mmu.c 58 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 0;
  57. module_param(dbg, bool, 0644);
  58. #endif
  59. #ifndef MMU_DEBUG
  60. #define ASSERT(x) do { } while (0)
  61. #else
  62. #define ASSERT(x) \
  63. if (!(x)) { \
  64. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  65. __FILE__, __LINE__, #x); \
  66. }
  67. #endif
  68. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  69. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  70. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  71. #define PT64_LEVEL_BITS 9
  72. #define PT64_LEVEL_SHIFT(level) \
  73. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  74. #define PT64_LEVEL_MASK(level) \
  75. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  76. #define PT64_INDEX(address, level)\
  77. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  78. #define PT32_LEVEL_BITS 10
  79. #define PT32_LEVEL_SHIFT(level) \
  80. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  81. #define PT32_LEVEL_MASK(level) \
  82. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  83. #define PT32_INDEX(address, level)\
  84. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  85. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  86. #define PT64_DIR_BASE_ADDR_MASK \
  87. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  88. #define PT32_BASE_ADDR_MASK PAGE_MASK
  89. #define PT32_DIR_BASE_ADDR_MASK \
  90. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  91. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  92. | PT64_NX_MASK)
  93. #define PFERR_PRESENT_MASK (1U << 0)
  94. #define PFERR_WRITE_MASK (1U << 1)
  95. #define PFERR_USER_MASK (1U << 2)
  96. #define PFERR_FETCH_MASK (1U << 4)
  97. #define PT_DIRECTORY_LEVEL 2
  98. #define PT_PAGE_TABLE_LEVEL 1
  99. #define RMAP_EXT 4
  100. #define ACC_EXEC_MASK 1
  101. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  102. #define ACC_USER_MASK PT_USER_MASK
  103. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  104. struct kvm_pv_mmu_op_buffer {
  105. void *ptr;
  106. unsigned len;
  107. unsigned processed;
  108. char buf[512] __aligned(sizeof(long));
  109. };
  110. struct kvm_rmap_desc {
  111. u64 *shadow_ptes[RMAP_EXT];
  112. struct kvm_rmap_desc *more;
  113. };
  114. static struct kmem_cache *pte_chain_cache;
  115. static struct kmem_cache *rmap_desc_cache;
  116. static struct kmem_cache *mmu_page_header_cache;
  117. static u64 __read_mostly shadow_trap_nonpresent_pte;
  118. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  119. static u64 __read_mostly shadow_base_present_pte;
  120. static u64 __read_mostly shadow_nx_mask;
  121. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  122. static u64 __read_mostly shadow_user_mask;
  123. static u64 __read_mostly shadow_accessed_mask;
  124. static u64 __read_mostly shadow_dirty_mask;
  125. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  126. {
  127. shadow_trap_nonpresent_pte = trap_pte;
  128. shadow_notrap_nonpresent_pte = notrap_pte;
  129. }
  130. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  131. void kvm_mmu_set_base_ptes(u64 base_pte)
  132. {
  133. shadow_base_present_pte = base_pte;
  134. }
  135. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  136. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  137. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  138. {
  139. shadow_user_mask = user_mask;
  140. shadow_accessed_mask = accessed_mask;
  141. shadow_dirty_mask = dirty_mask;
  142. shadow_nx_mask = nx_mask;
  143. shadow_x_mask = x_mask;
  144. }
  145. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  146. static int is_write_protection(struct kvm_vcpu *vcpu)
  147. {
  148. return vcpu->arch.cr0 & X86_CR0_WP;
  149. }
  150. static int is_cpuid_PSE36(void)
  151. {
  152. return 1;
  153. }
  154. static int is_nx(struct kvm_vcpu *vcpu)
  155. {
  156. return vcpu->arch.shadow_efer & EFER_NX;
  157. }
  158. static int is_present_pte(unsigned long pte)
  159. {
  160. return pte & PT_PRESENT_MASK;
  161. }
  162. static int is_shadow_present_pte(u64 pte)
  163. {
  164. return pte != shadow_trap_nonpresent_pte
  165. && pte != shadow_notrap_nonpresent_pte;
  166. }
  167. static int is_large_pte(u64 pte)
  168. {
  169. return pte & PT_PAGE_SIZE_MASK;
  170. }
  171. static int is_writeble_pte(unsigned long pte)
  172. {
  173. return pte & PT_WRITABLE_MASK;
  174. }
  175. static int is_dirty_pte(unsigned long pte)
  176. {
  177. return pte & shadow_dirty_mask;
  178. }
  179. static int is_rmap_pte(u64 pte)
  180. {
  181. return is_shadow_present_pte(pte);
  182. }
  183. static pfn_t spte_to_pfn(u64 pte)
  184. {
  185. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  186. }
  187. static gfn_t pse36_gfn_delta(u32 gpte)
  188. {
  189. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  190. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  191. }
  192. static void set_shadow_pte(u64 *sptep, u64 spte)
  193. {
  194. #ifdef CONFIG_X86_64
  195. set_64bit((unsigned long *)sptep, spte);
  196. #else
  197. set_64bit((unsigned long long *)sptep, spte);
  198. #endif
  199. }
  200. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  201. struct kmem_cache *base_cache, int min)
  202. {
  203. void *obj;
  204. if (cache->nobjs >= min)
  205. return 0;
  206. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  207. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  208. if (!obj)
  209. return -ENOMEM;
  210. cache->objects[cache->nobjs++] = obj;
  211. }
  212. return 0;
  213. }
  214. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  215. {
  216. while (mc->nobjs)
  217. kfree(mc->objects[--mc->nobjs]);
  218. }
  219. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  220. int min)
  221. {
  222. struct page *page;
  223. if (cache->nobjs >= min)
  224. return 0;
  225. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  226. page = alloc_page(GFP_KERNEL);
  227. if (!page)
  228. return -ENOMEM;
  229. set_page_private(page, 0);
  230. cache->objects[cache->nobjs++] = page_address(page);
  231. }
  232. return 0;
  233. }
  234. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  235. {
  236. while (mc->nobjs)
  237. free_page((unsigned long)mc->objects[--mc->nobjs]);
  238. }
  239. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  240. {
  241. int r;
  242. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  243. pte_chain_cache, 4);
  244. if (r)
  245. goto out;
  246. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  247. rmap_desc_cache, 1);
  248. if (r)
  249. goto out;
  250. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  251. if (r)
  252. goto out;
  253. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  254. mmu_page_header_cache, 4);
  255. out:
  256. return r;
  257. }
  258. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  259. {
  260. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  261. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  262. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  263. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  264. }
  265. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  266. size_t size)
  267. {
  268. void *p;
  269. BUG_ON(!mc->nobjs);
  270. p = mc->objects[--mc->nobjs];
  271. memset(p, 0, size);
  272. return p;
  273. }
  274. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  275. {
  276. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  277. sizeof(struct kvm_pte_chain));
  278. }
  279. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  280. {
  281. kfree(pc);
  282. }
  283. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  284. {
  285. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  286. sizeof(struct kvm_rmap_desc));
  287. }
  288. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  289. {
  290. kfree(rd);
  291. }
  292. /*
  293. * Return the pointer to the largepage write count for a given
  294. * gfn, handling slots that are not large page aligned.
  295. */
  296. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  297. {
  298. unsigned long idx;
  299. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  300. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  301. return &slot->lpage_info[idx].write_count;
  302. }
  303. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  304. {
  305. int *write_count;
  306. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  307. *write_count += 1;
  308. }
  309. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  310. {
  311. int *write_count;
  312. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  313. *write_count -= 1;
  314. WARN_ON(*write_count < 0);
  315. }
  316. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  317. {
  318. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  319. int *largepage_idx;
  320. if (slot) {
  321. largepage_idx = slot_largepage_idx(gfn, slot);
  322. return *largepage_idx;
  323. }
  324. return 1;
  325. }
  326. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  327. {
  328. struct vm_area_struct *vma;
  329. unsigned long addr;
  330. addr = gfn_to_hva(kvm, gfn);
  331. if (kvm_is_error_hva(addr))
  332. return 0;
  333. vma = find_vma(current->mm, addr);
  334. if (vma && is_vm_hugetlb_page(vma))
  335. return 1;
  336. return 0;
  337. }
  338. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  339. {
  340. struct kvm_memory_slot *slot;
  341. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  342. return 0;
  343. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  344. return 0;
  345. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  346. if (slot && slot->dirty_bitmap)
  347. return 0;
  348. return 1;
  349. }
  350. /*
  351. * Take gfn and return the reverse mapping to it.
