genx2apic_uv_x.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. /*
  2. * This file is subject to the terms and conditions of the GNU General Public
  3. * License. See the file "COPYING" in the main directory of this archive
  4. * for more details.
  5. *
  6. * SGI UV APIC functions (note: not an Intel compatible APIC)
  7. *
  8. * Copyright (C) 2007-2008 Silicon Graphics, Inc. All rights reserved.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/threads.h>
  12. #include <linux/cpumask.h>
  13. #include <linux/string.h>
  14. #include <linux/kernel.h>
  15. #include <linux/ctype.h>
  16. #include <linux/init.h>
  17. #include <linux/sched.h>
  18. #include <linux/bootmem.h>
  19. #include <linux/module.h>
  20. #include <asm/smp.h>
  21. #include <asm/ipi.h>
  22. #include <asm/genapic.h>
  23. #include <asm/pgtable.h>
  24. #include <asm/uv/uv_mmrs.h>
  25. #include <asm/uv/uv_hub.h>
  26. #include <asm/uv/bios.h>
  27. DEFINE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
  28. EXPORT_PER_CPU_SYMBOL_GPL(__uv_hub_info);
  29. struct uv_blade_info *uv_blade_info;
  30. EXPORT_SYMBOL_GPL(uv_blade_info);
  31. short *uv_node_to_blade;
  32. EXPORT_SYMBOL_GPL(uv_node_to_blade);
  33. short *uv_cpu_to_blade;
  34. EXPORT_SYMBOL_GPL(uv_cpu_to_blade);
  35. short uv_possible_blades;
  36. EXPORT_SYMBOL_GPL(uv_possible_blades);
  37. unsigned long sn_rtc_cycles_per_second;
  38. EXPORT_SYMBOL(sn_rtc_cycles_per_second);
  39. /* Start with all IRQs pointing to boot CPU. IRQ balancing will shift them. */
  40. static cpumask_t uv_target_cpus(void)
  41. {
  42. return cpumask_of_cpu(0);
  43. }
  44. static cpumask_t uv_vector_allocation_domain(int cpu)
  45. {
  46. cpumask_t domain = CPU_MASK_NONE;
  47. cpu_set(cpu, domain);
  48. return domain;
  49. }
  50. int uv_wakeup_secondary(int phys_apicid, unsigned int start_rip)
  51. {
  52. unsigned long val;
  53. int pnode;
  54. pnode = uv_apicid_to_pnode(phys_apicid);
  55. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  56. (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  57. (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
  58. APIC_DM_INIT;
  59. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  60. mdelay(10);
  61. val = (1UL << UVH_IPI_INT_SEND_SHFT) |
  62. (phys_apicid << UVH_IPI_INT_APIC_ID_SHFT) |
  63. (((long)start_rip << UVH_IPI_INT_VECTOR_SHFT) >> 12) |
  64. APIC_DM_STARTUP;
  65. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  66. return 0;
  67. }
  68. static void uv_send_IPI_one(int cpu, int vector)
  69. {
  70. unsigned long val, apicid, lapicid;
  71. int pnode;
  72. apicid = per_cpu(x86_cpu_to_apicid, cpu); /* ZZZ - cache node-local ? */
  73. lapicid = apicid & 0x3f; /* ZZZ macro needed */
  74. pnode = uv_apicid_to_pnode(apicid);
  75. val =
  76. (1UL << UVH_IPI_INT_SEND_SHFT) | (lapicid <<
  77. UVH_IPI_INT_APIC_ID_SHFT) |
  78. (vector << UVH_IPI_INT_VECTOR_SHFT);
  79. uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
  80. }
  81. static void uv_send_IPI_mask(cpumask_t mask, int vector)
  82. {
  83. unsigned int cpu;
  84. for_each_possible_cpu(cpu)
  85. if (cpu_isset(cpu, mask))
  86. uv_send_IPI_one(cpu, vector);
  87. }
  88. static void uv_send_IPI_allbutself(int vector)
  89. {
  90. cpumask_t mask = cpu_online_map;
  91. cpu_clear(smp_processor_id(), mask);
  92. if (!cpus_empty(mask))
  93. uv_send_IPI_mask(mask, vector);
  94. }
  95. static void uv_send_IPI_all(int vector)
  96. {
  97. uv_send_IPI_mask(cpu_online_map, vector);
  98. }
  99. static int uv_apic_id_registered(void)
  100. {
  101. return 1;
  102. }
  103. static unsigned int uv_cpu_mask_to_apicid(cpumask_t cpumask)
  104. {
  105. int cpu;
  106. /*
  107. * We're using fixed IRQ delivery, can only return one phys APIC ID.
