main.c 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808
  1. /* Generic MTRR (Memory Type Range Register) driver.
  2. Copyright (C) 1997-2000 Richard Gooch
  3. Copyright (c) 2002 Patrick Mochel
  4. This library is free software; you can redistribute it and/or
  5. modify it under the terms of the GNU Library General Public
  6. License as published by the Free Software Foundation; either
  7. version 2 of the License, or (at your option) any later version.
  8. This library is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. Library General Public License for more details.
  12. You should have received a copy of the GNU Library General Public
  13. License along with this library; if not, write to the Free
  14. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. Richard Gooch may be reached by email at rgooch@atnf.csiro.au
  16. The postal address is:
  17. Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
  18. Source: "Pentium Pro Family Developer's Manual, Volume 3:
  19. Operating System Writer's Guide" (Intel document number 242692),
  20. section 11.11.7
  21. This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
  22. on 6-7 March 2002.
  23. Source: Intel Architecture Software Developers Manual, Volume 3:
  24. System Programming Guide; Section 9.11. (1997 edition - PPro).
  25. */
  26. #include <linux/module.h>
  27. #include <linux/init.h>
  28. #include <linux/pci.h>
  29. #include <linux/smp.h>
  30. #include <linux/cpu.h>
  31. #include <linux/mutex.h>
  32. #include <linux/sort.h>
  33. #include <asm/e820.h>
  34. #include <asm/mtrr.h>
  35. #include <asm/uaccess.h>
  36. #include <asm/processor.h>
  37. #include <asm/msr.h>
  38. #include <asm/kvm_para.h>
  39. #include "mtrr.h"
  40. u32 num_var_ranges = 0;
  41. unsigned int mtrr_usage_table[MAX_VAR_RANGES];
  42. static DEFINE_MUTEX(mtrr_mutex);
  43. u64 size_or_mask, size_and_mask;
  44. static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};
  45. struct mtrr_ops * mtrr_if = NULL;
  46. static void set_mtrr(unsigned int reg, unsigned long base,
  47. unsigned long size, mtrr_type type);
  48. void set_mtrr_ops(struct mtrr_ops * ops)
  49. {
  50. if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
  51. mtrr_ops[ops->vendor] = ops;
  52. }
  53. /* Returns non-zero if we have the write-combining memory type */
  54. static int have_wrcomb(void)
  55. {
  56. struct pci_dev *dev;
  57. u8 rev;
  58. if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
  59. /* ServerWorks LE chipsets < rev 6 have problems with write-combining
  60. Don't allow it and leave room for other chipsets to be tagged */
  61. if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
  62. dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
  63. pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
  64. if (rev <= 5) {
  65. printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
  66. pci_dev_put(dev);
  67. return 0;
  68. }
  69. }
  70. /* Intel 450NX errata # 23. Non ascending cacheline evictions to
  71. write combining memory may resulting in data corruption */
  72. if (dev->vendor == PCI_VENDOR_ID_INTEL &&
  73. dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
  74. printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
  75. pci_dev_put(dev);
  76. return 0;
  77. }
  78. pci_dev_put(dev);
  79. }
  80. return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
  81. }
  82. /* This function returns the number of variable MTRRs */
  83. static void __init set_num_var_ranges(void)
  84. {
  85. unsigned long config = 0, dummy;
  86. if (use_intel()) {
  87. rdmsr(MTRRcap_MSR, config, dummy);
  88. } else if (is_cpu(AMD))
  89. config = 2;
  90. else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
  91. config = 8;
  92. num_var_ranges = config & 0xff;
  93. }
  94. static void __init init_table(void)
  95. {
  96. int i, max;
  97. max = num_var_ranges;
  98. for (i = 0; i < max; i++)
  99. mtrr_usage_table[i] = 1;
  100. }
  101. struct set_mtrr_data {
  102. atomic_t count;
  103. atomic_t gate;
  104. unsigned long smp_base;
  105. unsigned long smp_size;
  106. unsigned int smp_reg;
  107. mtrr_type smp_type;
  108. };
  109. static void ipi_handler(void *info)
  110. /* [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
  111. [RETURNS] Nothing.
  112. */
  113. {
  114. #ifdef CONFIG_SMP
  115. struct set_mtrr_data *data = info;
  116. unsigned long flags;
  117. local_irq_save(flags);
  118. atomic_dec(&data->count);
  119. while(!atomic_read(&data->gate))
  120. cpu_relax();
  121. /* The master has cleared me to execute */
  122. if (data->smp_reg != ~0U)
  123. mtrr_if->set(data->smp_reg, data->smp_base,
  124. data->smp_size, data->smp_type);
  125. else
  126. mtrr_if->set_all();
  127. atomic_dec(&data->count);
  128. while(atomic_read(&data->gate))
  129. cpu_relax();
  130. atomic_dec(&data->count);
  131. local_irq_restore(flags);
  132. #endif
  133. }
  134. static inline int types_compatible(mtrr_type type1, mtrr_type type2) {
  135. return type1 == MTRR_TYPE_UNCACHABLE ||
  136. type2 == MTRR_TYPE_UNCACHABLE ||
  137. (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
  138. (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
  139. }
  140. /**
  141. * set_mtrr - update mtrrs on all processors
  142. * @reg: mtrr in question
  143. * @base: mtrr base
  144. * @size: mtrr size
  145. * @type: mtrr type
  146. *
  147. * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
  148. *
  149. * 1. Send IPI to do the following:
  150. * 2. Disable Interrupts
  151. * 3. Wait for all procs to do so
  152. * 4. Enter no-fill cache mode
  153. * 5. Flush caches
  154. * 6. Clear PGE bit
  155. * 7. Flush all TLBs
  156. * 8. Disable all range registers
  157. * 9. Update the MTRRs
  158. * 10. Enable all range registers
  159. * 11. Flush all TLBs and caches again
  160. * 12. Enter normal cache mode and reenable caching
  161. * 13. Set PGE
  162. * 14. Wait for buddies to catch up
  163. * 15. Enable interrupts.