  352. * Note: gfn must be unaliased before this function get called
  353. */
  354. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  355. {
  356. struct kvm_memory_slot *slot;
  357. unsigned long idx;
  358. slot = gfn_to_memslot(kvm, gfn);
  359. if (!lpage)
  360. return &slot->rmap[gfn - slot->base_gfn];
  361. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  362. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  363. return &slot->lpage_info[idx].rmap_pde;
  364. }
  365. /*
  366. * Reverse mapping data structures:
  367. *
  368. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  369. * that points to page_address(page).
  370. *
  371. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  372. * containing more mappings.
  373. */
  374. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  375. {
  376. struct kvm_mmu_page *sp;
  377. struct kvm_rmap_desc *desc;
  378. unsigned long *rmapp;
  379. int i;
  380. if (!is_rmap_pte(*spte))
  381. return;
  382. gfn = unalias_gfn(vcpu->kvm, gfn);
  383. sp = page_header(__pa(spte));
  384. sp->gfns[spte - sp->spt] = gfn;
  385. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  386. if (!*rmapp) {
  387. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  388. *rmapp = (unsigned long)spte;
  389. } else if (!(*rmapp & 1)) {
  390. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  391. desc = mmu_alloc_rmap_desc(vcpu);
  392. desc->shadow_ptes[0] = (u64 *)*rmapp;
  393. desc->shadow_ptes[1] = spte;
  394. *rmapp = (unsigned long)desc | 1;
  395. } else {
  396. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  397. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  398. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  399. desc = desc->more;
  400. if (desc->shadow_ptes[RMAP_EXT-1]) {
  401. desc->more = mmu_alloc_rmap_desc(vcpu);
  402. desc = desc->more;
  403. }
  404. for (i = 0; desc->shadow_ptes[i]; ++i)
  405. ;
  406. desc->shadow_ptes[i] = spte;
  407. }
  408. }
  409. static void rmap_desc_remove_entry(unsigned long *rmapp,
  410. struct kvm_rmap_desc *desc,
  411. int i,
  412. struct kvm_rmap_desc *prev_desc)
  413. {
  414. int j;
  415. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  416. ;
  417. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  418. desc->shadow_ptes[j] = NULL;
  419. if (j != 0)
  420. return;
  421. if (!prev_desc && !desc->more)
  422. *rmapp = (unsigned long)desc->shadow_ptes[0];
  423. else
  424. if (prev_desc)
  425. prev_desc->more = desc->more;
  426. else
  427. *rmapp = (unsigned long)desc->more | 1;
  428. mmu_free_rmap_desc(desc);
  429. }
  430. static void rmap_remove(struct kvm *kvm, u64 *spte)
  431. {
  432. struct kvm_rmap_desc *desc;
  433. struct kvm_rmap_desc *prev_desc;
  434. struct kvm_mmu_page *sp;
  435. pfn_t pfn;
  436. unsigned long *rmapp;
  437. int i;
  438. if (!is_rmap_pte(*spte))
  439. return;
  440. sp = page_header(__pa(spte));
  441. pfn = spte_to_pfn(*spte);
  442. if (*spte & shadow_accessed_mask)
  443. kvm_set_pfn_accessed(pfn);
  444. if (is_writeble_pte(*spte))
  445. kvm_release_pfn_dirty(pfn);
  446. else
  447. kvm_release_pfn_clean(pfn);
  448. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  449. if (!*rmapp) {
  450. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  451. BUG();
  452. } else if (!(*rmapp & 1)) {
  453. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  454. if ((u64 *)*rmapp != spte) {
  455. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  456. spte, *spte);
  457. BUG();
  458. }
  459. *rmapp = 0;
  460. } else {
  461. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  462. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  463. prev_desc = NULL;
  464. while (desc) {
  465. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  466. if (desc->shadow_ptes[i] == spte) {
  467. rmap_desc_remove_entry(rmapp,
  468. desc, i,
  469. prev_desc);
  470. return;
  471. }
  472. prev_desc = desc;
  473. desc = desc->more;
  474. }
  475. BUG();
  476. }
  477. }
  478. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  479. {
  480. struct kvm_rmap_desc *desc;
  481. struct kvm_rmap_desc *prev_desc;
  482. u64 *prev_spte;
  483. int i;
  484. if (!*rmapp)
  485. return NULL;
  486. else if (!(*rmapp & 1)) {
  487. if (!spte)
  488. return (u64 *)*rmapp;
  489. return NULL;
  490. }
  491. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  492. prev_desc = NULL;
  493. prev_spte = NULL;
  494. while (desc) {
  495. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  496. if (prev_spte == spte)
  497. return desc->shadow_ptes[i];
  498. prev_spte = desc->shadow_ptes[i];
  499. }
  500. desc = desc->more;
  501. }
  502. return NULL;
  503. }
  504. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  505. {
  506. unsigned long *rmapp;
  507. u64 *spte;
  508. int write_protected = 0;
  509. gfn = unalias_gfn(kvm, gfn);
  510. rmapp = gfn_to_rmap(kvm, gfn, 0);
  511. spte = rmap_next(kvm, rmapp, NULL);
  512. while (spte) {
  513. BUG_ON(!spte);
  514. BUG_ON(!(*spte & PT_PRESENT_MASK));
  515. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  516. if (is_writeble_pte(*spte)) {
  517. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  518. write_protected = 1;
  519. }
  520. spte = rmap_next(kvm, rmapp, spte);
  521. }
  522. if (write_protected) {
  523. pfn_t pfn;
  524. spte = rmap_next(kvm, rmapp, NULL);
  525. pfn = spte_to_pfn(*spte);
  526. kvm_set_pfn_dirty(pfn);
  527. }
  528. /* check for huge page mappings */
  529. rmapp = gfn_to_rmap(kvm, gfn, 1);
  530. spte = rmap_next(kvm, rmapp, NULL);
  531. while (spte) {
  532. BUG_ON(!spte);
  533. BUG_ON(!(*spte & PT_PRESENT_MASK));
  534. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  535. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  536. if (is_writeble_pte(*spte)) {
  537. rmap_remove(kvm, spte);
  538. --kvm->stat.lpages;
  539. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  540. spte = NULL;
  541. write_protected = 1;
  542. }
  543. spte = rmap_next(kvm, rmapp, spte);
  544. }
  545. if (write_protected)
  546. kvm_flush_remote_tlbs(kvm);
  547. account_shadowed(kvm, gfn);
  548. }
  549. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp)
  550. {
  551. u64 *spte;
  552. int need_tlb_flush = 0;
  553. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  554. BUG_ON(!(*spte & PT_PRESENT_MASK));
  555. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  556. rmap_remove(kvm, spte);
  557. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  558. need_tlb_flush = 1;
  559. }
  560. return need_tlb_flush;
  561. }
  562. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  563. int (*handler)(struct kvm *kvm, unsigned long *rmapp))
  564. {
  565. int i;
  566. int retval = 0;
  567. /*
  568. * If mmap_sem isn't taken, we can look the memslots with only
  569. * the mmu_lock by skipping over the slots with userspace_addr == 0.