  108. * May as well be the first.
  109. */
  110. cpu = first_cpu(cpumask);
  111. if ((unsigned)cpu < nr_cpu_ids)
  112. return per_cpu(x86_cpu_to_apicid, cpu);
  113. else
  114. return BAD_APICID;
  115. }
  116. static unsigned int phys_pkg_id(int index_msb)
  117. {
  118. return GET_APIC_ID(read_apic_id()) >> index_msb;
  119. }
  120. #ifdef ZZZ /* Needs x2apic patch */
  121. static void uv_send_IPI_self(int vector)
  122. {
  123. apic_write(APIC_SELF_IPI, vector);
  124. }
  125. #endif
  126. struct genapic apic_x2apic_uv_x = {
  127. .name = "UV large system",
  128. .int_delivery_mode = dest_Fixed,
  129. .int_dest_mode = (APIC_DEST_PHYSICAL != 0),
  130. .target_cpus = uv_target_cpus,
  131. .vector_allocation_domain = uv_vector_allocation_domain,/* Fixme ZZZ */
  132. .apic_id_registered = uv_apic_id_registered,
  133. .send_IPI_all = uv_send_IPI_all,
  134. .send_IPI_allbutself = uv_send_IPI_allbutself,
  135. .send_IPI_mask = uv_send_IPI_mask,
  136. /* ZZZ.send_IPI_self = uv_send_IPI_self, */
  137. .cpu_mask_to_apicid = uv_cpu_mask_to_apicid,
  138. .phys_pkg_id = phys_pkg_id, /* Fixme ZZZ */
  139. };
  140. static __cpuinit void set_x2apic_extra_bits(int pnode)
  141. {
  142. __get_cpu_var(x2apic_extra_bits) = (pnode << 6);
  143. }
  144. /*
  145. * Called on boot cpu.
  146. */
  147. static __init int boot_pnode_to_blade(int pnode)
  148. {
  149. int blade;
  150. for (blade = 0; blade < uv_num_possible_blades(); blade++)
  151. if (pnode == uv_blade_info[blade].pnode)
  152. return blade;
  153. BUG();
  154. }
  155. struct redir_addr {
  156. unsigned long redirect;
  157. unsigned long alias;
  158. };
  159. #define DEST_SHIFT UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR_DEST_BASE_SHFT
  160. static __initdata struct redir_addr redir_addrs[] = {
  161. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_0_MMR, UVH_SI_ALIAS0_OVERLAY_CONFIG},
  162. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_1_MMR, UVH_SI_ALIAS1_OVERLAY_CONFIG},
  163. {UVH_RH_GAM_ALIAS210_REDIRECT_CONFIG_2_MMR, UVH_SI_ALIAS2_OVERLAY_CONFIG},
  164. };
  165. static __init void get_lowmem_redirect(unsigned long *base, unsigned long *size)
  166. {
  167. union uvh_si_alias0_overlay_config_u alias;
  168. union uvh_rh_gam_alias210_redirect_config_2_mmr_u redirect;
  169. int i;
  170. for (i = 0; i < ARRAY_SIZE(redir_addrs); i++) {
  171. alias.v = uv_read_local_mmr(redir_addrs[i].alias);
  172. if (alias.s.base == 0) {
  173. *size = (1UL << alias.s.m_alias);
  174. redirect.v = uv_read_local_mmr(redir_addrs[i].redirect);
  175. *base = (unsigned long)redirect.s.dest_base << DEST_SHIFT;
  176. return;
  177. }
  178. }
  179. BUG();
  180. }
  181. static __init void map_low_mmrs(void)
  182. {
  183. init_extra_mapping_uc(UV_GLOBAL_MMR32_BASE, UV_GLOBAL_MMR32_SIZE);
  184. init_extra_mapping_uc(UV_LOCAL_MMR_BASE, UV_LOCAL_MMR_SIZE);
  185. }
  186. enum map_type {map_wb, map_uc};
  187. static __init void map_high(char *id, unsigned long base, int shift, enum map_type map_type)
  188. {
  189. unsigned long bytes, paddr;
