i8253.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234
  1. /*
  2. * 8253/PIT functions
  3. *
  4. */
  5. #include <linux/clockchips.h>
  6. #include <linux/init.h>
  7. #include <linux/interrupt.h>
  8. #include <linux/jiffies.h>
  9. #include <linux/module.h>
  10. #include <linux/spinlock.h>
  11. #include <asm/smp.h>
  12. #include <asm/delay.h>
  13. #include <asm/i8253.h>
  14. #include <asm/io.h>
  15. #include <asm/hpet.h>
  16. DEFINE_SPINLOCK(i8253_lock);
  17. EXPORT_SYMBOL(i8253_lock);
  18. #ifdef CONFIG_X86_32
  19. static void pit_disable_clocksource(void);
  20. #else
  21. static inline void pit_disable_clocksource(void) { }
  22. #endif
  23. /*
  24. * HPET replaces the PIT, when enabled. So we need to know, which of
  25. * the two timers is used
  26. */
  27. struct clock_event_device *global_clock_event;
  28. /*
  29. * Initialize the PIT timer.
  30. *
  31. * This is also called after resume to bring the PIT into operation again.
  32. */
  33. static void init_pit_timer(enum clock_event_mode mode,
  34. struct clock_event_device *evt)
  35. {
  36. spin_lock(&i8253_lock);
  37. switch(mode) {
  38. case CLOCK_EVT_MODE_PERIODIC:
  39. /* binary, mode 2, LSB/MSB, ch 0 */
  40. outb_pit(0x34, PIT_MODE);
  41. outb_pit(LATCH & 0xff , PIT_CH0); /* LSB */
  42. outb_pit(LATCH >> 8 , PIT_CH0); /* MSB */
  43. break;
  44. case CLOCK_EVT_MODE_SHUTDOWN:
  45. case CLOCK_EVT_MODE_UNUSED:
  46. if (evt->mode == CLOCK_EVT_MODE_PERIODIC ||
  47. evt->mode == CLOCK_EVT_MODE_ONESHOT) {
  48. outb_pit(0x30, PIT_MODE);
  49. outb_pit(0, PIT_CH0);
  50. outb_pit(0, PIT_CH0);
  51. }
  52. pit_disable_clocksource();
  53. break;
  54. case CLOCK_EVT_MODE_ONESHOT:
  55. /* One shot setup */
  56. pit_disable_clocksource();
  57. outb_pit(0x38, PIT_MODE);
  58. break;
  59. case CLOCK_EVT_MODE_RESUME:
  60. /* Nothing to do here */
  61. break;
  62. }
  63. spin_unlock(&i8253_lock);
  64. }
  65. /*
  66. * Program the next event in oneshot mode
  67. *
  68. * Delta is given in PIT ticks
  69. */
  70. static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
  71. {
  72. spin_lock(&i8253_lock);
  73. outb_pit(delta & 0xff , PIT_CH0); /* LSB */
  74. outb_pit(delta >> 8 , PIT_CH0); /* MSB */
  75. spin_unlock(&i8253_lock);
  76. return 0;
  77. }
  78. /*
  79. * On UP the PIT can serve all of the possible timer functions. On SMP systems
  80. * it can be solely used for the global tick.
  81. *
  82. * The profiling and update capabilities are switched off once the local apic is
  83. * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
  84. * !using_apic_timer decisions in do_timer_interrupt_hook()
  85. */
  86. static struct clock_event_device pit_clockevent = {
  87. .name = "pit",
  88. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  89. .set_mode = init_pit_timer,
  90. .set_next_event = pit_next_event,
  91. .shift = 32,
  92. .irq = 0,
  93. };
  94. /*
  95. * Initialize the conversion factor and the min/max deltas of the clock event
  96. * structure and register the clock event source with the framework.
  97. */
  98. void __init setup_pit_timer(void)
  99. {
  100. /*
  101. * Start pit with the boot cpu mask and make it global after the
  102. * IO_APIC has been initialized.