  164. *
  165. * What does that mean for us? Well, first we set data.count to the number
  166. * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
  167. * until it hits 0 and proceed. We set the data.gate flag and reset data.count.
  168. * Meanwhile, they are waiting for that flag to be set. Once it's set, each
  169. * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it
  170. * differently, so we call mtrr_if->set() callback and let them take care of it.
  171. * When they're done, they again decrement data->count and wait for data.gate to
  172. * be reset.
  173. * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
  174. * Everyone then enables interrupts and we all continue on.
  175. *
  176. * Note that the mechanism is the same for UP systems, too; all the SMP stuff
  177. * becomes nops.
  178. */
  179. static void set_mtrr(unsigned int reg, unsigned long base,
  180. unsigned long size, mtrr_type type)
  181. {
  182. struct set_mtrr_data data;
  183. unsigned long flags;
  184. data.smp_reg = reg;
  185. data.smp_base = base;
  186. data.smp_size = size;
  187. data.smp_type = type;
  188. atomic_set(&data.count, num_booting_cpus() - 1);
  189. /* make sure data.count is visible before unleashing other CPUs */
  190. smp_wmb();
  191. atomic_set(&data.gate,0);
  192. /* Start the ball rolling on other CPUs */
  193. if (smp_call_function(ipi_handler, &data, 0) != 0)
  194. panic("mtrr: timed out waiting for other CPUs\n");
  195. local_irq_save(flags);
  196. while(atomic_read(&data.count))
  197. cpu_relax();
  198. /* ok, reset count and toggle gate */
  199. atomic_set(&data.count, num_booting_cpus() - 1);
  200. smp_wmb();
  201. atomic_set(&data.gate,1);
  202. /* do our MTRR business */
  203. /* HACK!
  204. * We use this same function to initialize the mtrrs on boot.
  205. * The state of the boot cpu's mtrrs has been saved, and we want
  206. * to replicate across all the APs.
  207. * If we're doing that @reg is set to something special...
  208. */
  209. if (reg != ~0U)
  210. mtrr_if->set(reg,base,size,type);
  211. /* wait for the others */
  212. while(atomic_read(&data.count))
  213. cpu_relax();
  214. atomic_set(&data.count, num_booting_cpus() - 1);
  215. smp_wmb();
  216. atomic_set(&data.gate,0);
  217. /*
  218. * Wait here for everyone to have seen the gate change
  219. * So we're the last ones to touch 'data'
  220. */
  221. while(atomic_read(&data.count))
  222. cpu_relax();
  223. local_irq_restore(flags);
  224. }
  225. /**
  226. * mtrr_add_page - Add a memory type region
  227. * @base: Physical base address of region in pages (in units of 4 kB!)
  228. * @size: Physical size of region in pages (4 kB)
  229. * @type: Type of MTRR desired
  230. * @increment: If this is true do usage counting on the region
  231. *
  232. * Memory type region registers control the caching on newer Intel and
  233. * non Intel processors. This function allows drivers to request an
  234. * MTRR is added. The details and hardware specifics of each processor's
  235. * implementation are hidden from the caller, but nevertheless the
  236. * caller should expect to need to provide a power of two size on an
  237. * equivalent power of two boundary.
  238. *
  239. * If the region cannot be added either because all regions are in use
  240. * or the CPU cannot support it a negative value is returned. On success
  241. * the register number for this entry is returned, but should be treated
  242. * as a cookie only.
  243. *
  244. * On a multiprocessor machine the changes are made to all processors.
  245. * This is required on x86 by the Intel processors.
  246. *
  247. * The available types are
  248. *
  249. * %MTRR_TYPE_UNCACHABLE - No caching
  250. *
  251. * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
  252. *
  253. * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
  254. *
  255. * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
  256. *
  257. * BUGS: Needs a quiet flag for the cases where drivers do not mind
  258. * failures and do not wish system log messages to be sent.