  190. paddr = base << shift;
  191. bytes = (1UL << shift);
  192. printk(KERN_INFO "UV: Map %s_HI 0x%lx - 0x%lx\n", id, paddr,
  193. paddr + bytes);
  194. if (map_type == map_uc)
  195. init_extra_mapping_uc(paddr, bytes);
  196. else
  197. init_extra_mapping_wb(paddr, bytes);
  198. }
  199. static __init void map_gru_high(int max_pnode)
  200. {
  201. union uvh_rh_gam_gru_overlay_config_mmr_u gru;
  202. int shift = UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR_BASE_SHFT;
  203. gru.v = uv_read_local_mmr(UVH_RH_GAM_GRU_OVERLAY_CONFIG_MMR);
  204. if (gru.s.enable)
  205. map_high("GRU", gru.s.base, shift, map_wb);
  206. }
  207. static __init void map_config_high(int max_pnode)
  208. {
  209. union uvh_rh_gam_cfg_overlay_config_mmr_u cfg;
  210. int shift = UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR_BASE_SHFT;
  211. cfg.v = uv_read_local_mmr(UVH_RH_GAM_CFG_OVERLAY_CONFIG_MMR);
  212. if (cfg.s.enable)
  213. map_high("CONFIG", cfg.s.base, shift, map_uc);
  214. }
  215. static __init void map_mmr_high(int max_pnode)
  216. {
  217. union uvh_rh_gam_mmr_overlay_config_mmr_u mmr;
  218. int shift = UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR_BASE_SHFT;
  219. mmr.v = uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR);
  220. if (mmr.s.enable)
  221. map_high("MMR", mmr.s.base, shift, map_uc);
  222. }
  223. static __init void map_mmioh_high(int max_pnode)
  224. {
  225. union uvh_rh_gam_mmioh_overlay_config_mmr_u mmioh;
  226. int shift = UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR_BASE_SHFT;
  227. mmioh.v = uv_read_local_mmr(UVH_RH_GAM_MMIOH_OVERLAY_CONFIG_MMR);
  228. if (mmioh.s.enable)
  229. map_high("MMIOH", mmioh.s.base, shift, map_uc);
  230. }
  231. static __init void uv_rtc_init(void)
  232. {
  233. long status, ticks_per_sec, drift;
  234. status =
  235. x86_bios_freq_base(BIOS_FREQ_BASE_REALTIME_CLOCK, &ticks_per_sec,
  236. &drift);
  237. if (status != 0 || ticks_per_sec < 100000) {
  238. printk(KERN_WARNING
  239. "unable to determine platform RTC clock frequency, "
  240. "guessing.\n");
  241. /* BIOS gives wrong value for clock freq. so guess */
  242. sn_rtc_cycles_per_second = 1000000000000UL / 30000UL;
  243. } else
  244. sn_rtc_cycles_per_second = ticks_per_sec;
  245. }
  246. static bool uv_system_inited;
  247. void __init uv_system_init(void)
  248. {
  249. union uvh_si_addr_map_config_u m_n_config;
  250. union uvh_node_id_u node_id;
  251. unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size;
  252. int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val;
  253. int max_pnode = 0;
  254. unsigned long mmr_base, present;
  255. map_low_mmrs();
  256. m_n_config.v = uv_read_local_mmr(UVH_SI_ADDR_MAP_CONFIG);
  257. m_val = m_n_config.s.m_skt;
  258. n_val = m_n_config.s.n_skt;
  259. mmr_base =
  260. uv_read_local_mmr(UVH_RH_GAM_MMR_OVERLAY_CONFIG_MMR) &
  261. ~UV_MMR_ENABLE;
  262. printk(KERN_DEBUG "UV: global MMR base 0x%lx\n", mmr_base);
  263. for(i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++)
  264. uv_possible_blades +=
