr6 |= DR6_BD_MASK;
  796. *exception = DB_VECTOR;
  797. return;
  798. }
  799. switch (dr) {
  800. case 0 ... 3:
  801. svm->db_regs[dr] = value;
  802. return;
  803. case 4 ... 5:
  804. if (vcpu->arch.cr4 & X86_CR4_DE) {
  805. *exception = UD_VECTOR;
  806. return;
  807. }
  808. case 7: {
  809. if (value & ~((1ULL << 32) - 1)) {
  810. *exception = GP_VECTOR;
  811. return;
  812. }
  813. svm->vmcb->save.dr7 = value;
  814. return;
  815. }
  816. default:
  817. printk(KERN_DEBUG "%s: unexpected dr %u\n",
  818. __func__, dr);
  819. *exception = UD_VECTOR;
  820. return;
  821. }
  822. }
  823. static int pf_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  824. {
  825. u32 exit_int_info = svm->vmcb->control.exit_int_info;
  826. struct kvm *kvm = svm->vcpu.kvm;
  827. u64 fault_address;
  828. u32 error_code;
  829. bool event_injection = false;
  830. if (!irqchip_in_kernel(kvm) &&
  831. is_external_interrupt(exit_int_info)) {
  832. event_injection = true;
  833. push_irq(&svm->vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK);
  834. }
  835. fault_address = svm->vmcb->control.exit_info_2;
  836. error_code = svm->vmcb->control.exit_info_1;
  837. if (!npt_enabled)
  838. KVMTRACE_3D(PAGE_FAULT, &svm->vcpu, error_code,
  839. (u32)fault_address, (u32)(fault_address >> 32),
  840. handler);
  841. else
  842. KVMTRACE_3D(TDP_FAULT, &svm->vcpu, error_code,
  843. (u32)fault_address, (u32)(fault_address >> 32),
  844. handler);
  845. /*
  846. * FIXME: Tis shouldn't be necessary here, but there is a flush
  847. * missing in the MMU code. Until we find this bug, flush the
  848. * complete TLB here on an NPF
  849. */
  850. if (npt_enabled)
  851. svm_flush_tlb(&svm->vcpu);
  852. if (event_injection)
  853. kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
  854. return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
  855. }
  856. static int ud_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  857. {
  858. int er;
  859. er = emulate_instruction(&svm->vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  860. if (er != EMULATE_DONE)
  861. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  862. return 1;
  863. }
  864. static int nm_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  865. {
  866. svm->vmcb->control.intercept_exceptions &= ~(1 << NM_VECTOR);
  867. if (!(svm->vcpu.arch.cr0 & X86_CR0_TS))
  868. svm->vmcb->save.cr0 &= ~X86_CR0_TS;
  869. svm->vcpu.fpu_active = 1;
  870. return 1;
  871. }
  872. static int mc_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  873. {
  874. /*
  875. * On an #MC intercept the MCE handler is not called automatically in
  876. * the host. So do it by hand here.
  877. */
  878. asm volatile (
  879. "int $0x12\n");
  880. /* not sure if we ever come back to this point */
  881. return 1;
  882. }
  883. static int shutdown_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  884. {
  885. /*
  886. * VMCB is undefined after a SHUTDOWN intercept
  887. * so reinitialize it.
  888. */
  889. clear_page(svm->vmcb);
  890. init_vmcb(svm);
  891. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  892. return 0;
  893. }
  894. static int io_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  895. {
  896. u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
  897. int size, down, in, string, rep;
  898. unsigned port;
  899. ++svm->vcpu.stat.io_exits;
  900. svm->next_rip = svm->vmcb->control.exit_info_2;
  901. string = (io_info & SVM_IOIO_STR_MASK) != 0;
  902. if (string) {
  903. if (emulate_instruction(&svm->vcpu,
  904. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  905. return 0;
  906. return 1;
  907. }
  908. in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
  909. port = io_info >> 16;
  910. size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
  911. rep = (io_info & SVM_IOIO_REP_MASK) != 0;
  912. down = (svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0;
  913. return kvm_emulate_pio(&svm->vcpu, kvm_run, in, size, port);
  914. }
  915. static int nmi_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  916. {
  917. KVMTRACE_0D(NMI, &svm->vcpu, handler);
  918. return 1;
  919. }
  920. static int intr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  921. {
  922. ++svm->vcpu.stat.irq_exits;