  103. */
  104. pit_clockevent.cpumask = cpumask_of_cpu(smp_processor_id());
  105. pit_clockevent.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC,
  106. pit_clockevent.shift);
  107. pit_clockevent.max_delta_ns =
  108. clockevent_delta2ns(0x7FFF, &pit_clockevent);
  109. pit_clockevent.min_delta_ns =
  110. clockevent_delta2ns(0xF, &pit_clockevent);
  111. clockevents_register_device(&pit_clockevent);
  112. global_clock_event = &pit_clockevent;
  113. }
  114. #ifndef CONFIG_X86_64
  115. /*
  116. * Since the PIT overflows every tick, its not very useful
  117. * to just read by itself. So use jiffies to emulate a free
  118. * running counter:
  119. */
  120. static cycle_t pit_read(void)
  121. {
  122. unsigned long flags;
  123. int count;
  124. u32 jifs;
  125. static int old_count;
  126. static u32 old_jifs;
  127. spin_lock_irqsave(&i8253_lock, flags);
  128. /*
  129. * Although our caller may have the read side of xtime_lock,
  130. * this is now a seqlock, and we are cheating in this routine
  131. * by having side effects on state that we cannot undo if
  132. * there is a collision on the seqlock and our caller has to
  133. * retry. (Namely, old_jifs and old_count.) So we must treat
  134. * jiffies as volatile despite the lock. We read jiffies
  135. * before latching the timer count to guarantee that although
  136. * the jiffies value might be older than the count (that is,
  137. * the counter may underflow between the last point where
  138. * jiffies was incremented and the point where we latch the
  139. * count), it cannot be newer.
  140. */
  141. jifs = jiffies;
  142. outb_pit(0x00, PIT_MODE); /* latch the count ASAP */
  143. count = inb_pit(PIT_CH0); /* read the latched count */
  144. count |= inb_pit(PIT_CH0) << 8;
  145. /* VIA686a test code... reset the latch if count > max + 1 */
  146. if (count > LATCH) {
  147. outb_pit(0x34, PIT_MODE);
  148. outb_pit(LATCH & 0xff, PIT_CH0);
  149. outb_pit(LATCH >> 8, PIT_CH0);
  150. count = LATCH - 1;
  151. }
  152. /*
  153. * It's possible for count to appear to go the wrong way for a
  154. * couple of reasons:
  155. *
  156. * 1. The timer counter underflows, but we haven't handled the
  157. * resulting interrupt and incremented jiffies yet.
  158. * 2. Hardware problem with the timer, not giving us continuous time,
  159. * the counter does small "jumps" upwards on some Pentium systems,
  160. * (see c't 95/10 page 335 for Neptun bug.)
  161. *
  162. * Previous attempts to handle these cases intelligently were
  163. * buggy, so we just do the simple thing now.
  164. */
  165. if (count > old_count && jifs == old_jifs) {
  166. count = old_count;
  167. }
  168. old_count = count;
  169. old_jifs = jifs;
  170. spin_unlock_irqrestore(&i8253_lock, flags);
  171. count = (LATCH - 1) - count;
  172. return (cycle_t)(jifs * LATCH) + count;
  173. }
  174. static struct clocksource clocksource_pit = {
  175. .name = "pit",
  176. .rating = 110,
  177. .read = pit_read,
  178. .mask = CLOCKSOURCE_MASK(32),
  179. .mult = 0,
  180. .shift = 20,
  181. };
  182. static void pit_disable_clocksource(void)
  183. {
  184. /*
  185. * Use mult to check whether it is registered or not
  186. */
  187. if (clocksource_pit.mult) {
  188. clocksource_unregister(&clocksource_pit);
  189. clocksource_pit.mult = 0;
  190. }
  191. }
  192. static int __init init_pit_clocksource(void)
  193. {
  194. /*
  195. * Several reasons not to register PIT as a clocksource:
  196. *
  197. * - On SMP PIT does not scale due to i8253_lock
  198. * - when HPET is enabled
  199. * - when local APIC timer is active (PIT is switched off)
  200. */
  201. if (num_possible_cpus() > 1 || is_hpet_enabled() ||
  202. pit_clockevent.mode != CLOCK_EVT_MODE_PERIODIC)
  203. return 0;
  204. clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE,
  205. clocksource_pit.shift);
  206. return clocksource_register(&clocksource_pit);
  207. }
  208. arch_initcall(init_pit_clocksource);
  209. #endif