paging_tmpl.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. /*
  20. * We need the mmu code to access both 32-bit and 64-bit guest ptes,
  21. * so the code in this file is compiled twice, once per pte size.
  22. */
  23. #if PTTYPE == 64
  24. #define pt_element_t u64
  25. #define guest_walker guest_walker64
  26. #define FNAME(name) paging##64_##name
  27. #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
  28. #define PT_DIR_BASE_ADDR_MASK PT64_DIR_BASE_ADDR_MASK
  29. #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
  30. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  31. #define PT_LEVEL_MASK(level) PT64_LEVEL_MASK(level)
  32. #define PT_LEVEL_BITS PT64_LEVEL_BITS
  33. #ifdef CONFIG_X86_64
  34. #define PT_MAX_FULL_LEVELS 4
  35. #define CMPXCHG cmpxchg
  36. #else
  37. #define CMPXCHG cmpxchg64
  38. #define PT_MAX_FULL_LEVELS 2
  39. #endif
  40. #elif PTTYPE == 32
  41. #define pt_element_t u32
  42. #define guest_walker guest_walker32
  43. #define FNAME(name) paging##32_##name
  44. #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
  45. #define PT_DIR_BASE_ADDR_MASK PT32_DIR_BASE_ADDR_MASK
  46. #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
  47. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  48. #define PT_LEVEL_MASK(level) PT32_LEVEL_MASK(level)
  49. #define PT_LEVEL_BITS PT32_LEVEL_BITS
  50. #define PT_MAX_FULL_LEVELS 2
  51. #define CMPXCHG cmpxchg
  52. #else
  53. #error Invalid PTTYPE value
  54. #endif
  55. #define gpte_to_gfn FNAME(gpte_to_gfn)
  56. #define gpte_to_gfn_pde FNAME(gpte_to_gfn_pde)
  57. /*
  58. * The guest_walker structure emulates the behavior of the hardware page
  59. * table walker.
  60. */
  61. struct guest_walker {
  62. int level;
  63. gfn_t table_gfn[PT_MAX_FULL_LEVELS];
  64. pt_element_t ptes[PT_MAX_FULL_LEVELS];
  65. gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
  66. unsigned pt_access;
  67. unsigned pte_access;
  68. gfn_t gfn;
  69. u32 error_code;
  70. };
  71. static gfn_t gpte_to_gfn(pt_element_t gpte)
  72. {
  73. return (gpte & PT_BASE_ADDR_MASK) >> PAGE_SHIFT;
  74. }
  75. static gfn_t gpte_to_gfn_pde(pt_element_t gpte)
  76. {
  77. return (gpte & PT_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
  78. }
  79. static bool FNAME(cmpxchg_gpte)(struct kvm *kvm,
  80. gfn_t table_gfn, unsigned index,
  81. pt_element_t orig_pte, pt_element_t new_pte)
  82. {
  83. pt_element_t ret;
  84. pt_element_t *table;
  85. struct page *page;
  86. down_read(&current->mm->mmap_sem);
  87. page = gfn_to_page(kvm, table_gfn);
  88. up_read(&current->mm->mmap_sem);
  89. table = kmap_atomic(page, KM_USER0);
  90. ret = CMPXCHG(&table[index], orig_pte, new_pte);
  91. kunmap_atomic(table, KM_USER0);
  92. kvm_release_page_dirty(page);
  93. return (ret != orig_pte);
  94. }
  95. static unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, pt_element_t gpte)
  96. {
  97. unsigned access;