  923. KVMTRACE_0D(INTR, &svm->vcpu, handler);
  924. return 1;
  925. }
  926. static int nop_on_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  927. {
  928. return 1;
  929. }
  930. static int halt_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  931. {
  932. svm->next_rip = svm->vmcb->save.rip + 1;
  933. skip_emulated_instruction(&svm->vcpu);
  934. return kvm_emulate_halt(&svm->vcpu);
  935. }
  936. static int vmmcall_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  937. {
  938. svm->next_rip = svm->vmcb->save.rip + 3;
  939. skip_emulated_instruction(&svm->vcpu);
  940. kvm_emulate_hypercall(&svm->vcpu);
  941. return 1;
  942. }
  943. static int invalid_op_interception(struct vcpu_svm *svm,
  944. struct kvm_run *kvm_run)
  945. {
  946. kvm_queue_exception(&svm->vcpu, UD_VECTOR);
  947. return 1;
  948. }
  949. static int task_switch_interception(struct vcpu_svm *svm,
  950. struct kvm_run *kvm_run)
  951. {
  952. u16 tss_selector;
  953. tss_selector = (u16)svm->vmcb->control.exit_info_1;
  954. if (svm->vmcb->control.exit_info_2 &
  955. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
  956. return kvm_task_switch(&svm->vcpu, tss_selector,
  957. TASK_SWITCH_IRET);
  958. if (svm->vmcb->control.exit_info_2 &
  959. (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
  960. return kvm_task_switch(&svm->vcpu, tss_selector,
  961. TASK_SWITCH_JMP);
  962. return kvm_task_switch(&svm->vcpu, tss_selector, TASK_SWITCH_CALL);
  963. }
  964. static int cpuid_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  965. {
  966. svm->next_rip = svm->vmcb->save.rip + 2;
  967. kvm_emulate_cpuid(&svm->vcpu);
  968. return 1;
  969. }
  970. static int emulate_on_interception(struct vcpu_svm *svm,
  971. struct kvm_run *kvm_run)
  972. {
  973. if (emulate_instruction(&svm->vcpu, NULL, 0, 0, 0) != EMULATE_DONE)
  974. pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
  975. return 1;
  976. }
  977. static int cr8_write_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  978. {
  979. emulate_instruction(&svm->vcpu, NULL, 0, 0, 0);
  980. if (irqchip_in_kernel(svm->vcpu.kvm))
  981. return 1;
  982. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  983. return 0;
  984. }
  985. static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
  986. {
  987. struct vcpu_svm *svm = to_svm(vcpu);
  988. switch (ecx) {
  989. case MSR_IA32_TIME_STAMP_COUNTER: {
  990. u64 tsc;
  991. rdtscll(tsc);
  992. *data = svm->vmcb->control.tsc_offset + tsc;
  993. break;
  994. }
  995. case MSR_K6_STAR:
  996. *data = svm->vmcb->save.star;
  997. break;
  998. #ifdef CONFIG_X86_64
  999. case MSR_LSTAR:
  1000. *data = svm->vmcb->save.lstar;
  1001. break;
  1002. case MSR_CSTAR:
  1003. *data = svm->vmcb->save.cstar;
  1004. break;
  1005. case MSR_KERNEL_GS_BASE:
  1006. *data = svm->vmcb->save.kernel_gs_base;
  1007. break;
  1008. case MSR_SYSCALL_MASK:
  1009. *data = svm->vmcb->save.sfmask;
  1010. break;
  1011. #endif
  1012. case MSR_IA32_SYSENTER_CS:
  1013. *data = svm->vmcb->save.sysenter_cs;
  1014. break;
  1015. case MSR_IA32_SYSENTER_EIP:
  1016. *data = svm->vmcb->save.sysenter_eip;
  1017. break;
  1018. case MSR_IA32_SYSENTER_ESP:
  1019. *data = svm->vmcb->save.sysenter_esp;
  1020. break;
  1021. /* Nobody will change the following 5 values in the VMCB so
  1022. we can safely return them on rdmsr. They will always be 0
  1023. until LBRV is implemented. */
  1024. case MSR_IA32_DEBUGCTLMSR:
  1025. *data = svm->vmcb->save.dbgctl;
  1026. break;
  1027. case MSR_IA32_LASTBRANCHFROMIP:
  1028. *data = svm->vmcb->save.br_from;
  1029. break;
  1030. case MSR_IA32_LASTBRANCHTOIP:
  1031. *data = svm->vmcb->save.br_to;
  1032. break;
  1033. case MSR_IA32_LASTINTFROMIP:
  1034. *data = svm->vmcb->save.last_excp_from;
  1035. break;
  1036. case MSR_IA32_LASTINTTOIP:
  1037. *data = svm->vmcb->save.last_excp_to;
  1038. break;
  1039. default:
  1040. return kvm_get_msr_common(vcpu, ecx, data);
  1041. }
  1042. return 0;
  1043. }
  1044. static int rdmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1045. {
  1046. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1047. u64 data;
  1048. if (svm_get_msr(&svm->vcpu, ecx, &data))
  1049. kvm_inject_gp(&svm->vcpu, 0);
  1050. else {
  1051. KVMTRACE_3D(MSR_READ, &svm->vcpu, ecx, (u32)data,