  259. */
  260. int mtrr_add_page(unsigned long base, unsigned long size,
  261. unsigned int type, bool increment)
  262. {
  263. int i, replace, error;
  264. mtrr_type ltype;
  265. unsigned long lbase, lsize;
  266. if (!mtrr_if)
  267. return -ENXIO;
  268. if ((error = mtrr_if->validate_add_page(base,size,type)))
  269. return error;
  270. if (type >= MTRR_NUM_TYPES) {
  271. printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
  272. return -EINVAL;
  273. }
  274. /* If the type is WC, check that this processor supports it */
  275. if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
  276. printk(KERN_WARNING
  277. "mtrr: your processor doesn't support write-combining\n");
  278. return -ENOSYS;
  279. }
  280. if (!size) {
  281. printk(KERN_WARNING "mtrr: zero sized request\n");
  282. return -EINVAL;
  283. }
  284. if (base & size_or_mask || size & size_or_mask) {
  285. printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
  286. return -EINVAL;
  287. }
  288. error = -EINVAL;
  289. replace = -1;
  290. /* No CPU hotplug when we change MTRR entries */
  291. get_online_cpus();
  292. /* Search for existing MTRR */
  293. mutex_lock(&mtrr_mutex);
  294. for (i = 0; i < num_var_ranges; ++i) {
  295. mtrr_if->get(i, &lbase, &lsize, &ltype);
  296. if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase)
  297. continue;
  298. /* At this point we know there is some kind of overlap/enclosure */
  299. if (base < lbase || base + size - 1 > lbase + lsize - 1) {
  300. if (base <= lbase && base + size - 1 >= lbase + lsize - 1) {
  301. /* New region encloses an existing region */
  302. if (type == ltype) {
  303. replace = replace == -1 ? i : -2;
  304. continue;
  305. }
  306. else if (types_compatible(type, ltype))
  307. continue;
  308. }
  309. printk(KERN_WARNING
  310. "mtrr: 0x%lx000,0x%lx000 overlaps existing"
  311. " 0x%lx000,0x%lx000\n", base, size, lbase,
  312. lsize);
  313. goto out;
  314. }
  315. /* New region is enclosed by an existing region */
  316. if (ltype != type) {
  317. if (types_compatible(type, ltype))
  318. continue;
  319. printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
  320. base, size, mtrr_attrib_to_str(ltype),
  321. mtrr_attrib_to_str(type));
  322. goto out;
  323. }
  324. if (increment)
  325. ++mtrr_usage_table[i];
  326. error = i;
  327. goto out;
  328. }
  329. /* Search for an empty MTRR */
  330. i = mtrr_if->get_free_region(base, size, replace);
  331. if (i >= 0) {
  332. set_mtrr(i, base, size, type);
  333. if (likely(replace < 0)) {
  334. mtrr_usage_table[i] = 1;
  335. } else {
  336. mtrr_usage_table[i] = mtrr_usage_table[replace];
  337. if (increment)
  338. mtrr_usage_table[i]++;
  339. if (unlikely(replace != i)) {
  340. set_mtrr(replace, 0, 0, 0);
  341. mtrr_usage_table[replace] = 0;
  342. }
  343. }
  344. } else
  345. printk(KERN_INFO "mtrr: no more MTRRs available\n");
  346. error = i;
  347. out:
  348. mutex_unlock(&mtrr_mutex);
  349. put_online_cpus();
  350. return error;
  351. }
  352. static int mtrr_check(unsigned long base, unsigned long size)
  353. {
  354. if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
  355. printk(KERN_WARNING
  356. "mtrr: size and base must be multiples of 4 kiB\n");
  357. printk(KERN_DEBUG
  358. "mtrr: size: 0x%lx base: 0x%lx\n", size, base);
  359. dump_stack();
  360. return -1;
  361. }
  362. return 0;
  363. }
  364. /**
  365. * mtrr_add - Add a memory type region
  366. * @base: Physical base address of region
  367. * @size: Physical size of region
  368. * @type: Type of MTRR desired
  369. * @increment: If this is true do usage counting on the region
  370. *
  371. * Memory type region registers control the caching on newer Intel and
  372. * non Intel processors. This function allows drivers to request an
  373. * MTRR is added. The details and hardware specifics of each processor's
  374. * implementation are hidden from the caller, but nevertheless the
  375. * caller should expect to need to provide a power of two size on an
  376. * equivalent power of two boundary.
  377. *
  378. * If the region cannot be added either because all regions are in use
  379. * or the CPU cannot support it a negative value is returned. On success
  380. * the register number for this entry is returned, but should be treated
  381. * as a cookie only.
  382. *
  383. * On a multiprocessor machine the changes are made to all processors.
  384. * This is required on x86 by the Intel processors.
  385. *
  386. * The available types are
  387. *
  388. * %MTRR_TYPE_UNCACHABLE - No caching
  389. *
  390. * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
  391. *
  392. * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
  393. *
  394. * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
  395. *
  396. * BUGS: Needs a quiet flag for the cases where drivers do not mind
  397. * failures and do not wish system log messages to be sent.
  398. */
  399. int
  400. mtrr_add(unsigned long base, unsigned long size, unsigned int type,
  401. bool increment)
  402. {
  403. if (mtrr_check(base, size))
  404. return -EINVAL;
  405. return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
  406. increment);
  407. }
  408. /**
  409. * mtrr_del_page - delete a memory type region
  410. * @reg: Register returned by mtrr_add
  411. * @base: Physical base address
  412. * @size: Size of region
  413. *
  414. * If register is supplied then base and size are ignored. This is
  415. * how drivers should call it.