  570. */
  571. for (i = 0; i < kvm->nmemslots; i++) {
  572. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  573. unsigned long start = memslot->userspace_addr;
  574. unsigned long end;
  575. /* mmu_lock protects userspace_addr */
  576. if (!start)
  577. continue;
  578. end = start + (memslot->npages << PAGE_SHIFT);
  579. if (hva >= start && hva < end) {
  580. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  581. retval |= handler(kvm, &memslot->rmap[gfn_offset]);
  582. retval |= handler(kvm,
  583. &memslot->lpage_info[
  584. gfn_offset /
  585. KVM_PAGES_PER_HPAGE].rmap_pde);
  586. }
  587. }
  588. return retval;
  589. }
  590. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  591. {
  592. return kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
  593. }
  594. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp)
  595. {
  596. u64 *spte;
  597. int young = 0;
  598. /* always return old for EPT */
  599. if (!shadow_accessed_mask)
  600. return 0;
  601. spte = rmap_next(kvm, rmapp, NULL);
  602. while (spte) {
  603. int _young;
  604. u64 _spte = *spte;
  605. BUG_ON(!(_spte & PT_PRESENT_MASK));
  606. _young = _spte & PT_ACCESSED_MASK;
  607. if (_young) {
  608. young = 1;
  609. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  610. }
  611. spte = rmap_next(kvm, rmapp, spte);
  612. }
  613. return young;
  614. }
  615. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  616. {
  617. return kvm_handle_hva(kvm, hva, kvm_age_rmapp);
  618. }
  619. #ifdef MMU_DEBUG
  620. static int is_empty_shadow_page(u64 *spt)
  621. {
  622. u64 *pos;
  623. u64 *end;
  624. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  625. if (is_shadow_present_pte(*pos)) {
  626. printk(KERN_ERR "%s: %p %llx\n", __func__,
  627. pos, *pos);
  628. return 0;
  629. }
  630. return 1;
  631. }
  632. #endif
  633. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  634. {
  635. ASSERT(is_empty_shadow_page(sp->spt));
  636. list_del(&sp->link);
  637. __free_page(virt_to_page(sp->spt));
  638. __free_page(virt_to_page(sp->gfns));
  639. kfree(sp);
  640. ++kvm->arch.n_free_mmu_pages;
  641. }
  642. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  643. {
  644. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  645. }
  646. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  647. u64 *parent_pte)
  648. {
  649. struct kvm_mmu_page *sp;
  650. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  651. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  652. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  653. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  654. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  655. ASSERT(is_empty_shadow_page(sp->spt));
  656. sp->slot_bitmap = 0;
  657. sp->multimapped = 0;
  658. sp->parent_pte = parent_pte;
  659. --vcpu->kvm->arch.n_free_mmu_pages;
  660. return sp;
  661. }
  662. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  663. struct kvm_mmu_page *sp, u64 *parent_pte)
  664. {
  665. struct kvm_pte_chain *pte_chain;
  666. struct hlist_node *node;
  667. int i;
  668. if (!parent_pte)
  669. return;
  670. if (!sp->multimapped) {
  671. u64 *old = sp->parent_pte;
  672. if (!old) {
  673. sp->parent_pte = parent_pte;
  674. return;
  675. }
  676. sp->multimapped = 1;
  677. pte_chain = mmu_alloc_pte_chain(vcpu);
  678. INIT_HLIST_HEAD(&sp->parent_ptes);
  679. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  680. pte_chain->parent_ptes[0] = old;
  681. }
  682. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  683. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  684. continue;
  685. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  686. if (!pte_chain->parent_ptes[i]) {
  687. pte_chain->parent_ptes[i] = parent_pte;
  688. return;
  689. }
  690. }
  691. pte_chain = mmu_alloc_pte_chain(vcpu);
  692. BUG_ON(!pte_chain);
  693. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  694. pte_chain->parent_ptes[0] = parent_pte;
  695. }
  696. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  697. u64 *parent_pte)
  698. {
  699. struct kvm_pte_chain *pte_chain;
  700. struct hlist_node *node;
  701. int i;
  702. if (!sp->multimapped) {
  703. BUG_ON(sp->parent_pte != parent_pte);
  704. sp->parent_pte = NULL;
  705. return;
  706. }
  707. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  708. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  709. if (!pte_chain->parent_ptes[i])
  710. break;
  711. if (pte_chain->parent_ptes[i] != parent_pte)
  712. continue;
  713. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  714. && pte_chain->parent_ptes[i + 1]) {
  715. pte_chain->parent_ptes[i]
  716. = pte_chain->parent_ptes[i + 1];
  717. ++i;
  718. }
  719. pte_chain->parent_ptes[i] = NULL;
  720. if (i == 0) {
  721. hlist_del(&pte_chain->link);
  722. mmu_free_pte_chain(pte_chain);
  723. if (hlist_empty(&sp->parent_ptes)) {
  724. sp->multimapped = 0;
  725. sp->parent_pte = NULL;
  726. }
  727. }
  728. return;
  729. }
  730. BUG();
  731. }
  732. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  733. struct kvm_mmu_page *sp)
  734. {
  735. int i;
  736. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  737. sp->spt[i] = shadow_trap_nonpresent_pte;
  738. }
  739. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  740. {
  741. unsigned index;
  742. struct hlist_head *bucket;
  743. struct kvm_mmu_page *sp;
  744. struct hlist_node *node;
  745. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  746. index = kvm_page_table_hashfn(gfn);
  747. bucket = &kvm->arch.mmu_page_hash[index];
  748. hlist_for_each_entry(sp, node, bucket, hash_link)
  749. if (sp->gfn == gfn && !sp->role.metaphysical
  750. && !sp->role.invalid) {
  751. pgprintk("%s: found role %x\n",
  752. __func__, sp->role.word);
  753. return sp;
  754. }
  755. return NULL;
  756. }
  757. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  758. gfn_t gfn,
  759. gva_t gaddr,
  760. unsigned level,
  761. int metaphysical,
  762. unsigned access,
  763. u64 *parent_pte)
  764. {
  765. union kvm_mmu_page_role role;
  766. unsigned index;
  767. unsigned quadrant;
  768. struct hlist_head *bucket;
  769. struct kvm_mmu_page *sp;
  770. struct hlist_node *node;
  771. role.word = 0;
  772. role.glevels = vcpu->arch.mmu.root_level;
  773. role.level = level;
  774. role.metaphysical = metaphysical;
  775. role.access = access;
  776. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  777. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  778. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  779. role.quadrant = quadrant;
  780. }
  781. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  782. gfn, role.word);
  783. index = kvm_page_table_hashfn(gfn);
  784. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  785. hlist_for_each_entry(sp, node, bucket, hash_link)
  786. if (sp->gfn == gfn && sp->role.word == role.word) {
  787. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  788. pgprintk("%s: found\n", __func__);
  789. return sp;
  790. }
  791. ++vcpu->kvm->stat.mmu_cache_miss;
  792. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  793. if (!sp)
  794. return sp;
  795. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  796. sp->gfn = gfn;
  797. sp->role = role;
  798. hlist_add_head(&sp->hash_link, bucket);
  799. if (!metaphysical)
  800. rmap_write_protect(vcpu->kvm, gfn);
  801. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  802. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  803. else
  804. nonpaging_prefetch_page(vcpu, sp);
  805. return sp;
  806. }
  807. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  808. struct kvm_mmu_page *sp)
  809. {
  810. unsigned i;
  811. u64 *pt;
  812. u64 ent;
  813. pt = sp->spt;
  814. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  815. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  816. if (is_shadow_present_pte(pt[i]))
  817. rmap_remove(kvm, &pt[i]);
  818. pt[i] = shadow_trap_nonpresent_pte;
  819. }
  820. kvm_flush_remote_tlbs(kvm);
  821. return;
  822. }
  823. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  824. ent = pt[i];
  825. if (is_shadow_present_pte(ent)) {
  826. if (!is_large_pte(ent)) {
  827. ent &= PT64_BASE_ADDR_MASK;
  828. mmu_page_remove_parent_pte(page_header(ent),
  829. &pt[i]);
  830. } else {
  831. --kvm->stat.lpages;
  832. rmap_remove(kvm, &pt[i]);
  833. }
  834. }
  835. pt[i] = shadow_trap_nonpresent_pte;
  836. }
  837. kvm_flush_remote_tlbs(kvm);
  838. }
  839. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  840. {
  841. mmu_page_remove_parent_pte(sp, parent_pte);
  842. }
  843. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  844. {
  845. int i;
  846. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  847. if (kvm->vcpus[i])