  1052. (u32)(data >> 32), handler);
  1053. svm->vmcb->save.rax = data & 0xffffffff;
  1054. svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
  1055. svm->next_rip = svm->vmcb->save.rip + 2;
  1056. skip_emulated_instruction(&svm->vcpu);
  1057. }
  1058. return 1;
  1059. }
  1060. static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
  1061. {
  1062. struct vcpu_svm *svm = to_svm(vcpu);
  1063. switch (ecx) {
  1064. case MSR_IA32_TIME_STAMP_COUNTER: {
  1065. u64 tsc;
  1066. rdtscll(tsc);
  1067. svm->vmcb->control.tsc_offset = data - tsc;
  1068. break;
  1069. }
  1070. case MSR_K6_STAR:
  1071. svm->vmcb->save.star = data;
  1072. break;
  1073. #ifdef CONFIG_X86_64
  1074. case MSR_LSTAR:
  1075. svm->vmcb->save.lstar = data;
  1076. break;
  1077. case MSR_CSTAR:
  1078. svm->vmcb->save.cstar = data;
  1079. break;
  1080. case MSR_KERNEL_GS_BASE:
  1081. svm->vmcb->save.kernel_gs_base = data;
  1082. break;
  1083. case MSR_SYSCALL_MASK:
  1084. svm->vmcb->save.sfmask = data;
  1085. break;
  1086. #endif
  1087. case MSR_IA32_SYSENTER_CS:
  1088. svm->vmcb->save.sysenter_cs = data;
  1089. break;
  1090. case MSR_IA32_SYSENTER_EIP:
  1091. svm->vmcb->save.sysenter_eip = data;
  1092. break;
  1093. case MSR_IA32_SYSENTER_ESP:
  1094. svm->vmcb->save.sysenter_esp = data;
  1095. break;
  1096. case MSR_IA32_DEBUGCTLMSR:
  1097. if (!svm_has(SVM_FEATURE_LBRV)) {
  1098. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
  1099. __func__, data);
  1100. break;
  1101. }
  1102. if (data & DEBUGCTL_RESERVED_BITS)
  1103. return 1;
  1104. svm->vmcb->save.dbgctl = data;
  1105. if (data & (1ULL<<0))
  1106. svm_enable_lbrv(svm);
  1107. else
  1108. svm_disable_lbrv(svm);
  1109. break;
  1110. case MSR_K7_EVNTSEL0:
  1111. case MSR_K7_EVNTSEL1:
  1112. case MSR_K7_EVNTSEL2:
  1113. case MSR_K7_EVNTSEL3:
  1114. case MSR_K7_PERFCTR0:
  1115. case MSR_K7_PERFCTR1:
  1116. case MSR_K7_PERFCTR2:
  1117. case MSR_K7_PERFCTR3:
  1118. /*
  1119. * Just discard all writes to the performance counters; this
  1120. * should keep both older linux and windows 64-bit guests
  1121. * happy
  1122. */
  1123. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", ecx, data);
  1124. break;
  1125. default:
  1126. return kvm_set_msr_common(vcpu, ecx, data);
  1127. }
  1128. return 0;
  1129. }
  1130. static int wrmsr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1131. {
  1132. u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
  1133. u64 data = (svm->vmcb->save.rax & -1u)
  1134. | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  1135. KVMTRACE_3D(MSR_WRITE, &svm->vcpu, ecx, (u32)data, (u32)(data >> 32),
  1136. handler);
  1137. svm->next_rip = svm->vmcb->save.rip + 2;
  1138. if (svm_set_msr(&svm->vcpu, ecx, data))
  1139. kvm_inject_gp(&svm->vcpu, 0);
  1140. else
  1141. skip_emulated_instruction(&svm->vcpu);
  1142. return 1;
  1143. }
  1144. static int msr_interception(struct vcpu_svm *svm, struct kvm_run *kvm_run)
  1145. {
  1146. if (svm->vmcb->control.exit_info_1)
  1147. return wrmsr_interception(svm, kvm_run);
  1148. else
  1149. return rdmsr_interception(svm, kvm_run);
  1150. }
  1151. static int interrupt_window_interception(struct vcpu_svm *svm,
  1152. struct kvm_run *kvm_run)
  1153. {
  1154. KVMTRACE_0D(PEND_INTR, &svm->vcpu, handler);
  1155. svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
  1156. svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
  1157. /*
  1158. * If the user space waits to inject interrupts, exit as soon as
  1159. * possible
  1160. */
  1161. if (kvm_run->request_interrupt_window &&
  1162. !svm->vcpu.arch.irq_summary) {
  1163. ++svm->vcpu.stat.irq_window_exits;
  1164. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1165. return 0;
  1166. }
  1167. return 1;
  1168. }
  1169. static int (*svm_exit_handlers[])(struct vcpu_svm *svm,
  1170. struct kvm_run *kvm_run) = {
  1171. [SVM_EXIT_READ_CR0] = emulate_on_interception,
  1172. [SVM_EXIT_READ_CR3] = emulate_on_interception,
  1173. [SVM_EXIT_READ_CR4] = emulate_on_interception,
  1174. [SVM_EXIT_READ_CR8] = emulate_on_interception,
  1175. /* for now: */
  1176. [SVM_EXIT_WRITE_CR0] = emulate_on_interception,
  1177. [SVM_EXIT_WRITE_CR3] = emulate_on_interception,
  1178. [SVM_EXIT_WRITE_CR4] = emulate_on_interception,