  416. *
  417. * Releases an MTRR region. If the usage count drops to zero the
  418. * register is freed and the region returns to default state.
  419. * On success the register is returned, on failure a negative error
  420. * code.
  421. */
  422. int mtrr_del_page(int reg, unsigned long base, unsigned long size)
  423. {
  424. int i, max;
  425. mtrr_type ltype;
  426. unsigned long lbase, lsize;
  427. int error = -EINVAL;
  428. if (!mtrr_if)
  429. return -ENXIO;
  430. max = num_var_ranges;
  431. /* No CPU hotplug when we change MTRR entries */
  432. get_online_cpus();
  433. mutex_lock(&mtrr_mutex);
  434. if (reg < 0) {
  435. /* Search for existing MTRR */
  436. for (i = 0; i < max; ++i) {
  437. mtrr_if->get(i, &lbase, &lsize, &ltype);
  438. if (lbase == base && lsize == size) {
  439. reg = i;
  440. break;
  441. }
  442. }
  443. if (reg < 0) {
  444. printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
  445. size);
  446. goto out;
  447. }
  448. }
  449. if (reg >= max) {
  450. printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
  451. goto out;
  452. }
  453. mtrr_if->get(reg, &lbase, &lsize, &ltype);
  454. if (lsize < 1) {
  455. printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
  456. goto out;
  457. }
  458. if (mtrr_usage_table[reg] < 1) {
  459. printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
  460. goto out;
  461. }
  462. if (--mtrr_usage_table[reg] < 1)
  463. set_mtrr(reg, 0, 0, 0);
  464. error = reg;
  465. out:
  466. mutex_unlock(&mtrr_mutex);
  467. put_online_cpus();
  468. return error;
  469. }
  470. /**
  471. * mtrr_del - delete a memory type region
  472. * @reg: Register returned by mtrr_add
  473. * @base: Physical base address
  474. * @size: Size of region
  475. *
  476. * If register is supplied then base and size are ignored. This is
  477. * how drivers should call it.
  478. *
  479. * Releases an MTRR region. If the usage count drops to zero the
  480. * register is freed and the region returns to default state.
  481. * On success the register is returned, on failure a negative error
  482. * code.
  483. */
  484. int
  485. mtrr_del(int reg, unsigned long base, unsigned long size)
  486. {
  487. if (mtrr_check(base, size))
  488. return -EINVAL;
  489. return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
  490. }
  491. EXPORT_SYMBOL(mtrr_add);
  492. EXPORT_SYMBOL(mtrr_del);
  493. /* HACK ALERT!
  494. * These should be called implicitly, but we can't yet until all the initcall
  495. * stuff is done...
  496. */
  497. static void __init init_ifs(void)
  498. {
  499. #ifndef CONFIG_X86_64
  500. amd_init_mtrr();
  501. cyrix_init_mtrr();
  502. centaur_init_mtrr();
  503. #endif
  504. }
  505. /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
  506. * MTRR driver doesn't require this
  507. */
  508. struct mtrr_value {
  509. mtrr_type ltype;
  510. unsigned long lbase;
  511. unsigned long lsize;
  512. };
  513. static struct mtrr_value mtrr_state[MAX_VAR_RANGES];
  514. static int mtrr_save(struct sys_device * sysdev, pm_message_t state)
  515. {
  516. int i;
  517. for (i = 0; i < num_var_ranges; i++) {
  518. mtrr_if->get(i,
  519. &mtrr_state[i].lbase,
  520. &mtrr_state[i].lsize,
  521. &mtrr_state[i].ltype);
  522. }
  523. return 0;
  524. }
  525. static int mtrr_restore(struct sys_device * sysdev)
  526. {
  527. int i;
  528. for (i = 0; i < num_var_ranges; i++) {
  529. if (mtrr_state[i].lsize)
  530. set_mtrr(i,
  531. mtrr_state[i].lbase,
  532. mtrr_state[i].lsize,
  533. mtrr_state[i].ltype);
  534. }
  535. return 0;
  536. }
  537. static struct sysdev_driver mtrr_sysdev_driver = {
  538. .suspend = mtrr_save,
  539. .resume = mtrr_restore,
  540. };
  541. /* should be related to MTRR_VAR_RANGES nums */
  542. #define RANGE_NUM 256
  543. struct res_range {
  544. unsigned long start;
  545. unsigned long end;
  546. };
  547. static int __init
  548. add_range(struct res_range *range, int nr_range, unsigned long start,
  549. unsigned long end)
  550. {
  551. /* out of slots */
  552. if (nr_range >= RANGE_NUM)
  553. return nr_range;
  554. range[nr_range].start = start;
  555. range[nr_range].end = end;
  556. nr_range++;
  557. return nr_range;
  558. }
  559. static int __init
  560. add_range_with_merge(struct res_range *range, int nr_range, unsigned long start,
  561. unsigned long end)
  562. {
  563. int i;
  564. /* try to merge it with old one */
  565. for (i = 0; i < nr_range; i++) {
  566. unsigned long final_start, final_end;