  265. hweight64(uv_read_local_mmr( UVH_NODE_PRESENT_TABLE + i * 8));
  266. printk(KERN_DEBUG "UV: Found %d blades\n", uv_num_possible_blades());
  267. bytes = sizeof(struct uv_blade_info) * uv_num_possible_blades();
  268. uv_blade_info = alloc_bootmem_pages(bytes);
  269. get_lowmem_redirect(&lowmem_redir_base, &lowmem_redir_size);
  270. bytes = sizeof(uv_node_to_blade[0]) * num_possible_nodes();
  271. uv_node_to_blade = alloc_bootmem_pages(bytes);
  272. memset(uv_node_to_blade, 255, bytes);
  273. bytes = sizeof(uv_cpu_to_blade[0]) * num_possible_cpus();
  274. uv_cpu_to_blade = alloc_bootmem_pages(bytes);
  275. memset(uv_cpu_to_blade, 255, bytes);
  276. blade = 0;
  277. for (i = 0; i < UVH_NODE_PRESENT_TABLE_DEPTH; i++) {
  278. present = uv_read_local_mmr(UVH_NODE_PRESENT_TABLE + i * 8);
  279. for (j = 0; j < 64; j++) {
  280. if (!test_bit(j, &present))
  281. continue;
  282. uv_blade_info[blade].pnode = (i * 64 + j);
  283. uv_blade_info[blade].nr_possible_cpus = 0;
  284. uv_blade_info[blade].nr_online_cpus = 0;
  285. blade++;
  286. }
  287. }
  288. node_id.v = uv_read_local_mmr(UVH_NODE_ID);
  289. gnode_upper = (((unsigned long)node_id.s.node_id) &
  290. ~((1 << n_val) - 1)) << m_val;
  291. uv_rtc_init();
  292. for_each_present_cpu(cpu) {
  293. nid = cpu_to_node(cpu);
  294. pnode = uv_apicid_to_pnode(per_cpu(x86_cpu_to_apicid, cpu));
  295. blade = boot_pnode_to_blade(pnode);
  296. lcpu = uv_blade_info[blade].nr_possible_cpus;
  297. uv_blade_info[blade].nr_possible_cpus++;
  298. uv_cpu_hub_info(cpu)->lowmem_remap_base = lowmem_redir_base;
  299. uv_cpu_hub_info(cpu)->lowmem_remap_top =
  300. lowmem_redir_base + lowmem_redir_size;
  301. uv_cpu_hub_info(cpu)->m_val = m_val;
  302. uv_cpu_hub_info(cpu)->n_val = m_val;
  303. uv_cpu_hub_info(cpu)->numa_blade_id = blade;
  304. uv_cpu_hub_info(cpu)->blade_processor_id = lcpu;
  305. uv_cpu_hub_info(cpu)->pnode = pnode;
  306. uv_cpu_hub_info(cpu)->pnode_mask = (1 << n_val) - 1;
  307. uv_cpu_hub_info(cpu)->gpa_mask = (1 << (m_val + n_val)) - 1;
  308. uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
  309. uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
  310. uv_cpu_hub_info(cpu)->coherency_domain_number = 0;/* ZZZ */
  311. uv_node_to_blade[nid] = blade;
  312. uv_cpu_to_blade[cpu] = blade;
  313. max_pnode = max(pnode, max_pnode);
  314. printk(KERN_DEBUG "UV: cpu %d, apicid 0x%x, pnode %d, nid %d, "
  315. "lcpu %d, blade %d\n",
  316. cpu, per_cpu(x86_cpu_to_apicid, cpu), pnode, nid,
  317. lcpu, blade);
  318. }
  319. map_gru_high(max_pnode);
  320. map_mmr_high(max_pnode);
  321. map_config_high(max_pnode);
  322. map_mmioh_high(max_pnode);
  323. uv_system_inited = true;
  324. }
  325. /*
  326. * Called on each cpu to initialize the per_cpu UV data area.
  327. * ZZZ hotplug not supported yet
  328. */
  329. void __cpuinit uv_cpu_init(void)
  330. {
  331. BUG_ON(!uv_system_inited);
  332. uv_blade_info[uv_numa_blade_id()].nr_online_cpus++;
  333. if (get_uv_system_type() == UV_NON_UNIQUE_APIC)
  334. set_x2apic_extra_bits(uv_hub_info->pnode);
  335. }