  1179. [SVM_EXIT_WRITE_CR8] = cr8_write_interception,
  1180. [SVM_EXIT_READ_DR0] = emulate_on_interception,
  1181. [SVM_EXIT_READ_DR1] = emulate_on_interception,
  1182. [SVM_EXIT_READ_DR2] = emulate_on_interception,
  1183. [SVM_EXIT_READ_DR3] = emulate_on_interception,
  1184. [SVM_EXIT_WRITE_DR0] = emulate_on_interception,
  1185. [SVM_EXIT_WRITE_DR1] = emulate_on_interception,
  1186. [SVM_EXIT_WRITE_DR2] = emulate_on_interception,
  1187. [SVM_EXIT_WRITE_DR3] = emulate_on_interception,
  1188. [SVM_EXIT_WRITE_DR5] = emulate_on_interception,
  1189. [SVM_EXIT_WRITE_DR7] = emulate_on_interception,
  1190. [SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
  1191. [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
  1192. [SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
  1193. [SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
  1194. [SVM_EXIT_INTR] = intr_interception,
  1195. [SVM_EXIT_NMI] = nmi_interception,
  1196. [SVM_EXIT_SMI] = nop_on_interception,
  1197. [SVM_EXIT_INIT] = nop_on_interception,
  1198. [SVM_EXIT_VINTR] = interrupt_window_interception,
  1199. /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */
  1200. [SVM_EXIT_CPUID] = cpuid_interception,
  1201. [SVM_EXIT_INVD] = emulate_on_interception,
  1202. [SVM_EXIT_HLT] = halt_interception,
  1203. [SVM_EXIT_INVLPG] = emulate_on_interception,
  1204. [SVM_EXIT_INVLPGA] = invalid_op_interception,
  1205. [SVM_EXIT_IOIO] = io_interception,
  1206. [SVM_EXIT_MSR] = msr_interception,
  1207. [SVM_EXIT_TASK_SWITCH] = task_switch_interception,
  1208. [SVM_EXIT_SHUTDOWN] = shutdown_interception,
  1209. [SVM_EXIT_VMRUN] = invalid_op_interception,
  1210. [SVM_EXIT_VMMCALL] = vmmcall_interception,
  1211. [SVM_EXIT_VMLOAD] = invalid_op_interception,
  1212. [SVM_EXIT_VMSAVE] = invalid_op_interception,
  1213. [SVM_EXIT_STGI] = invalid_op_interception,
  1214. [SVM_EXIT_CLGI] = invalid_op_interception,
  1215. [SVM_EXIT_SKINIT] = invalid_op_interception,
  1216. [SVM_EXIT_WBINVD] = emulate_on_interception,
  1217. [SVM_EXIT_MONITOR] = invalid_op_interception,
  1218. [SVM_EXIT_MWAIT] = invalid_op_interception,
  1219. [SVM_EXIT_NPF] = pf_interception,
  1220. };
  1221. static int handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1222. {
  1223. struct vcpu_svm *svm = to_svm(vcpu);
  1224. u32 exit_code = svm->vmcb->control.exit_code;
  1225. KVMTRACE_3D(VMEXIT, vcpu, exit_code, (u32)svm->vmcb->save.rip,
  1226. (u32)((u64)svm->vmcb->save.rip >> 32), entryexit);
  1227. if (npt_enabled) {
  1228. int mmu_reload = 0;
  1229. if ((vcpu->arch.cr0 ^ svm->vmcb->save.cr0) & X86_CR0_PG) {
  1230. svm_set_cr0(vcpu, svm->vmcb->save.cr0);
  1231. mmu_reload = 1;
  1232. }
  1233. vcpu->arch.cr0 = svm->vmcb->save.cr0;
  1234. vcpu->arch.cr3 = svm->vmcb->save.cr3;
  1235. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1236. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1237. kvm_inject_gp(vcpu, 0);
  1238. return 1;
  1239. }
  1240. }
  1241. if (mmu_reload) {
  1242. kvm_mmu_reset_context(vcpu);
  1243. kvm_mmu_load(vcpu);
  1244. }
  1245. }
  1246. kvm_reput_irq(svm);
  1247. if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
  1248. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1249. kvm_run->fail_entry.hardware_entry_failure_reason
  1250. = svm->vmcb->control.exit_code;
  1251. return 0;
  1252. }
  1253. if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
  1254. exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
  1255. exit_code != SVM_EXIT_NPF)
  1256. printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
  1257. "exit_code 0x%x\n",
  1258. __func__, svm->vmcb->control.exit_int_info,
  1259. exit_code);
  1260. if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
  1261. || !svm_exit_handlers[exit_code]) {
  1262. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1263. kvm_run->hw.hardware_exit_reason = exit_code;
  1264. return 0;
  1265. }
  1266. return svm_exit_handlers[exit_code](svm, kvm_run);
  1267. }
  1268. static void reload_tss(struct kvm_vcpu *vcpu)
  1269. {
  1270. int cpu = raw_smp_processor_id();
  1271. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1272. svm_data->tss_desc->type = 9; /* available 32/64-bit TSS */
  1273. load_TR_desc();
  1274. }
  1275. static void pre_svm_run(struct vcpu_svm *svm)