  848. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  849. }
  850. static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  851. {
  852. u64 *parent_pte;
  853. ++kvm->stat.mmu_shadow_zapped;
  854. while (sp->multimapped || sp->parent_pte) {
  855. if (!sp->multimapped)
  856. parent_pte = sp->parent_pte;
  857. else {
  858. struct kvm_pte_chain *chain;
  859. chain = container_of(sp->parent_ptes.first,
  860. struct kvm_pte_chain, link);
  861. parent_pte = chain->parent_ptes[0];
  862. }
  863. BUG_ON(!parent_pte);
  864. kvm_mmu_put_page(sp, parent_pte);
  865. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  866. }
  867. kvm_mmu_page_unlink_children(kvm, sp);
  868. if (!sp->root_count) {
  869. if (!sp->role.metaphysical && !sp->role.invalid)
  870. unaccount_shadowed(kvm, sp->gfn);
  871. hlist_del(&sp->hash_link);
  872. kvm_mmu_free_page(kvm, sp);
  873. } else {
  874. int invalid = sp->role.invalid;
  875. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  876. sp->role.invalid = 1;
  877. kvm_reload_remote_mmus(kvm);
  878. if (!sp->role.metaphysical && !invalid)
  879. unaccount_shadowed(kvm, sp->gfn);
  880. }
  881. kvm_mmu_reset_last_pte_updated(kvm);
  882. }
  883. /*
  884. * Changing the number of mmu pages allocated to the vm
  885. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  886. */
  887. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  888. {
  889. /*
  890. * If we set the number of mmu pages to be smaller be than the
  891. * number of actived pages , we must to free some mmu pages before we
  892. * change the value
  893. */
  894. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  895. kvm_nr_mmu_pages) {
  896. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  897. - kvm->arch.n_free_mmu_pages;
  898. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  899. struct kvm_mmu_page *page;
  900. page = container_of(kvm->arch.active_mmu_pages.prev,
  901. struct kvm_mmu_page, link);
  902. kvm_mmu_zap_page(kvm, page);
  903. n_used_mmu_pages--;
  904. }
  905. kvm->arch.n_free_mmu_pages = 0;
  906. }
  907. else
  908. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  909. - kvm->arch.n_alloc_mmu_pages;
  910. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  911. }
  912. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  913. {
  914. unsigned index;
  915. struct hlist_head *bucket;
  916. struct kvm_mmu_page *sp;
  917. struct hlist_node *node, *n;
  918. int r;
  919. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  920. r = 0;
  921. index = kvm_page_table_hashfn(gfn);
  922. bucket = &kvm->arch.mmu_page_hash[index];
  923. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  924. if (sp->gfn == gfn && !sp->role.metaphysical) {
  925. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  926. sp->role.word);
  927. kvm_mmu_zap_page(kvm, sp);
  928. r = 1;
  929. }
  930. return r;
  931. }
  932. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  933. {
  934. struct kvm_mmu_page *sp;
  935. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  936. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  937. kvm_mmu_zap_page(kvm, sp);
  938. }
  939. }
  940. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  941. {
  942. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  943. struct kvm_mmu_page *sp = page_header(__pa(pte));
  944. __set_bit(slot, &sp->slot_bitmap);
  945. }
  946. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  947. {
  948. struct page *page;
  949. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  950. if (gpa == UNMAPPED_GVA)
  951. return NULL;
  952. down_read(&current->mm->mmap_sem);
  953. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  954. up_read(&current->mm->mmap_sem);
  955. return page;
  956. }
  957. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  958. unsigned pt_access, unsigned pte_access,
  959. int user_fault, int write_fault, int dirty,
  960. int *ptwrite, int largepage, gfn_t gfn,
  961. pfn_t pfn, bool speculative)
  962. {
  963. u64 spte;
  964. int was_rmapped = 0;
  965. int was_writeble = is_writeble_pte(*shadow_pte);
  966. pgprintk("%s: spte %llx access %x write_fault %d"
  967. " user_fault %d gfn %lx\n",
  968. __func__, *shadow_pte, pt_access,
  969. write_fault, user_fault, gfn);
  970. if (is_rmap_pte(*shadow_pte)) {
  971. /*
  972. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  973. * the parent of the now unreachable PTE.
  974. */
  975. if (largepage && !is_large_pte(*shadow_pte)) {
  976. struct kvm_mmu_page *child;
  977. u64 pte = *shadow_pte;
  978. child = page_header(pte & PT64_BASE_ADDR_MASK);
  979. mmu_page_remove_parent_pte(child, shadow_pte);
  980. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  981. pgprintk("hfn old %lx new %lx\n",
  982. spte_to_pfn(*shadow_pte), pfn);
  983. rmap_remove(vcpu->kvm, shadow_pte);
  984. } else {
  985. if (largepage)
  986. was_rmapped = is_large_pte(*shadow_pte);
  987. else
  988. was_rmapped = 1;
  989. }
  990. }
  991. /*
  992. * We don't set the accessed bit, since we sometimes want to see
  993. * whether the guest actually used the pte (in order to detect
  994. * demand paging).
  995. */
  996. spte = shadow_base_present_pte | shadow_dirty_mask;
  997. if (!speculative)
  998. pte_access |= PT_ACCESSED_MASK;
  999. if (!dirty)
  1000. pte_access &= ~ACC_WRITE_MASK;
  1001. if (pte_access & ACC_EXEC_MASK)
  1002. spte |= shadow_x_mask;
  1003. else
  1004. spte |= shadow_nx_mask;
  1005. if (pte_access & ACC_USER_MASK)
  1006. spte |= shadow_user_mask;
  1007. if (largepage)
  1008. spte |= PT_PAGE_SIZE_MASK;
  1009. spte |= (u64)pfn << PAGE_SHIFT;
  1010. if ((pte_access & ACC_WRITE_MASK)
  1011. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  1012. struct kvm_mmu_page *shadow;
  1013. spte |= PT_WRITABLE_MASK;
  1014. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  1015. if (shadow ||
  1016. (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
  1017. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1018. __func__, gfn);
  1019. pte_access &= ~ACC_WRITE_MASK;
  1020. if (is_writeble_pte(spte)) {
  1021. spte &= ~PT_WRITABLE_MASK;
  1022. kvm_x86_ops->tlb_flush(vcpu);
  1023. }
  1024. if (write_fault)
  1025. *ptwrite = 1;
  1026. }
  1027. }
  1028. if (pte_access & ACC_WRITE_MASK)
  1029. mark_page_dirty(vcpu->kvm, gfn);
  1030. pgprintk("%s: setting spte %llx\n", __func__, spte);
  1031. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1032. (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
  1033. (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
  1034. set_shadow_pte(shadow_pte, spte);
  1035. if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
  1036. && (spte & PT_PRESENT_MASK))
  1037. ++vcpu->kvm->stat.lpages;
  1038. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  1039. if (!was_rmapped) {
  1040. rmap_add(vcpu, shadow_pte, gfn, largepage);
  1041. if (!is_rmap_pte(*shadow_pte))
  1042. kvm_release_pfn_clean(pfn);
  1043. } else {
  1044. if (was_writeble)
  1045. kvm_release_pfn_dirty(pfn);
  1046. else
  1047. kvm_release_pfn_clean(pfn);
  1048. }
  1049. if (speculative) {
  1050. vcpu->arch.last_pte_updated = shadow_pte;
  1051. vcpu->arch.last_pte_gfn = gfn;
  1052. }
  1053. }
  1054. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1055. {
  1056. }
  1057. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1058. int largepage, gfn_t gfn, pfn_t pfn,
  1059. int level)
  1060. {
  1061. hpa_t table_addr = vcpu->arch.mmu.root_hpa;
  1062. int pt_write = 0;
  1063. for (; ; level--) {
  1064. u32 index = PT64_INDEX(v, level);
  1065. u64 *table;
  1066. ASSERT(VALID_PAGE(table_addr));
  1067. table = __va(table_addr);
  1068. if (level == 1) {
  1069. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  1070. 0, write, 1, &pt_write, 0, gfn, pfn, false);
  1071. return pt_write;
  1072. }
  1073. if (largepage && level == 2) {
  1074. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  1075. 0, write, 1, &pt_write, 1, gfn, pfn, false);
  1076. return pt_write;
  1077. }
  1078. if (table[index] == shadow_trap_nonpresent_pte) {
  1079. struct kvm_mmu_page *new_table;
  1080. gfn_t pseudo_gfn;
  1081. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  1082. >> PAGE_SHIFT;
  1083. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  1084. v, level - 1,
  1085. 1, ACC_ALL, &table[index]);
  1086. if (!new_table) {
  1087. pgprintk("nonpaging_map: ENOMEM\n");
  1088. kvm_release_pfn_clean(pfn);
  1089. return -ENOMEM;
  1090. }
  1091. set_shadow_pte(&table[index],
  1092. __pa(new_table->spt)
  1093. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1094. | shadow_user_mask | shadow_x_mask);
  1095. }
  1096. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  1097. }
  1098. }
  1099. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1100. {