  567. unsigned long common_start, common_end;
  568. if (!range[i].end)
  569. continue;
  570. common_start = max(range[i].start, start);
  571. common_end = min(range[i].end, end);
  572. if (common_start > common_end + 1)
  573. continue;
  574. final_start = min(range[i].start, start);
  575. final_end = max(range[i].end, end);
  576. range[i].start = final_start;
  577. range[i].end = final_end;
  578. return nr_range;
  579. }
  580. /* need to add that */
  581. return add_range(range, nr_range, start, end);
  582. }
  583. static void __init
  584. subtract_range(struct res_range *range, unsigned long start, unsigned long end)
  585. {
  586. int i, j;
  587. for (j = 0; j < RANGE_NUM; j++) {
  588. if (!range[j].end)
  589. continue;
  590. if (start <= range[j].start && end >= range[j].end) {
  591. range[j].start = 0;
  592. range[j].end = 0;
  593. continue;
  594. }
  595. if (start <= range[j].start && end < range[j].end &&
  596. range[j].start < end + 1) {
  597. range[j].start = end + 1;
  598. continue;
  599. }
  600. if (start > range[j].start && end >= range[j].end &&
  601. range[j].end > start - 1) {
  602. range[j].end = start - 1;
  603. continue;
  604. }
  605. if (start > range[j].start && end < range[j].end) {
  606. /* find the new spare */
  607. for (i = 0; i < RANGE_NUM; i++) {
  608. if (range[i].end == 0)
  609. break;
  610. }
  611. if (i < RANGE_NUM) {
  612. range[i].end = range[j].end;
  613. range[i].start = end + 1;
  614. } else {
  615. printk(KERN_ERR "run of slot in ranges\n");
  616. }
  617. range[j].end = start - 1;
  618. continue;
  619. }
  620. }
  621. }
  622. static int __init cmp_range(const void *x1, const void *x2)
  623. {
  624. const struct res_range *r1 = x1;
  625. const struct res_range *r2 = x2;
  626. long start1, start2;
  627. start1 = r1->start;
  628. start2 = r2->start;
  629. return start1 - start2;
  630. }
  631. struct var_mtrr_range_state {
  632. unsigned long base_pfn;
  633. unsigned long size_pfn;
  634. mtrr_type type;
  635. };
  636. static struct var_mtrr_range_state __initdata range_state[RANGE_NUM];
  637. static int __initdata debug_print;
  638. static int __init
  639. x86_get_mtrr_mem_range(struct res_range *range, int nr_range,
  640. unsigned long extra_remove_base,
  641. unsigned long extra_remove_size)
  642. {
  643. unsigned long i, base, size;
  644. mtrr_type type;
  645. for (i = 0; i < num_var_ranges; i++) {
  646. type = range_state[i].type;
  647. if (type != MTRR_TYPE_WRBACK)
  648. continue;
  649. base = range_state[i].base_pfn;
  650. size = range_state[i].size_pfn;
  651. nr_range = add_range_with_merge(range, nr_range, base,
  652. base + size - 1);
  653. }
  654. if (debug_print) {
  655. printk(KERN_DEBUG "After WB checking\n");
  656. for (i = 0; i < nr_range; i++)
  657. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  658. range[i].start, range[i].end + 1);
  659. }
  660. /* take out UC ranges */
  661. for (i = 0; i < num_var_ranges; i++) {
  662. type = range_state[i].type;
  663. if (type != MTRR_TYPE_UNCACHABLE &&
  664. type != MTRR_TYPE_WRPROT)
  665. continue;
  666. size = range_state[i].size_pfn;
  667. if (!size)
  668. continue;
  669. base = range_state[i].base_pfn;
  670. subtract_range(range, base, base + size - 1);
  671. }
  672. if (extra_remove_size)
  673. subtract_range(range, extra_remove_base,
  674. extra_remove_base + extra_remove_size - 1);
  675. /* get new range num */
  676. nr_range = 0;
  677. for (i = 0; i < RANGE_NUM; i++) {
  678. if (!range[i].end)
  679. continue;
  680. nr_range++;
  681. }
  682. if (debug_print) {
  683. printk(KERN_DEBUG "After UC checking\n");
  684. for (i = 0; i < nr_range; i++)
  685. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  686. range[i].start, range[i].end + 1);
  687. }
  688. /* sort the ranges */
  689. sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
  690. if (debug_print) {
  691. printk(KERN_DEBUG "After sorting\n");
  692. for (i = 0; i < nr_range; i++)
  693. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  694. range[i].start, range[i].end + 1);
  695. }
  696. /* clear those is not used */
  697. for (i = nr_range; i < RANGE_NUM; i++)
  698. memset(&range[i], 0, sizeof(range[i]));
  699. return nr_range;
  700. }
  701. static struct res_range __initdata range[RANGE_NUM];
  702. #ifdef CONFIG_MTRR_SANITIZER
  703. static unsigned long __init sum_ranges(struct res_range *range, int nr_range)
  704. {
  705. unsigned long sum;
  706. int i;
  707. sum = 0;
  708. for (i = 0; i < nr_range; i++)