  1276. {
  1277. int cpu = raw_smp_processor_id();
  1278. struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu);
  1279. svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
  1280. if (svm->vcpu.cpu != cpu ||
  1281. svm->asid_generation != svm_data->asid_generation)
  1282. new_asid(svm, svm_data);
  1283. }
  1284. static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
  1285. {
  1286. struct vmcb_control_area *control;
  1287. KVMTRACE_1D(INJ_VIRQ, &svm->vcpu, (u32)irq, handler);
  1288. control = &svm->vmcb->control;
  1289. control->int_vector = irq;
  1290. control->int_ctl &= ~V_INTR_PRIO_MASK;
  1291. control->int_ctl |= V_IRQ_MASK |
  1292. ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
  1293. }
  1294. static void svm_set_irq(struct kvm_vcpu *vcpu, int irq)
  1295. {
  1296. struct vcpu_svm *svm = to_svm(vcpu);
  1297. svm_inject_irq(svm, irq);
  1298. }
  1299. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  1300. {
  1301. struct vcpu_svm *svm = to_svm(vcpu);
  1302. struct vmcb *vmcb = svm->vmcb;
  1303. int max_irr, tpr;
  1304. if (!irqchip_in_kernel(vcpu->kvm) || vcpu->arch.apic->vapic_addr)
  1305. return;
  1306. vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
  1307. max_irr = kvm_lapic_find_highest_irr(vcpu);
  1308. if (max_irr == -1)
  1309. return;
  1310. tpr = kvm_lapic_get_cr8(vcpu) << 4;
  1311. if (tpr >= (max_irr & 0xf0))
  1312. vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
  1313. }
  1314. static void svm_intr_assist(struct kvm_vcpu *vcpu)
  1315. {
  1316. struct vcpu_svm *svm = to_svm(vcpu);
  1317. struct vmcb *vmcb = svm->vmcb;
  1318. int intr_vector = -1;
  1319. if ((vmcb->control.exit_int_info & SVM_EVTINJ_VALID) &&
  1320. ((vmcb->control.exit_int_info & SVM_EVTINJ_TYPE_MASK) == 0)) {
  1321. intr_vector = vmcb->control.exit_int_info &
  1322. SVM_EVTINJ_VEC_MASK;
  1323. vmcb->control.exit_int_info = 0;
  1324. svm_inject_irq(svm, intr_vector);
  1325. goto out;
  1326. }
  1327. if (vmcb->control.int_ctl & V_IRQ_MASK)
  1328. goto out;
  1329. if (!kvm_cpu_has_interrupt(vcpu))
  1330. goto out;
  1331. if (!(vmcb->save.rflags & X86_EFLAGS_IF) ||
  1332. (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) ||
  1333. (vmcb->control.event_inj & SVM_EVTINJ_VALID)) {
  1334. /* unable to deliver irq, set pending irq */
  1335. vmcb->control.intercept |= (1ULL << INTERCEPT_VINTR);
  1336. svm_inject_irq(svm, 0x0);
  1337. goto out;
  1338. }
  1339. /* Okay, we can deliver the interrupt: grab it and update PIC state. */
  1340. intr_vector = kvm_cpu_get_interrupt(vcpu);
  1341. svm_inject_irq(svm, intr_vector);
  1342. kvm_timer_intr_post(vcpu, intr_vector);
  1343. out:
  1344. update_cr8_intercept(vcpu);
  1345. }
  1346. static void kvm_reput_irq(struct vcpu_svm *svm)
  1347. {
  1348. struct vmcb_control_area *control = &svm->vmcb->control;
  1349. if ((control->int_ctl & V_IRQ_MASK)
  1350. && !irqchip_in_kernel(svm->vcpu.kvm)) {
  1351. control->int_ctl &= ~V_IRQ_MASK;
  1352. push_irq(&svm->vcpu, control->int_vector);
  1353. }
  1354. svm->vcpu.arch.interrupt_window_open =
  1355. !(control->int_state & SVM_INTERRUPT_SHADOW_MASK);
  1356. }
  1357. static void svm_do_inject_vector(struct vcpu_svm *svm)
  1358. {
  1359. struct kvm_vcpu *vcpu = &svm->vcpu;
  1360. int word_index = __ffs(vcpu->arch.irq_summary);
  1361. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1362. int irq = word_index * BITS_PER_LONG + bit_index;
  1363. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1364. if (!vcpu->arch.irq_pending[word_index])
  1365. clear_bit(word_index, &vcpu->arch.irq_summary);
  1366. svm_inject_irq(svm, irq);
  1367. }
  1368. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1369. struct kvm_run *kvm_run)
  1370. {
  1371. struct vcpu_svm *svm = to_svm(vcpu);
  1372. struct vmcb_control_area *control = &svm->vmcb->control;
  1373. svm->vcpu.arch.interrupt_window_open =
  1374. (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) &&
  1375. (svm->vmcb->save.rflags & X86_EFLAGS_IF));
  1376. if (svm->vcpu.arch.interrupt_window_open && svm->vcpu.arch.irq_summary)
  1377. /*
  1378. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1379. */
  1380. svm_do_inject_vector(svm);
  1381. /*
  1382. * Interrupts blocked. Wait for unblock.