  1101. int r;
  1102. int largepage = 0;
  1103. pfn_t pfn;
  1104. unsigned long mmu_seq;
  1105. down_read(&current->mm->mmap_sem);
  1106. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1107. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1108. largepage = 1;
  1109. }
  1110. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1111. /* implicit mb(), we'll read before PT lock is unlocked */
  1112. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1113. up_read(&current->mm->mmap_sem);
  1114. /* mmio */
  1115. if (is_error_pfn(pfn)) {
  1116. kvm_release_pfn_clean(pfn);
  1117. return 1;
  1118. }
  1119. spin_lock(&vcpu->kvm->mmu_lock);
  1120. if (mmu_notifier_retry(vcpu, mmu_seq))
  1121. goto out_unlock;
  1122. kvm_mmu_free_some_pages(vcpu);
  1123. r = __direct_map(vcpu, v, write, largepage, gfn, pfn,
  1124. PT32E_ROOT_LEVEL);
  1125. spin_unlock(&vcpu->kvm->mmu_lock);
  1126. return r;
  1127. out_unlock:
  1128. spin_unlock(&vcpu->kvm->mmu_lock);
  1129. kvm_release_pfn_clean(pfn);
  1130. return 0;
  1131. }
  1132. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1133. {
  1134. int i;
  1135. struct kvm_mmu_page *sp;
  1136. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1137. return;
  1138. spin_lock(&vcpu->kvm->mmu_lock);
  1139. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1140. hpa_t root = vcpu->arch.mmu.root_hpa;
  1141. sp = page_header(root);
  1142. --sp->root_count;
  1143. if (!sp->root_count && sp->role.invalid)
  1144. kvm_mmu_zap_page(vcpu->kvm, sp);
  1145. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1146. spin_unlock(&vcpu->kvm->mmu_lock);
  1147. return;
  1148. }
  1149. for (i = 0; i < 4; ++i) {
  1150. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1151. if (root) {
  1152. root &= PT64_BASE_ADDR_MASK;
  1153. sp = page_header(root);
  1154. --sp->root_count;
  1155. if (!sp->root_count && sp->role.invalid)
  1156. kvm_mmu_zap_page(vcpu->kvm, sp);
  1157. }
  1158. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1159. }
  1160. spin_unlock(&vcpu->kvm->mmu_lock);
  1161. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1162. }
  1163. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1164. {
  1165. int i;
  1166. gfn_t root_gfn;
  1167. struct kvm_mmu_page *sp;
  1168. int metaphysical = 0;
  1169. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1170. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1171. hpa_t root = vcpu->arch.mmu.root_hpa;
  1172. ASSERT(!VALID_PAGE(root));
  1173. if (tdp_enabled)
  1174. metaphysical = 1;
  1175. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1176. PT64_ROOT_LEVEL, metaphysical,
  1177. ACC_ALL, NULL);
  1178. root = __pa(sp->spt);
  1179. ++sp->root_count;
  1180. vcpu->arch.mmu.root_hpa = root;
  1181. return;
  1182. }
  1183. metaphysical = !is_paging(vcpu);
  1184. if (tdp_enabled)
  1185. metaphysical = 1;
  1186. for (i = 0; i < 4; ++i) {
  1187. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1188. ASSERT(!VALID_PAGE(root));
  1189. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1190. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1191. vcpu->arch.mmu.pae_root[i] = 0;
  1192. continue;
  1193. }
  1194. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1195. } else if (vcpu->arch.mmu.root_level == 0)
  1196. root_gfn = 0;
  1197. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1198. PT32_ROOT_LEVEL, metaphysical,
  1199. ACC_ALL, NULL);
  1200. root = __pa(sp->spt);
  1201. ++sp->root_count;
  1202. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1203. }
  1204. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1205. }
  1206. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1207. {
  1208. return vaddr;
  1209. }
  1210. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1211. u32 error_code)
  1212. {
  1213. gfn_t gfn;
  1214. int r;
  1215. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1216. r = mmu_topup_memory_caches(vcpu);
  1217. if (r)
  1218. return r;
  1219. ASSERT(vcpu);
  1220. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1221. gfn = gva >> PAGE_SHIFT;
  1222. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1223. error_code & PFERR_WRITE_MASK, gfn);
  1224. }
  1225. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1226. u32 error_code)
  1227. {
  1228. pfn_t pfn;
  1229. int r;
  1230. int largepage = 0;
  1231. gfn_t gfn = gpa >> PAGE_SHIFT;
  1232. unsigned long mmu_seq;
  1233. ASSERT(vcpu);
  1234. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1235. r = mmu_topup_memory_caches(vcpu);
  1236. if (r)
  1237. return r;
  1238. down_read(&current->mm->mmap_sem);
  1239. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1240. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1241. largepage = 1;
  1242. }
  1243. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1244. /* implicit mb(), we'll read before PT lock is unlocked */
  1245. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1246. up_read(&current->mm->mmap_sem);
  1247. if (is_error_pfn(pfn)) {
  1248. kvm_release_pfn_clean(pfn);
  1249. return 1;
  1250. }
  1251. spin_lock(&vcpu->kvm->mmu_lock);
  1252. if (mmu_notifier_retry(vcpu, mmu_seq))
  1253. goto out_unlock;
  1254. kvm_mmu_free_some_pages(vcpu);
  1255. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1256. largepage, gfn, pfn, kvm_x86_ops->get_tdp_level());
  1257. spin_unlock(&vcpu->kvm->mmu_lock);
  1258. return r;
  1259. out_unlock:
  1260. spin_unlock(&vcpu->kvm->mmu_lock);
  1261. kvm_release_pfn_clean(pfn);
  1262. return 0;
  1263. }
  1264. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1265. {
  1266. mmu_free_roots(vcpu);
  1267. }
  1268. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1269. {
  1270. struct kvm_mmu *context = &vcpu->arch.mmu;
  1271. context->new_cr3 = nonpaging_new_cr3;
  1272. context->page_fault = nonpaging_page_fault;
  1273. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1274. context->free = nonpaging_free;
  1275. context->prefetch_page = nonpaging_prefetch_page;
  1276. context->root_level = 0;
  1277. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1278. context->root_hpa = INVALID_PAGE;
  1279. return 0;
  1280. }
  1281. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1282. {
  1283. ++vcpu->stat.tlb_flush;
  1284. kvm_x86_ops->tlb_flush(vcpu);
  1285. }
  1286. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1287. {
  1288. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1289. mmu_free_roots(vcpu);
  1290. }
  1291. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1292. u64 addr,
  1293. u32 err_code)
  1294. {
  1295. kvm_inject_page_fault(vcpu, addr, err_code);
  1296. }
  1297. static void paging_free(struct kvm_vcpu *vcpu)
  1298. {
  1299. nonpaging_free(vcpu);
  1300. }
  1301. #define PTTYPE 64
  1302. #include "paging_tmpl.h"
  1303. #undef PTTYPE
  1304. #define PTTYPE 32
  1305. #include "paging_tmpl.h"
  1306. #undef PTTYPE
  1307. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1308. {
  1309. struct kvm_mmu *context = &vcpu->arch.mmu;
  1310. ASSERT(is_pae(vcpu));
  1311. context->new_cr3 = paging_new_cr3;
  1312. context->page_fault = paging64_page_fault;
  1313. context->gva_to_gpa = paging64_gva_to_gpa;
  1314. context->prefetch_page = paging64_prefetch_page;
  1315. context->free = paging_free;
  1316. context->root_level = level;
  1317. context->shadow_root_level = level;
  1318. context->root_hpa = INVALID_PAGE;
  1319. return 0;
  1320. }
  1321. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1322. {
  1323. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1324. }
  1325. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1326. {
  1327. struct kvm_mmu *context = &vcpu->arch.mmu;
  1328. context->new_cr3 = paging_new_cr3;
  1329. context->page_fault = paging32_page_fault;
  1330. context->gva_to_gpa = paging32_gva_to_gpa;
  1331. context->free = paging_free;
  1332. context->prefetch_page = paging32_prefetch_page;
  1333. context->root_level = PT32_ROOT_LEVEL;
  1334. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1335. context->root_hpa = INVALID_PAGE;
  1336. return 0;
  1337. }
  1338. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1339. {
  1340. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1341. }
  1342. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1343. {
  1344. struct kvm_mmu *context = &vcpu->arch.mmu;
  1345. context->new_cr3 = nonpaging_new_cr3;
  1346. context->page_fault = tdp_page_fault;
  1347. context->free = nonpaging_free;
  1348. context->prefetch_page = nonpaging_prefetch_page;
  1349. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1350. context->root_hpa = INVALID_PAGE;
  1351. if (!is_paging(vcpu)) {
  1352. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1353. context->root_level = 0;