  98. access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
  99. #if PTTYPE == 64
  100. if (is_nx(vcpu))
  101. access &= ~(gpte >> PT64_NX_SHIFT);
  102. #endif
  103. return access;
  104. }
  105. /*
  106. * Fetch a guest pte for a guest virtual address
  107. */
  108. static int FNAME(walk_addr)(struct guest_walker *walker,
  109. struct kvm_vcpu *vcpu, gva_t addr,
  110. int write_fault, int user_fault, int fetch_fault)
  111. {
  112. pt_element_t pte;
  113. gfn_t table_gfn;
  114. unsigned index, pt_access, pte_access;
  115. gpa_t pte_gpa;
  116. pgprintk("%s: addr %lx\n", __func__, addr);
  117. walk:
  118. walker->level = vcpu->arch.mmu.root_level;
  119. pte = vcpu->arch.cr3;
  120. #if PTTYPE == 64
  121. if (!is_long_mode(vcpu)) {
  122. pte = vcpu->arch.pdptrs[(addr >> 30) & 3];
  123. if (!is_present_pte(pte))
  124. goto not_present;
  125. --walker->level;
  126. }
  127. #endif
  128. ASSERT((!is_long_mode(vcpu) && is_pae(vcpu)) ||
  129. (vcpu->arch.cr3 & CR3_NONPAE_RESERVED_BITS) == 0);
  130. pt_access = ACC_ALL;
  131. for (;;) {
  132. index = PT_INDEX(addr, walker->level);
  133. table_gfn = gpte_to_gfn(pte);
  134. pte_gpa = gfn_to_gpa(table_gfn);
  135. pte_gpa += index * sizeof(pt_element_t);
  136. walker->table_gfn[walker->level - 1] = table_gfn;
  137. walker->pte_gpa[walker->level - 1] = pte_gpa;
  138. pgprintk("%s: table_gfn[%d] %lx\n", __func__,
  139. walker->level - 1, table_gfn);
  140. kvm_read_guest(vcpu->kvm, pte_gpa, &pte, sizeof(pte));
  141. if (!is_present_pte(pte))
  142. goto not_present;
  143. if (write_fault && !is_writeble_pte(pte))
  144. if (user_fault || is_write_protection(vcpu))
  145. goto access_error;
  146. if (user_fault && !(pte & PT_USER_MASK))
  147. goto access_error;
  148. #if PTTYPE == 64
  149. if (fetch_fault && is_nx(vcpu) && (pte & PT64_NX_MASK))
  150. goto access_error;
  151. #endif
  152. if (!(pte & PT_ACCESSED_MASK)) {
  153. mark_page_dirty(vcpu->kvm, table_gfn);
  154. if (FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn,
  155. index, pte, pte|PT_ACCESSED_MASK))
  156. goto walk;
  157. pte |= PT_ACCESSED_MASK;
  158. }
  159. pte_access = pt_access & FNAME(gpte_access)(vcpu, pte);
  160. walker->ptes[walker->level - 1] = pte;
  161. if (walker->level == PT_PAGE_TABLE_LEVEL) {
  162. walker->gfn = gpte_to_gfn(pte);
  163. break;
  164. }
  165. if (walker->level == PT_DIRECTORY_LEVEL
  166. && (pte & PT_PAGE_SIZE_MASK)
  167. && (PTTYPE == 64 || is_pse(vcpu))) {
  168. walker->gfn = gpte_to_gfn_pde(pte);
  169. walker->gfn += PT_INDEX(addr, PT_PAGE_TABLE_LEVEL);
  170. if (PTTYPE == 32 && is_cpuid_PSE36())
  171. walker->gfn += pse36_gfn_delta(pte);
  172. break;
  173. }
  174. pt_access = pte_access;
  175. --walker->level;
  176. }
  177. if (write_fault && !is_dirty_pte(pte)) {
  178. bool ret;
  179. mark_page_dirty(vcpu->kvm, table_gfn);
  180. ret = FNAME(cmpxchg_gpte)(vcpu->kvm, table_gfn, index, pte,
  181. pte|PT_DIRTY_MASK);
  182. if (ret)
  183. goto walk;