  1383. */
  1384. if (!svm->vcpu.arch.interrupt_window_open &&
  1385. (svm->vcpu.arch.irq_summary || kvm_run->request_interrupt_window))
  1386. control->intercept |= 1ULL << INTERCEPT_VINTR;
  1387. else
  1388. control->intercept &= ~(1ULL << INTERCEPT_VINTR);
  1389. }
  1390. static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1391. {
  1392. return 0;
  1393. }
  1394. static void save_db_regs(unsigned long *db_regs)
  1395. {
  1396. asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0]));
  1397. asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1]));
  1398. asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2]));
  1399. asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3]));
  1400. }
  1401. static void load_db_regs(unsigned long *db_regs)
  1402. {
  1403. asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0]));
  1404. asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1]));
  1405. asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2]));
  1406. asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3]));
  1407. }
  1408. static void svm_flush_tlb(struct kvm_vcpu *vcpu)
  1409. {
  1410. force_new_asid(vcpu);
  1411. }
  1412. static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
  1413. {
  1414. }
  1415. static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
  1416. {
  1417. struct vcpu_svm *svm = to_svm(vcpu);
  1418. if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
  1419. int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
  1420. kvm_lapic_set_tpr(vcpu, cr8);
  1421. }
  1422. }
  1423. static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
  1424. {
  1425. struct vcpu_svm *svm = to_svm(vcpu);
  1426. u64 cr8;
  1427. if (!irqchip_in_kernel(vcpu->kvm))
  1428. return;
  1429. cr8 = kvm_get_cr8(vcpu);
  1430. svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
  1431. svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
  1432. }
  1433. static void svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1434. {
  1435. struct vcpu_svm *svm = to_svm(vcpu);
  1436. u16 fs_selector;
  1437. u16 gs_selector;
  1438. u16 ldt_selector;
  1439. pre_svm_run(svm);
  1440. sync_lapic_to_cr8(vcpu);
  1441. save_host_msrs(vcpu);
  1442. fs_selector = kvm_read_fs();
  1443. gs_selector = kvm_read_gs();
  1444. ldt_selector = kvm_read_ldt();
  1445. svm->host_cr2 = kvm_read_cr2();
  1446. svm->host_dr6 = read_dr6();
  1447. svm->host_dr7 = read_dr7();
  1448. svm->vmcb->save.cr2 = vcpu->arch.cr2;
  1449. /* required for live migration with NPT */
  1450. if (npt_enabled)
  1451. svm->vmcb->save.cr3 = vcpu->arch.cr3;
  1452. if (svm->vmcb->save.dr7 & 0xff) {
  1453. write_dr7(0);
  1454. save_db_regs(svm->host_db_regs);
  1455. load_db_regs(svm->db_regs);
  1456. }
  1457. clgi();
  1458. local_irq_enable();
  1459. asm volatile (
  1460. #ifdef CONFIG_X86_64
  1461. "push %%rbp; \n\t"
  1462. #else
  1463. "push %%ebp; \n\t"
  1464. #endif
  1465. #ifdef CONFIG_X86_64
  1466. "mov %c[rbx](%[svm]), %%rbx \n\t"
  1467. "mov %c[rcx](%[svm]), %%rcx \n\t"
  1468. "mov %c[rdx](%[svm]), %%rdx \n\t"
  1469. "mov %c[rsi](%[svm]), %%rsi \n\t"
  1470. "mov %c[rdi](%[svm]), %%rdi \n\t"
  1471. "mov %c[rbp](%[svm]), %%rbp \n\t"
  1472. "mov %c[r8](%[svm]), %%r8 \n\t"
  1473. "mov %c[r9](%[svm]), %%r9 \n\t"
  1474. "mov %c[r10](%[svm]), %%r10 \n\t"
  1475. "mov %c[r11](%[svm]), %%r11 \n\t"
  1476. "mov %c[r12](%[svm]), %%r12 \n\t"
  1477. "mov %c[r13](%[svm]), %%r13 \n\t"
  1478. "mov %c[r14](%[svm]), %%r14 \n\t"
  1479. "mov %c[r15](%[svm]), %%r15 \n\t"
  1480. #else
  1481. "mov %c[rbx](%[svm]), %%ebx \n\t"