  1354. } else if (is_long_mode(vcpu)) {
  1355. context->gva_to_gpa = paging64_gva_to_gpa;
  1356. context->root_level = PT64_ROOT_LEVEL;
  1357. } else if (is_pae(vcpu)) {
  1358. context->gva_to_gpa = paging64_gva_to_gpa;
  1359. context->root_level = PT32E_ROOT_LEVEL;
  1360. } else {
  1361. context->gva_to_gpa = paging32_gva_to_gpa;
  1362. context->root_level = PT32_ROOT_LEVEL;
  1363. }
  1364. return 0;
  1365. }
  1366. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1367. {
  1368. ASSERT(vcpu);
  1369. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1370. if (!is_paging(vcpu))
  1371. return nonpaging_init_context(vcpu);
  1372. else if (is_long_mode(vcpu))
  1373. return paging64_init_context(vcpu);
  1374. else if (is_pae(vcpu))
  1375. return paging32E_init_context(vcpu);
  1376. else
  1377. return paging32_init_context(vcpu);
  1378. }
  1379. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1380. {
  1381. vcpu->arch.update_pte.pfn = bad_pfn;
  1382. if (tdp_enabled)
  1383. return init_kvm_tdp_mmu(vcpu);
  1384. else
  1385. return init_kvm_softmmu(vcpu);
  1386. }
  1387. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1388. {
  1389. ASSERT(vcpu);
  1390. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1391. vcpu->arch.mmu.free(vcpu);
  1392. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1393. }
  1394. }
  1395. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1396. {
  1397. destroy_kvm_mmu(vcpu);
  1398. return init_kvm_mmu(vcpu);
  1399. }
  1400. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1401. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1402. {
  1403. int r;
  1404. r = mmu_topup_memory_caches(vcpu);
  1405. if (r)
  1406. goto out;
  1407. spin_lock(&vcpu->kvm->mmu_lock);
  1408. kvm_mmu_free_some_pages(vcpu);
  1409. mmu_alloc_roots(vcpu);
  1410. spin_unlock(&vcpu->kvm->mmu_lock);
  1411. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1412. kvm_mmu_flush_tlb(vcpu);
  1413. out:
  1414. return r;
  1415. }
  1416. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1417. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1418. {
  1419. mmu_free_roots(vcpu);
  1420. }
  1421. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1422. struct kvm_mmu_page *sp,
  1423. u64 *spte)
  1424. {
  1425. u64 pte;
  1426. struct kvm_mmu_page *child;
  1427. pte = *spte;
  1428. if (is_shadow_present_pte(pte)) {
  1429. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1430. is_large_pte(pte))
  1431. rmap_remove(vcpu->kvm, spte);
  1432. else {
  1433. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1434. mmu_page_remove_parent_pte(child, spte);
  1435. }
  1436. }
  1437. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1438. if (is_large_pte(pte))
  1439. --vcpu->kvm->stat.lpages;
  1440. }
  1441. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1442. struct kvm_mmu_page *sp,
  1443. u64 *spte,
  1444. const void *new)
  1445. {
  1446. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1447. if (!vcpu->arch.update_pte.largepage ||
  1448. sp->role.glevels == PT32_ROOT_LEVEL) {
  1449. ++vcpu->kvm->stat.mmu_pde_zapped;
  1450. return;
  1451. }
  1452. }
  1453. ++vcpu->kvm->stat.mmu_pte_updated;
  1454. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1455. paging32_update_pte(vcpu, sp, spte, new);
  1456. else
  1457. paging64_update_pte(vcpu, sp, spte, new);
  1458. }
  1459. static bool need_remote_flush(u64 old, u64 new)
  1460. {
  1461. if (!is_shadow_present_pte(old))
  1462. return false;
  1463. if (!is_shadow_present_pte(new))
  1464. return true;
  1465. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1466. return true;
  1467. old ^= PT64_NX_MASK;
  1468. new ^= PT64_NX_MASK;
  1469. return (old & ~new & PT64_PERM_MASK) != 0;
  1470. }
  1471. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1472. {
  1473. if (need_remote_flush(old, new))
  1474. kvm_flush_remote_tlbs(vcpu->kvm);
  1475. else
  1476. kvm_mmu_flush_tlb(vcpu);
  1477. }
  1478. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1479. {
  1480. u64 *spte = vcpu->arch.last_pte_updated;
  1481. return !!(spte && (*spte & shadow_accessed_mask));
  1482. }
  1483. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1484. const u8 *new, int bytes)
  1485. {
  1486. gfn_t gfn;
  1487. int r;
  1488. u64 gpte = 0;
  1489. pfn_t pfn;
  1490. vcpu->arch.update_pte.largepage = 0;
  1491. if (bytes != 4 && bytes != 8)
  1492. return;
  1493. /*
  1494. * Assume that the pte write on a page table of the same type
  1495. * as the current vcpu paging mode. This is nearly always true
  1496. * (might be false while changing modes). Note it is verified later
  1497. * by update_pte().
  1498. */
  1499. if (is_pae(vcpu)) {
  1500. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1501. if ((bytes == 4) && (gpa % 4 == 0)) {
  1502. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1503. if (r)
  1504. return;
  1505. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1506. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1507. memcpy((void *)&gpte, new, 8);
  1508. }
  1509. } else {
  1510. if ((bytes == 4) && (gpa % 4 == 0))
  1511. memcpy((void *)&gpte, new, 4);
  1512. }
  1513. if (!is_present_pte(gpte))
  1514. return;
  1515. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1516. down_read(&current->mm->mmap_sem);
  1517. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  1518. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1519. vcpu->arch.update_pte.largepage = 1;
  1520. }
  1521. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1522. /* implicit mb(), we'll read before PT lock is unlocked */
  1523. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1524. up_read(&current->mm->mmap_sem);
  1525. if (is_error_pfn(pfn)) {
  1526. kvm_release_pfn_clean(pfn);
  1527. return;
  1528. }
  1529. vcpu->arch.update_pte.gfn = gfn;
  1530. vcpu->arch.update_pte.pfn = pfn;
  1531. }
  1532. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  1533. {
  1534. u64 *spte = vcpu->arch.last_pte_updated;
  1535. if (spte
  1536. && vcpu->arch.last_pte_gfn == gfn
  1537. && shadow_accessed_mask
  1538. && !(*spte & shadow_accessed_mask)
  1539. && is_shadow_present_pte(*spte))
  1540. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  1541. }
  1542. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1543. const u8 *new, int bytes)
  1544. {
  1545. gfn_t gfn = gpa >> PAGE_SHIFT;
  1546. struct kvm_mmu_page *sp;
  1547. struct hlist_node *node, *n;
  1548. struct hlist_head *bucket;
  1549. unsigned index;
  1550. u64 entry, gentry;
  1551. u64 *spte;
  1552. unsigned offset = offset_in_page(gpa);
  1553. unsigned pte_size;
  1554. unsigned page_offset;
  1555. unsigned misaligned;
  1556. unsigned quadrant;
  1557. int level;
  1558. int flooded = 0;
  1559. int npte;
  1560. int r;
  1561. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  1562. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1563. spin_lock(&vcpu->kvm->mmu_lock);
  1564. kvm_mmu_access_page(vcpu, gfn);
  1565. kvm_mmu_free_some_pages(vcpu);
  1566. ++vcpu->kvm->stat.mmu_pte_write;
  1567. kvm_mmu_audit(vcpu, "pre pte write");
  1568. if (gfn == vcpu->arch.last_pt_write_gfn
  1569. && !last_updated_pte_accessed(vcpu)) {
  1570. ++vcpu->arch.last_pt_write_count;
  1571. if (vcpu->arch.last_pt_write_count >= 3)
  1572. flooded = 1;
  1573. } else {
  1574. vcpu->arch.last_pt_write_gfn = gfn;
  1575. vcpu->arch.last_pt_write_count = 1;
  1576. vcpu->arch.last_pte_updated = NULL;
  1577. }
  1578. index = kvm_page_table_hashfn(gfn);
  1579. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1580. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1581. if (sp->gfn != gfn || sp->role.metaphysical)
  1582. continue;
  1583. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1584. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1585. misaligned |= bytes < 4;
  1586. if (misaligned || flooded) {
  1587. /*
  1588. * Misaligned accesses are too much trouble to fix
  1589. * up; also, they usually indicate a page is not used
  1590. * as a page table.
  1591. *
  1592. * If we're seeing too many writes to a page,
  1593. * it may no longer be a page table, or we may be
  1594. * forking, in which case it is better to unmap the
  1595. * page.
  1596. */
  1597. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1598. gpa, bytes, sp->role.word);
  1599. kvm_mmu_zap_page(vcpu->kvm, sp);
  1600. ++vcpu->kvm->stat.mmu_flooded;
  1601. continue;
  1602. }
  1603. page_offset = offset;
  1604. level = sp->role.level;
  1605. npte = 1;
  1606. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  1607. page_offset <<= 1; /* 32->64 */
  1608. /*
  1609. * A 32-bit pde maps 4MB while the shadow pdes map
  1610. * only 2MB. So we need to double the offset again
  1611. * and zap two pdes instead of one.