  709. sum += range[i].end + 1 - range[i].start;
  710. return sum;
  711. }
  712. static int enable_mtrr_cleanup __initdata =
  713. CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;
  714. static int __init disable_mtrr_cleanup_setup(char *str)
  715. {
  716. if (enable_mtrr_cleanup != -1)
  717. enable_mtrr_cleanup = 0;
  718. return 0;
  719. }
  720. early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);
  721. static int __init enable_mtrr_cleanup_setup(char *str)
  722. {
  723. if (enable_mtrr_cleanup != -1)
  724. enable_mtrr_cleanup = 1;
  725. return 0;
  726. }
  727. early_param("enable_mtrr_cleanup", enable_mtrr_cleanup_setup);
  728. static int __init mtrr_cleanup_debug_setup(char *str)
  729. {
  730. debug_print = 1;
  731. return 0;
  732. }
  733. early_param("mtrr_cleanup_debug", mtrr_cleanup_debug_setup);
  734. struct var_mtrr_state {
  735. unsigned long range_startk;
  736. unsigned long range_sizek;
  737. unsigned long chunk_sizek;
  738. unsigned long gran_sizek;
  739. unsigned int reg;
  740. };
  741. static void __init
  742. set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  743. unsigned char type, unsigned int address_bits)
  744. {
  745. u32 base_lo, base_hi, mask_lo, mask_hi;
  746. u64 base, mask;
  747. if (!sizek) {
  748. fill_mtrr_var_range(reg, 0, 0, 0, 0);
  749. return;
  750. }
  751. mask = (1ULL << address_bits) - 1;
  752. mask &= ~((((u64)sizek) << 10) - 1);
  753. base = ((u64)basek) << 10;
  754. base |= type;
  755. mask |= 0x800;
  756. base_lo = base & ((1ULL<<32) - 1);
  757. base_hi = base >> 32;
  758. mask_lo = mask & ((1ULL<<32) - 1);
  759. mask_hi = mask >> 32;
  760. fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
  761. }
  762. static void __init
  763. save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  764. unsigned char type)
  765. {
  766. range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10);
  767. range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10);
  768. range_state[reg].type = type;
  769. }
  770. static void __init
  771. set_var_mtrr_all(unsigned int address_bits)
  772. {
  773. unsigned long basek, sizek;
  774. unsigned char type;
  775. unsigned int reg;
  776. for (reg = 0; reg < num_var_ranges; reg++) {
  777. basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10);
  778. sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10);
  779. type = range_state[reg].type;
  780. set_var_mtrr(reg, basek, sizek, type, address_bits);
  781. }
  782. }
  783. static unsigned long to_size_factor(unsigned long sizek, char *factorp)
  784. {
  785. char factor;
  786. unsigned long base = sizek;
  787. if (base & ((1<<10) - 1)) {
  788. /* not MB alignment */
  789. factor = 'K';
  790. } else if (base & ((1<<20) - 1)){
  791. factor = 'M';
  792. base >>= 10;
  793. } else {
  794. factor = 'G';
  795. base >>= 20;
  796. }
  797. *factorp = factor;
  798. return base;
  799. }
  800. static unsigned int __init
  801. range_to_mtrr(unsigned int reg, unsigned long range_startk,
  802. unsigned long range_sizek, unsigned char type)
  803. {
  804. if (!range_sizek || (reg >= num_var_ranges))
  805. return reg;
  806. while (range_sizek) {
  807. unsigned long max_align, align;
  808. unsigned long sizek;
  809. /* Compute the maximum size I can make a range */
  810. if (range_startk)
  811. max_align = ffs(range_startk) - 1;
  812. else
  813. max_align = 32;
  814. align = fls(range_sizek) - 1;
  815. if (align > max_align)
  816. align = max_align;
  817. sizek = 1 << align;
  818. if (debug_print) {
  819. char start_factor = 'K', size_factor = 'K';
  820. unsigned long start_base, size_base;
  821. start_base = to_size_factor(range_startk, &start_factor),
  822. size_base = to_size_factor(sizek, &size_factor),
  823. printk(KERN_DEBUG "Setting variable MTRR %d, "
  824. "base: %ld%cB, range: %ld%cB, type %s\n",
  825. reg, start_base, start_factor,
  826. size_base, size_factor,
  827. (type == MTRR_TYPE_UNCACHABLE)?"UC":
  828. ((type == MTRR_TYPE_WRBACK)?"WB":"Other")
  829. );
  830. }
  831. save_var_mtrr(reg++, range_startk, sizek, type);
  832. range_startk += sizek;
  833. range_sizek -= sizek;
  834. if (reg >= num_var_ranges)
  835. break;
  836. }
  837. return reg;
  838. }
  839. static unsigned __init
  840. range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek,
  841. unsigned long sizek)
  842. {
  843. unsigned long hole_basek, hole_sizek;
  844. unsigned long second_basek, second_sizek;
  845. unsigned long range0_basek, range0_sizek;