  184. pte |= PT_DIRTY_MASK;
  185. kvm_mmu_pte_write(vcpu, pte_gpa, (u8 *)&pte, sizeof(pte));
  186. walker->ptes[walker->level - 1] = pte;
  187. }
  188. walker->pt_access = pt_access;
  189. walker->pte_access = pte_access;
  190. pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
  191. __func__, (u64)pte, pt_access, pte_access);
  192. return 1;
  193. not_present:
  194. walker->error_code = 0;
  195. goto err;
  196. access_error:
  197. walker->error_code = PFERR_PRESENT_MASK;
  198. err:
  199. if (write_fault)
  200. walker->error_code |= PFERR_WRITE_MASK;
  201. if (user_fault)
  202. walker->error_code |= PFERR_USER_MASK;
  203. if (fetch_fault)
  204. walker->error_code |= PFERR_FETCH_MASK;
  205. return 0;
  206. }
  207. static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *page,
  208. u64 *spte, const void *pte)
  209. {
  210. pt_element_t gpte;
  211. unsigned pte_access;
  212. pfn_t pfn;
  213. int largepage = vcpu->arch.update_pte.largepage;
  214. gpte = *(const pt_element_t *)pte;
  215. if (~gpte & (PT_PRESENT_MASK | PT_ACCESSED_MASK)) {
  216. if (!is_present_pte(gpte))
  217. set_shadow_pte(spte, shadow_notrap_nonpresent_pte);
  218. return;
  219. }
  220. pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
  221. pte_access = page->role.access & FNAME(gpte_access)(vcpu, gpte);
  222. if (gpte_to_gfn(gpte) != vcpu->arch.update_pte.gfn)
  223. return;
  224. pfn = vcpu->arch.update_pte.pfn;
  225. if (is_error_pfn(pfn))
  226. return;
  227. if (mmu_notifier_retry(vcpu, vcpu->arch.update_pte.mmu_seq))
  228. return;
  229. kvm_get_pfn(pfn);
  230. mmu_set_spte(vcpu, spte, page->role.access, pte_access, 0, 0,
  231. gpte & PT_DIRTY_MASK, NULL, largepage, gpte_to_gfn(gpte),
  232. pfn, true);
  233. }
  234. /*
  235. * Fetch a shadow pte for a specific level in the paging hierarchy.
  236. */
  237. static u64 *FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
  238. struct guest_walker *walker,
  239. int user_fault, int write_fault, int largepage,
  240. int *ptwrite, pfn_t pfn)
  241. {
  242. hpa_t shadow_addr;
  243. int level;
  244. u64 *shadow_ent;
  245. unsigned access = walker->pt_access;
  246. if (!is_present_pte(walker->ptes[walker->level - 1]))
  247. return NULL;
  248. shadow_addr = vcpu->arch.mmu.root_hpa;
  249. level = vcpu->arch.mmu.shadow_root_level;
  250. if (level == PT32E_ROOT_LEVEL) {
  251. shadow_addr = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  252. shadow_addr &= PT64_BASE_ADDR_MASK;
  253. --level;
  254. }
  255. for (; ; level--) {
  256. u32 index = SHADOW_PT_INDEX(addr, level);
  257. struct kvm_mmu_page *shadow_page;
  258. u64 shadow_pte;
  259. int metaphysical;
  260. gfn_t table_gfn;
  261. shadow_ent = ((u64 *)__va(shadow_addr)) + index;
  262. if (level == PT_PAGE_TABLE_LEVEL)
  263. break;
  264. if (largepage && level == PT_DIRECTORY_LEVEL)
  265. break;
  266. if (is_shadow_present_pte(*shadow_ent)
  267. && !is_large_pte(*shadow_ent)) {