  1612. */
  1613. if (level == PT32_ROOT_LEVEL) {
  1614. page_offset &= ~7; /* kill rounding error */
  1615. page_offset <<= 1;
  1616. npte = 2;
  1617. }
  1618. quadrant = page_offset >> PAGE_SHIFT;
  1619. page_offset &= ~PAGE_MASK;
  1620. if (quadrant != sp->role.quadrant)
  1621. continue;
  1622. }
  1623. spte = &sp->spt[page_offset / sizeof(*spte)];
  1624. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  1625. gentry = 0;
  1626. r = kvm_read_guest_atomic(vcpu->kvm,
  1627. gpa & ~(u64)(pte_size - 1),
  1628. &gentry, pte_size);
  1629. new = (const void *)&gentry;
  1630. if (r < 0)
  1631. new = NULL;
  1632. }
  1633. while (npte--) {
  1634. entry = *spte;
  1635. mmu_pte_write_zap_pte(vcpu, sp, spte);
  1636. if (new)
  1637. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  1638. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1639. ++spte;
  1640. }
  1641. }
  1642. kvm_mmu_audit(vcpu, "post pte write");
  1643. spin_unlock(&vcpu->kvm->mmu_lock);
  1644. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  1645. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  1646. vcpu->arch.update_pte.pfn = bad_pfn;
  1647. }
  1648. }
  1649. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1650. {
  1651. gpa_t gpa;
  1652. int r;
  1653. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1654. spin_lock(&vcpu->kvm->mmu_lock);
  1655. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1656. spin_unlock(&vcpu->kvm->mmu_lock);
  1657. return r;
  1658. }
  1659. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  1660. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1661. {
  1662. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  1663. struct kvm_mmu_page *sp;
  1664. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  1665. struct kvm_mmu_page, link);
  1666. kvm_mmu_zap_page(vcpu->kvm, sp);
  1667. ++vcpu->kvm->stat.mmu_recycled;
  1668. }
  1669. }
  1670. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1671. {
  1672. int r;
  1673. enum emulation_result er;
  1674. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  1675. if (r < 0)
  1676. goto out;
  1677. if (!r) {
  1678. r = 1;
  1679. goto out;
  1680. }
  1681. r = mmu_topup_memory_caches(vcpu);
  1682. if (r)
  1683. goto out;
  1684. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1685. switch (er) {
  1686. case EMULATE_DONE:
  1687. return 1;
  1688. case EMULATE_DO_MMIO:
  1689. ++vcpu->stat.mmio_exits;
  1690. return 0;
  1691. case EMULATE_FAIL:
  1692. kvm_report_emulation_failure(vcpu, "pagetable");
  1693. return 1;
  1694. default:
  1695. BUG();
  1696. }
  1697. out:
  1698. return r;
  1699. }
  1700. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1701. void kvm_enable_tdp(void)
  1702. {
  1703. tdp_enabled = true;
  1704. }
  1705. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  1706. void kvm_disable_tdp(void)
  1707. {
  1708. tdp_enabled = false;
  1709. }
  1710. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  1711. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1712. {
  1713. struct kvm_mmu_page *sp;
  1714. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  1715. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  1716. struct kvm_mmu_page, link);
  1717. kvm_mmu_zap_page(vcpu->kvm, sp);
  1718. cond_resched();
  1719. }
  1720. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  1721. }
  1722. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1723. {
  1724. struct page *page;
  1725. int i;
  1726. ASSERT(vcpu);
  1727. if (vcpu->kvm->arch.n_requested_mmu_pages)
  1728. vcpu->kvm->arch.n_free_mmu_pages =
  1729. vcpu->kvm->arch.n_requested_mmu_pages;
  1730. else
  1731. vcpu->kvm->arch.n_free_mmu_pages =
  1732. vcpu->kvm->arch.n_alloc_mmu_pages;
  1733. /*
  1734. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1735. * Therefore we need to allocate shadow page tables in the first
  1736. * 4GB of memory, which happens to fit the DMA32 zone.
  1737. */
  1738. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1739. if (!page)
  1740. goto error_1;
  1741. vcpu->arch.mmu.pae_root = page_address(page);
  1742. for (i = 0; i < 4; ++i)
  1743. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1744. return 0;
  1745. error_1:
  1746. free_mmu_pages(vcpu);
  1747. return -ENOMEM;
  1748. }
  1749. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1750. {
  1751. ASSERT(vcpu);
  1752. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1753. return alloc_mmu_pages(vcpu);
  1754. }
  1755. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1756. {
  1757. ASSERT(vcpu);
  1758. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1759. return init_kvm_mmu(vcpu);
  1760. }
  1761. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1762. {
  1763. ASSERT(vcpu);
  1764. destroy_kvm_mmu(vcpu);
  1765. free_mmu_pages(vcpu);
  1766. mmu_free_memory_caches(vcpu);
  1767. }
  1768. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1769. {
  1770. struct kvm_mmu_page *sp;
  1771. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  1772. int i;
  1773. u64 *pt;
  1774. if (!test_bit(slot, &sp->slot_bitmap))
  1775. continue;
  1776. pt = sp->spt;
  1777. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1778. /* avoid RMW */
  1779. if (pt[i] & PT_WRITABLE_MASK)
  1780. pt[i] &= ~PT_WRITABLE_MASK;
  1781. }
  1782. }
  1783. void kvm_mmu_zap_all(struct kvm *kvm)
  1784. {
  1785. struct kvm_mmu_page *sp, *node;
  1786. spin_lock(&kvm->mmu_lock);
  1787. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  1788. kvm_mmu_zap_page(kvm, sp);
  1789. spin_unlock(&kvm->mmu_lock);
  1790. kvm_flush_remote_tlbs(kvm);
  1791. }
  1792. static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  1793. {
  1794. struct kvm_mmu_page *page;
  1795. page = container_of(kvm->arch.active_mmu_pages.prev,
  1796. struct kvm_mmu_page, link);
  1797. kvm_mmu_zap_page(kvm, page);
  1798. }
  1799. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  1800. {
  1801. struct kvm *kvm;
  1802. struct kvm *kvm_freed = NULL;
  1803. int cache_count = 0;
  1804. spin_lock(&kvm_lock);
  1805. list_for_each_entry(kvm, &vm_list, vm_list) {
  1806. int npages;
  1807. if (!down_read_trylock(&kvm->slots_lock))
  1808. continue;
  1809. spin_lock(&kvm->mmu_lock);
  1810. npages = kvm->arch.n_alloc_mmu_pages -
  1811. kvm->arch.n_free_mmu_pages;
  1812. cache_count += npages;
  1813. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  1814. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  1815. cache_count--;
  1816. kvm_freed = kvm;
  1817. }
  1818. nr_to_scan--;
  1819. spin_unlock(&kvm->mmu_lock);
  1820. up_read(&kvm->slots_lock);
  1821. }
  1822. if (kvm_freed)
  1823. list_move_tail(&kvm_freed->vm_list, &vm_list);
  1824. spin_unlock(&kvm_lock);
  1825. return cache_count;
  1826. }
  1827. static struct shrinker mmu_shrinker = {
  1828. .shrink = mmu_shrink,
  1829. .seeks = DEFAULT_SEEKS * 10,
  1830. };
  1831. static void mmu_destroy_caches(void)
  1832. {
  1833. if (pte_chain_cache)
  1834. kmem_cache_destroy(pte_chain_cache);
  1835. if (rmap_desc_cache)
  1836. kmem_cache_destroy(rmap_desc_cache);
  1837. if (mmu_page_header_cache)
  1838. kmem_cache_destroy(mmu_page_header_cache);
  1839. }
  1840. void kvm_mmu_module_exit(void)
  1841. {
  1842. mmu_destroy_caches();
  1843. unregister_shrinker(&mmu_shrinker);
  1844. }
  1845. int kvm_mmu_module_init(void)
  1846. {
  1847. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1848. sizeof(struct kvm_pte_chain),
  1849. 0, 0, NULL);
  1850. if (!pte_chain_cache)
  1851. goto nomem;
  1852. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1853. sizeof(struct kvm_rmap_desc),
  1854. 0, 0, NULL);
  1855. if (!rmap_desc_cache)
  1856. goto nomem;
  1857. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1858. sizeof(struct kvm_mmu_page),
  1859. 0, 0, NULL);
  1860. if (!mmu_page_header_cache)
  1861. goto nomem;
  1862. register_shrinker(&mmu_shrinker);
  1863. return 0;
  1864. nomem:
  1865. mmu_destroy_caches();
  1866. return -ENOMEM;
  1867. }
  1868. /*
  1869. * Caculate mmu pages needed for kvm.