  846. unsigned long range_basek, range_sizek;
  847. unsigned long chunk_sizek;
  848. unsigned long gran_sizek;
  849. hole_basek = 0;
  850. hole_sizek = 0;
  851. second_basek = 0;
  852. second_sizek = 0;
  853. chunk_sizek = state->chunk_sizek;
  854. gran_sizek = state->gran_sizek;
  855. /* align with gran size, prevent small block used up MTRRs */
  856. range_basek = ALIGN(state->range_startk, gran_sizek);
  857. if ((range_basek > basek) && basek)
  858. return second_sizek;
  859. state->range_sizek -= (range_basek - state->range_startk);
  860. range_sizek = ALIGN(state->range_sizek, gran_sizek);
  861. while (range_sizek > state->range_sizek) {
  862. range_sizek -= gran_sizek;
  863. if (!range_sizek)
  864. return 0;
  865. }
  866. state->range_sizek = range_sizek;
  867. /* try to append some small hole */
  868. range0_basek = state->range_startk;
  869. range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
  870. /* no increase */
  871. if (range0_sizek == state->range_sizek) {
  872. if (debug_print)
  873. printk(KERN_DEBUG "rangeX: %016lx - %016lx\n",
  874. range0_basek<<10,
  875. (range0_basek + state->range_sizek)<<10);
  876. state->reg = range_to_mtrr(state->reg, range0_basek,
  877. state->range_sizek, MTRR_TYPE_WRBACK);
  878. return 0;
  879. }
  880. /* only cut back, when it is not the last */
  881. if (sizek) {
  882. while (range0_basek + range0_sizek > (basek + sizek)) {
  883. if (range0_sizek >= chunk_sizek)
  884. range0_sizek -= chunk_sizek;
  885. else
  886. range0_sizek = 0;
  887. if (!range0_sizek)
  888. break;
  889. }
  890. }
  891. second_try:
  892. range_basek = range0_basek + range0_sizek;
  893. /* one hole in the middle */
  894. if (range_basek > basek && range_basek <= (basek + sizek))
  895. second_sizek = range_basek - basek;
  896. if (range0_sizek > state->range_sizek) {
  897. /* one hole in middle or at end */
  898. hole_sizek = range0_sizek - state->range_sizek - second_sizek;
  899. /* hole size should be less than half of range0 size */
  900. if (hole_sizek >= (range0_sizek >> 1) &&
  901. range0_sizek >= chunk_sizek) {
  902. range0_sizek -= chunk_sizek;
  903. second_sizek = 0;
  904. hole_sizek = 0;
  905. goto second_try;
  906. }
  907. }
  908. if (range0_sizek) {
  909. if (debug_print)
  910. printk(KERN_DEBUG "range0: %016lx - %016lx\n",
  911. range0_basek<<10,
  912. (range0_basek + range0_sizek)<<10);
  913. state->reg = range_to_mtrr(state->reg, range0_basek,
  914. range0_sizek, MTRR_TYPE_WRBACK);
  915. }
  916. if (range0_sizek < state->range_sizek) {
  917. /* need to handle left over */
  918. range_sizek = state->range_sizek - range0_sizek;
  919. if (debug_print)
  920. printk(KERN_DEBUG "range: %016lx - %016lx\n",
  921. range_basek<<10,
  922. (range_basek + range_sizek)<<10);
  923. state->reg = range_to_mtrr(state->reg, range_basek,
  924. range_sizek, MTRR_TYPE_WRBACK);
  925. }
  926. if (hole_sizek) {
  927. hole_basek = range_basek - hole_sizek - second_sizek;
  928. if (debug_print)
  929. printk(KERN_DEBUG "hole: %016lx - %016lx\n",
  930. hole_basek<<10,
  931. (hole_basek + hole_sizek)<<10);
  932. state->reg = range_to_mtrr(state->reg, hole_basek,
  933. hole_sizek, MTRR_TYPE_UNCACHABLE);
  934. }
  935. return second_sizek;
  936. }
  937. static void __init
  938. set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
  939. unsigned long size_pfn)
  940. {
  941. unsigned long basek, sizek;
  942. unsigned long second_sizek = 0;
  943. if (state->reg >= num_var_ranges)
  944. return;
  945. basek = base_pfn << (PAGE_SHIFT - 10);
  946. sizek = size_pfn << (PAGE_SHIFT - 10);
  947. /* See if I can merge with the last range */
  948. if ((basek <= 1024) ||
  949. (state->range_startk + state->range_sizek == basek)) {
  950. unsigned long endk = basek + sizek;
  951. state->range_sizek = endk - state->range_startk;
  952. return;
  953. }
  954. /* Write the range mtrrs */
  955. if (state->range_sizek != 0)
  956. second_sizek = range_to_mtrr_with_hole(state, basek, sizek);
  957. /* Allocate an msr */
  958. state->range_startk = basek + second_sizek;
  959. state->range_sizek = sizek - second_sizek;
  960. }
  961. /* mininum size of mtrr block that can take hole */
  962. static u64 mtrr_chunk_size __initdata = (256ULL<<20);
  963. static int __init parse_mtrr_chunk_size_opt(char *p)
  964. {
  965. if (!p)
  966. return -EINVAL;
  967. mtrr_chunk_size = memparse(p, &p);
  968. return 0;
  969. }
  970. early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);