  268. shadow_addr = *shadow_ent & PT64_BASE_ADDR_MASK;
  269. continue;
  270. }
  271. if (is_large_pte(*shadow_ent))
  272. rmap_remove(vcpu->kvm, shadow_ent);
  273. if (level - 1 == PT_PAGE_TABLE_LEVEL
  274. && walker->level == PT_DIRECTORY_LEVEL) {
  275. metaphysical = 1;
  276. if (!is_dirty_pte(walker->ptes[level - 1]))
  277. access &= ~ACC_WRITE_MASK;
  278. table_gfn = gpte_to_gfn(walker->ptes[level - 1]);
  279. } else {
  280. metaphysical = 0;
  281. table_gfn = walker->table_gfn[level - 2];
  282. }
  283. shadow_page = kvm_mmu_get_page(vcpu, table_gfn, addr, level-1,
  284. metaphysical, access,
  285. shadow_ent);
  286. if (!metaphysical) {
  287. int r;
  288. pt_element_t curr_pte;
  289. r = kvm_read_guest_atomic(vcpu->kvm,
  290. walker->pte_gpa[level - 2],
  291. &curr_pte, sizeof(curr_pte));
  292. if (r || curr_pte != walker->ptes[level - 2]) {
  293. kvm_release_pfn_clean(pfn);
  294. return NULL;
  295. }
  296. }
  297. shadow_addr = __pa(shadow_page->spt);
  298. shadow_pte = shadow_addr | PT_PRESENT_MASK | PT_ACCESSED_MASK
  299. | PT_WRITABLE_MASK | PT_USER_MASK;
  300. set_shadow_pte(shadow_ent, shadow_pte);
  301. }
  302. mmu_set_spte(vcpu, shadow_ent, access, walker->pte_access & access,
  303. user_fault, write_fault,
  304. walker->ptes[walker->level-1] & PT_DIRTY_MASK,
  305. ptwrite, largepage, walker->gfn, pfn, false);
  306. return shadow_ent;
  307. }
  308. /*
  309. * Page fault handler. There are several causes for a page fault:
  310. * - there is no shadow pte for the guest pte
  311. * - write access through a shadow pte marked read only so that we can set
  312. * the dirty bit
  313. * - write access to a shadow pte marked read only so we can update the page
  314. * dirty bitmap, when userspace requests it
  315. * - mmio access; in this case we will never install a present shadow pte
  316. * - normal guest page fault due to the guest pte marked not present, not
  317. * writable, or not executable
  318. *
  319. * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
  320. * a negative value on error.
  321. */
  322. static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr,
  323. u32 error_code)
  324. {
  325. int write_fault = error_code & PFERR_WRITE_MASK;
  326. int user_fault = error_code & PFERR_USER_MASK;
  327. int fetch_fault = error_code & PFERR_FETCH_MASK;
  328. struct guest_walker walker;
  329. u64 *shadow_pte;
  330. int write_pt = 0;
  331. int r;
  332. pfn_t pfn;
  333. int largepage = 0;
  334. unsigned long mmu_seq;
  335. pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
  336. kvm_mmu_audit(vcpu, "pre page fault");
  337. r = mmu_topup_memory_caches(vcpu);
  338. if (r)
  339. return r;
  340. /*
  341. * Look up the shadow pte for the faulting address.
  342. */
  343. r = FNAME(walk_addr)(&walker, vcpu, addr, write_fault, user_fault,
  344. fetch_fault);
  345. /*
  346. * The page is not mapped by the guest. Let the guest handle it.