  1482. "mov %c[rcx](%[svm]), %%ecx \n\t"
  1483. "mov %c[rdx](%[svm]), %%edx \n\t"
  1484. "mov %c[rsi](%[svm]), %%esi \n\t"
  1485. "mov %c[rdi](%[svm]), %%edi \n\t"
  1486. "mov %c[rbp](%[svm]), %%ebp \n\t"
  1487. #endif
  1488. #ifdef CONFIG_X86_64
  1489. /* Enter guest mode */
  1490. "push %%rax \n\t"
  1491. "mov %c[vmcb](%[svm]), %%rax \n\t"
  1492. __ex(SVM_VMLOAD) "\n\t"
  1493. __ex(SVM_VMRUN) "\n\t"
  1494. __ex(SVM_VMSAVE) "\n\t"
  1495. "pop %%rax \n\t"
  1496. #else
  1497. /* Enter guest mode */
  1498. "push %%eax \n\t"
  1499. "mov %c[vmcb](%[svm]), %%eax \n\t"
  1500. __ex(SVM_VMLOAD) "\n\t"
  1501. __ex(SVM_VMRUN) "\n\t"
  1502. __ex(SVM_VMSAVE) "\n\t"
  1503. "pop %%eax \n\t"
  1504. #endif
  1505. /* Save guest registers, load host registers */
  1506. #ifdef CONFIG_X86_64
  1507. "mov %%rbx, %c[rbx](%[svm]) \n\t"
  1508. "mov %%rcx, %c[rcx](%[svm]) \n\t"
  1509. "mov %%rdx, %c[rdx](%[svm]) \n\t"
  1510. "mov %%rsi, %c[rsi](%[svm]) \n\t"
  1511. "mov %%rdi, %c[rdi](%[svm]) \n\t"
  1512. "mov %%rbp, %c[rbp](%[svm]) \n\t"
  1513. "mov %%r8, %c[r8](%[svm]) \n\t"
  1514. "mov %%r9, %c[r9](%[svm]) \n\t"
  1515. "mov %%r10, %c[r10](%[svm]) \n\t"
  1516. "mov %%r11, %c[r11](%[svm]) \n\t"
  1517. "mov %%r12, %c[r12](%[svm]) \n\t"
  1518. "mov %%r13, %c[r13](%[svm]) \n\t"
  1519. "mov %%r14, %c[r14](%[svm]) \n\t"
  1520. "mov %%r15, %c[r15](%[svm]) \n\t"
  1521. "pop %%rbp; \n\t"
  1522. #else
  1523. "mov %%ebx, %c[rbx](%[svm]) \n\t"
  1524. "mov %%ecx, %c[rcx](%[svm]) \n\t"
  1525. "mov %%edx, %c[rdx](%[svm]) \n\t"
  1526. "mov %%esi, %c[rsi](%[svm]) \n\t"
  1527. "mov %%edi, %c[rdi](%[svm]) \n\t"
  1528. "mov %%ebp, %c[rbp](%[svm]) \n\t"
  1529. "pop %%ebp; \n\t"
  1530. #endif
  1531. :
  1532. : [svm]"a"(svm),
  1533. [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
  1534. [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
  1535. [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
  1536. [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
  1537. [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
  1538. [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
  1539. [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
  1540. #ifdef CONFIG_X86_64
  1541. , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
  1542. [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
  1543. [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
  1544. [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
  1545. [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
  1546. [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
  1547. [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
  1548. [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
  1549. #endif
  1550. : "cc", "memory"
  1551. #ifdef CONFIG_X86_64
  1552. , "rbx", "rcx", "rdx", "rsi", "rdi"
  1553. , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
  1554. #else
  1555. , "ebx", "ecx", "edx" , "esi", "edi"
  1556. #endif
  1557. );
  1558. if ((svm->vmcb->save.dr7 & 0xff))
  1559. load_db_regs(svm->host_db_regs);
  1560. vcpu->arch.cr2 = svm->vmcb->save.cr2;
  1561. write_dr6(svm->host_dr6);
  1562. write_dr7(svm->host_dr7);
  1563. kvm_write_cr2(svm->host_cr2);
  1564. kvm_load_fs(fs_selector);
  1565. kvm_load_gs(gs_selector);
  1566. kvm_load_ldt(ldt_selector);
  1567. load_host_msrs(vcpu);
  1568. reload_tss(vcpu);
  1569. local_irq_disable();
  1570. stgi();
  1571. sync_cr8_to_lapic(vcpu);
  1572. svm->next_rip = 0;
  1573. }
  1574. static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
  1575. {
  1576. struct vcpu_svm *svm = to_svm(vcpu);
  1577. if (npt_enabled) {