  1870. */
  1871. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  1872. {
  1873. int i;
  1874. unsigned int nr_mmu_pages;
  1875. unsigned int nr_pages = 0;
  1876. for (i = 0; i < kvm->nmemslots; i++)
  1877. nr_pages += kvm->memslots[i].npages;
  1878. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  1879. nr_mmu_pages = max(nr_mmu_pages,
  1880. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  1881. return nr_mmu_pages;
  1882. }
  1883. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1884. unsigned len)
  1885. {
  1886. if (len > buffer->len)
  1887. return NULL;
  1888. return buffer->ptr;
  1889. }
  1890. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1891. unsigned len)
  1892. {
  1893. void *ret;
  1894. ret = pv_mmu_peek_buffer(buffer, len);
  1895. if (!ret)
  1896. return ret;
  1897. buffer->ptr += len;
  1898. buffer->len -= len;
  1899. buffer->processed += len;
  1900. return ret;
  1901. }
  1902. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  1903. gpa_t addr, gpa_t value)
  1904. {
  1905. int bytes = 8;
  1906. int r;
  1907. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  1908. bytes = 4;
  1909. r = mmu_topup_memory_caches(vcpu);
  1910. if (r)
  1911. return r;
  1912. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  1913. return -EFAULT;
  1914. return 1;
  1915. }
  1916. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1917. {
  1918. kvm_x86_ops->tlb_flush(vcpu);
  1919. return 1;
  1920. }
  1921. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  1922. {
  1923. spin_lock(&vcpu->kvm->mmu_lock);
  1924. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  1925. spin_unlock(&vcpu->kvm->mmu_lock);
  1926. return 1;
  1927. }
  1928. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  1929. struct kvm_pv_mmu_op_buffer *buffer)
  1930. {
  1931. struct kvm_mmu_op_header *header;
  1932. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  1933. if (!header)
  1934. return 0;
  1935. switch (header->op) {
  1936. case KVM_MMU_OP_WRITE_PTE: {
  1937. struct kvm_mmu_op_write_pte *wpte;
  1938. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  1939. if (!wpte)
  1940. return 0;
  1941. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  1942. wpte->pte_val);
  1943. }
  1944. case KVM_MMU_OP_FLUSH_TLB: {
  1945. struct kvm_mmu_op_flush_tlb *ftlb;
  1946. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  1947. if (!ftlb)
  1948. return 0;
  1949. return kvm_pv_mmu_flush_tlb(vcpu);
  1950. }
  1951. case KVM_MMU_OP_RELEASE_PT: {
  1952. struct kvm_mmu_op_release_pt *rpt;
  1953. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  1954. if (!rpt)
  1955. return 0;
  1956. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  1957. }
  1958. default: return 0;
  1959. }
  1960. }
  1961. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  1962. gpa_t addr, unsigned long *ret)
  1963. {
  1964. int r;
  1965. struct kvm_pv_mmu_op_buffer buffer;
  1966. buffer.ptr = buffer.buf;
  1967. buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
  1968. buffer.processed = 0;
  1969. r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
  1970. if (r)
  1971. goto out;
  1972. while (buffer.len) {
  1973. r = kvm_pv_mmu_op_one(vcpu, &buffer);
  1974. if (r < 0)
  1975. goto out;
  1976. if (r == 0)
  1977. break;
  1978. }
  1979. r = 1;
  1980. out:
  1981. *ret = buffer.processed;
  1982. return r;
  1983. }
  1984. #ifdef AUDIT
  1985. static const char *audit_msg;
  1986. static gva_t canonicalize(gva_t gva)
  1987. {
  1988. #ifdef CONFIG_X86_64
  1989. gva = (long long)(gva << 16) >> 16;
  1990. #endif
  1991. return gva;
  1992. }
  1993. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1994. gva_t va, int level)
  1995. {
  1996. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1997. int i;
  1998. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1999. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2000. u64 ent = pt[i];
  2001. if (ent == shadow_trap_nonpresent_pte)
  2002. continue;
  2003. va = canonicalize(va);
  2004. if (level > 1) {
  2005. if (ent == shadow_notrap_nonpresent_pte)
  2006. printk(KERN_ERR "audit: (%s) nontrapping pte"
  2007. " in nonleaf level: levels %d gva %lx"
  2008. " level %d pte %llx\n", audit_msg,
  2009. vcpu->arch.mmu.root_level, va, level, ent);
  2010. audit_mappings_page(vcpu, ent, va, level - 1);
  2011. } else {
  2012. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  2013. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  2014. if (is_shadow_present_pte(ent)
  2015. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2016. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2017. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2018. audit_msg, vcpu->arch.mmu.root_level,
  2019. va, gpa, hpa, ent,
  2020. is_shadow_present_pte(ent));
  2021. else if (ent == shadow_notrap_nonpresent_pte
  2022. && !is_error_hpa(hpa))
  2023. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2024. " valid guest gva %lx\n", audit_msg, va);
  2025. kvm_release_pfn_clean(pfn);
  2026. }
  2027. }
  2028. }
  2029. static void audit_mappings(struct kvm_vcpu *vcpu)
  2030. {
  2031. unsigned i;
  2032. if (vcpu->arch.mmu.root_level == 4)
  2033. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2034. else
  2035. for (i = 0; i < 4; ++i)
  2036. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2037. audit_mappings_page(vcpu,
  2038. vcpu->arch.mmu.pae_root[i],
  2039. i << 30,
  2040. 2);
  2041. }
  2042. static int count_rmaps(struct kvm_vcpu *vcpu)
  2043. {
  2044. int nmaps = 0;
  2045. int i, j, k;
  2046. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2047. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  2048. struct kvm_rmap_desc *d;
  2049. for (j = 0; j < m->npages; ++j) {
  2050. unsigned long *rmapp = &m->rmap[j];
  2051. if (!*rmapp)
  2052. continue;
  2053. if (!(*rmapp & 1)) {
  2054. ++nmaps;
  2055. continue;
  2056. }
  2057. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2058. while (d) {
  2059. for (k = 0; k < RMAP_EXT; ++k)
  2060. if (d->shadow_ptes[k])
  2061. ++nmaps;
  2062. else
  2063. break;
  2064. d = d->more;
  2065. }
  2066. }
  2067. }
  2068. return nmaps;
  2069. }
  2070. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  2071. {
  2072. int nmaps = 0;
  2073. struct kvm_mmu_page *sp;
  2074. int i;
  2075. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2076. u64 *pt = sp->spt;
  2077. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2078. continue;
  2079. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2080. u64 ent = pt[i];
  2081. if (!(ent & PT_PRESENT_MASK))
  2082. continue;
  2083. if (!(ent & PT_WRITABLE_MASK))
  2084. continue;
  2085. ++nmaps;
  2086. }
  2087. }
  2088. return nmaps;
  2089. }
  2090. static void audit_rmap(struct kvm_vcpu *vcpu)
  2091. {
  2092. int n_rmap = count_rmaps(vcpu);
  2093. int n_actual = count_writable_mappings(vcpu);
  2094. if (n_rmap != n_actual)
  2095. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  2096. __func__, audit_msg, n_rmap, n_actual);
  2097. }
  2098. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2099. {
  2100. struct kvm_mmu_page *sp;
  2101. struct kvm_memory_slot *slot;
  2102. unsigned long *rmapp;
  2103. gfn_t gfn;
  2104. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2105. if (sp->role.metaphysical)
  2106. continue;
  2107. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  2108. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  2109. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2110. if (*rmapp)
  2111. printk(KERN_ERR "%s: (%s) shadow page has writable"
  2112. " mappings: gfn %lx role %x\n",
  2113. __func__, audit_msg, sp->gfn,
  2114. sp->role.word);
  2115. }
  2116. }
  2117. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2118. {
  2119. int olddbg = dbg;
  2120. dbg = 0;
  2121. audit_msg = msg;
  2122. audit_rmap(vcpu);
  2123. audit_write_protection(vcpu);
  2124. audit_mappings(vcpu);
  2125. dbg = olddbg;
  2126. }
  2127. #endif