  347. */
  348. if (!r) {
  349. pgprintk("%s: guest page fault\n", __func__);
  350. inject_page_fault(vcpu, addr, walker.error_code);
  351. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  352. return 0;
  353. }
  354. down_read(&current->mm->mmap_sem);
  355. if (walker.level == PT_DIRECTORY_LEVEL) {
  356. gfn_t large_gfn;
  357. large_gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE-1);
  358. if (is_largepage_backed(vcpu, large_gfn)) {
  359. walker.gfn = large_gfn;
  360. largepage = 1;
  361. }
  362. }
  363. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  364. /* implicit mb(), we'll read before PT lock is unlocked */
  365. pfn = gfn_to_pfn(vcpu->kvm, walker.gfn);
  366. up_read(&current->mm->mmap_sem);
  367. /* mmio */
  368. if (is_error_pfn(pfn)) {
  369. pgprintk("gfn %lx is mmio\n", walker.gfn);
  370. kvm_release_pfn_clean(pfn);
  371. return 1;
  372. }
  373. spin_lock(&vcpu->kvm->mmu_lock);
  374. if (mmu_notifier_retry(vcpu, mmu_seq))
  375. goto out_unlock;
  376. kvm_mmu_free_some_pages(vcpu);
  377. shadow_pte = FNAME(fetch)(vcpu, addr, &walker, user_fault, write_fault,
  378. largepage, &write_pt, pfn);
  379. pgprintk("%s: shadow pte %p %llx ptwrite %d\n", __func__,
  380. shadow_pte, *shadow_pte, write_pt);
  381. if (!write_pt)
  382. vcpu->arch.last_pt_write_count = 0; /* reset fork detector */
  383. ++vcpu->stat.pf_fixed;
  384. kvm_mmu_audit(vcpu, "post page fault (fixed)");
  385. spin_unlock(&vcpu->kvm->mmu_lock);
  386. return write_pt;
  387. out_unlock:
  388. spin_unlock(&vcpu->kvm->mmu_lock);
  389. kvm_release_pfn_clean(pfn);
  390. return 0;
  391. }
  392. static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr)
  393. {
  394. struct guest_walker walker;
  395. gpa_t gpa = UNMAPPED_GVA;
  396. int r;
  397. r = FNAME(walk_addr)(&walker, vcpu, vaddr, 0, 0, 0);
  398. if (r) {
  399. gpa = gfn_to_gpa(walker.gfn);
  400. gpa |= vaddr & ~PAGE_MASK;
  401. }
  402. return gpa;
  403. }
  404. static void FNAME(prefetch_page)(struct kvm_vcpu *vcpu,
  405. struct kvm_mmu_page *sp)
  406. {
  407. int i, j, offset, r;
  408. pt_element_t pt[256 / sizeof(pt_element_t)];
  409. gpa_t pte_gpa;
  410. if (sp->role.metaphysical
  411. || (PTTYPE == 32 && sp->role.level > PT_PAGE_TABLE_LEVEL)) {
  412. nonpaging_prefetch_page(vcpu, sp);
  413. return;
  414. }
  415. pte_gpa = gfn_to_gpa(sp->gfn);
  416. if (PTTYPE == 32) {
  417. offset = sp->role.quadrant << PT64_LEVEL_BITS;
  418. pte_gpa += offset * sizeof(pt_element_t);
  419. }
  420. for (i = 0; i < PT64_ENT_PER_PAGE; i += ARRAY_SIZE(pt)) {
  421. r = kvm_read_guest_atomic(vcpu->kvm, pte_gpa, pt, sizeof pt);
  422. pte_gpa += ARRAY_SIZE(pt) * sizeof(pt_element_t);
  423. for (j = 0; j < ARRAY_SIZE(pt); ++j)
  424. if (r || is_present_pte(pt[j]))
  425. sp->spt[i+j] = shadow_trap_nonpresent_pte;
  426. else
  427. sp->spt[i+j] = shadow_notrap_nonpresent_pte;
  428. }
  429. }
  430. #undef pt_element_t
  431. #undef guest_walker
  432. #undef FNAME
  433. #undef PT_BASE_ADDR_MASK
  434. #undef PT_INDEX
  435. #undef SHADOW_PT_INDEX
  436. #undef PT_LEVEL_MASK
  437. #undef PT_DIR_BASE_ADDR_MASK
  438. #undef PT_LEVEL_BITS
  439. #undef PT_MAX_FULL_LEVELS
  440. #undef gpte_to_gfn
  441. #undef gpte_to_gfn_pde
  442. #undef CMPXCHG