  1578. svm->vmcb->control.nested_cr3 = root;
  1579. force_new_asid(vcpu);
  1580. return;
  1581. }
  1582. svm->vmcb->save.cr3 = root;
  1583. force_new_asid(vcpu);
  1584. if (vcpu->fpu_active) {
  1585. svm->vmcb->control.intercept_exceptions |= (1 << NM_VECTOR);
  1586. svm->vmcb->save.cr0 |= X86_CR0_TS;
  1587. vcpu->fpu_active = 0;
  1588. }
  1589. }
  1590. static int is_disabled(void)
  1591. {
  1592. u64 vm_cr;
  1593. rdmsrl(MSR_VM_CR, vm_cr);
  1594. if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
  1595. return 1;
  1596. return 0;
  1597. }
  1598. static void
  1599. svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1600. {
  1601. /*
  1602. * Patch in the VMMCALL instruction:
  1603. */
  1604. hypercall[0] = 0x0f;
  1605. hypercall[1] = 0x01;
  1606. hypercall[2] = 0xd9;
  1607. }
  1608. static void svm_check_processor_compat(void *rtn)
  1609. {
  1610. *(int *)rtn = 0;
  1611. }
  1612. static bool svm_cpu_has_accelerated_tpr(void)
  1613. {
  1614. return false;
  1615. }
  1616. static int get_npt_level(void)
  1617. {
  1618. #ifdef CONFIG_X86_64
  1619. return PT64_ROOT_LEVEL;
  1620. #else
  1621. return PT32E_ROOT_LEVEL;
  1622. #endif
  1623. }
  1624. static struct kvm_x86_ops svm_x86_ops = {
  1625. .cpu_has_kvm_support = has_svm,
  1626. .disabled_by_bios = is_disabled,
  1627. .hardware_setup = svm_hardware_setup,
  1628. .hardware_unsetup = svm_hardware_unsetup,
  1629. .check_processor_compatibility = svm_check_processor_compat,
  1630. .hardware_enable = svm_hardware_enable,
  1631. .hardware_disable = svm_hardware_disable,
  1632. .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
  1633. .vcpu_create = svm_create_vcpu,
  1634. .vcpu_free = svm_free_vcpu,
  1635. .vcpu_reset = svm_vcpu_reset,
  1636. .prepare_guest_switch = svm_prepare_guest_switch,
  1637. .vcpu_load = svm_vcpu_load,
  1638. .vcpu_put = svm_vcpu_put,
  1639. .set_guest_debug = svm_guest_debug,
  1640. .get_msr = svm_get_msr,
  1641. .set_msr = svm_set_msr,
  1642. .get_segment_base = svm_get_segment_base,
  1643. .get_segment = svm_get_segment,
  1644. .set_segment = svm_set_segment,
  1645. .get_cpl = svm_get_cpl,
  1646. .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
  1647. .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
  1648. .set_cr0 = svm_set_cr0,
  1649. .set_cr3 = svm_set_cr3,
  1650. .set_cr4 = svm_set_cr4,
  1651. .set_efer = svm_set_efer,
  1652. .get_idt = svm_get_idt,
  1653. .set_idt = svm_set_idt,
  1654. .get_gdt = svm_get_gdt,
  1655. .set_gdt = svm_set_gdt,
  1656. .get_dr = svm_get_dr,
  1657. .set_dr = svm_set_dr,
  1658. .cache_regs = svm_cache_regs,
  1659. .decache_regs = svm_decache_regs,
  1660. .get_rflags = svm_get_rflags,
  1661. .set_rflags = svm_set_rflags,
  1662. .tlb_flush = svm_flush_tlb,
  1663. .run = svm_vcpu_run,
  1664. .handle_exit = handle_exit,
  1665. .skip_emulated_instruction = skip_emulated_instruction,
  1666. .patch_hypercall = svm_patch_hypercall,
  1667. .get_irq = svm_get_irq,
  1668. .set_irq = svm_set_irq,
  1669. .queue_exception = svm_queue_exception,
  1670. .exception_injected = svm_exception_injected,
  1671. .inject_pending_irq = svm_intr_assist,
  1672. .inject_pending_vectors = do_interrupt_requests,
  1673. .set_tss_addr = svm_set_tss_addr,
  1674. .get_tdp_level = get_npt_level,
  1675. };
  1676. static int __init svm_init(void)
  1677. {
  1678. return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
  1679. THIS_MODULE);
  1680. }
  1681. static void __exit svm_exit(void)
  1682. {
  1683. kvm_exit();
  1684. }
  1685. module_init(svm_init)
  1686. module_exit(svm_exit)