  971. /* granity of mtrr of block */
  972. static u64 mtrr_gran_size __initdata;
  973. static int __init parse_mtrr_gran_size_opt(char *p)
  974. {
  975. if (!p)
  976. return -EINVAL;
  977. mtrr_gran_size = memparse(p, &p);
  978. return 0;
  979. }
  980. early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);
  981. static int nr_mtrr_spare_reg __initdata =
  982. CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT;
  983. static int __init parse_mtrr_spare_reg(char *arg)
  984. {
  985. if (arg)
  986. nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0);
  987. return 0;
  988. }
  989. early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg);
  990. static int __init
  991. x86_setup_var_mtrrs(struct res_range *range, int nr_range,
  992. u64 chunk_size, u64 gran_size)
  993. {
  994. struct var_mtrr_state var_state;
  995. int i;
  996. int num_reg;
  997. var_state.range_startk = 0;
  998. var_state.range_sizek = 0;
  999. var_state.reg = 0;
  1000. var_state.chunk_sizek = chunk_size >> 10;
  1001. var_state.gran_sizek = gran_size >> 10;
  1002. memset(range_state, 0, sizeof(range_state));
  1003. /* Write the range etc */
  1004. for (i = 0; i < nr_range; i++)
  1005. set_var_mtrr_range(&var_state, range[i].start,
  1006. range[i].end - range[i].start + 1);
  1007. /* Write the last range */
  1008. if (var_state.range_sizek != 0)
  1009. range_to_mtrr_with_hole(&var_state, 0, 0);
  1010. num_reg = var_state.reg;
  1011. /* Clear out the extra MTRR's */
  1012. while (var_state.reg < num_var_ranges) {
  1013. save_var_mtrr(var_state.reg, 0, 0, 0);
  1014. var_state.reg++;
  1015. }
  1016. return num_reg;
  1017. }
  1018. struct mtrr_cleanup_result {
  1019. unsigned long gran_sizek;
  1020. unsigned long chunk_sizek;
  1021. unsigned long lose_cover_sizek;
  1022. unsigned int num_reg;
  1023. int bad;
  1024. };
  1025. /*
  1026. * gran_size: 64K, 128K, 256K, 512K, 1M, 2M, ..., 2G
  1027. * chunk size: gran_size, ..., 2G
  1028. * so we need (1+16)*8
  1029. */
  1030. #define NUM_RESULT 136
  1031. #define PSHIFT (PAGE_SHIFT - 10)
  1032. static struct mtrr_cleanup_result __initdata result[NUM_RESULT];
  1033. static struct res_range __initdata range_new[RANGE_NUM];
  1034. static unsigned long __initdata min_loss_pfn[RANGE_NUM];
  1035. static int __init mtrr_cleanup(unsigned address_bits)
  1036. {
  1037. unsigned long extra_remove_base, extra_remove_size;
  1038. unsigned long base, size, def, dummy;
  1039. mtrr_type type;
  1040. int nr_range, nr_range_new;
  1041. u64 chunk_size, gran_size;
  1042. unsigned long range_sums, range_sums_new;
  1043. int index_good;
  1044. int num_reg_good;
  1045. int i;
  1046. /* extra one for all 0 */
  1047. int num[MTRR_NUM_TYPES + 1];
  1048. if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
  1049. return 0;
  1050. rdmsr(MTRRdefType_MSR, def, dummy);
  1051. def &= 0xff;
  1052. if (def != MTRR_TYPE_UNCACHABLE)
  1053. return 0;
  1054. /* get it and store it aside */
  1055. memset(range_state, 0, sizeof(range_state));
  1056. for (i = 0; i < num_var_ranges; i++) {
  1057. mtrr_if->get(i, &base, &size, &type);
  1058. range_state[i].base_pfn = base;
  1059. range_state[i].size_pfn = size;
  1060. range_state[i].type = type;
  1061. }
  1062. /* check entries number */
  1063. memset(num, 0, sizeof(num));
  1064. for (i = 0; i < num_var_ranges; i++) {
  1065. type = range_state[i].type;
  1066. size = range_state[i].size_pfn;
  1067. if (type >= MTRR_NUM_TYPES)
  1068. continue;
  1069. if (!size)
  1070. type = MTRR_NUM_TYPES;
  1071. if (type == MTRR_TYPE_WRPROT)
  1072. type = MTRR_TYPE_UNCACHABLE;
  1073. num[type]++;
  1074. }
  1075. /* check if we got UC entries */
  1076. if (!num[MTRR_TYPE_UNCACHABLE])
  1077. return 0;
  1078. /* check if we only had WB and UC */
  1079. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  1080. num_var_ranges - num[MTRR_NUM_TYPES])
  1081. return 0;
  1082. /* print original var MTRRs at first, for debugging: */
  1083. printk(KERN_DEBUG "original variable MTRRs\n");
  1084. for (i = 0; i < num_var_ranges; i++) {
  1085. char start_factor = 'K', size_factor = 'K';
  1086. unsigned long start_base, size_base;
  1087. size_base = range_state[i].size_pfn << (PAGE_SHIFT - 10);
  1088. if (!size_base)
  1089. continue;
  1090. size_base = to_size_factor(size_base, &size_factor),
  1091. start_base = range_state[i].base_pfn << (PAGE_SHIFT - 10);
  1092. start_base = to_size_factor(start_base, &start_factor),
  1093. type = range_state[i].type;
  1094. printk(KERN_DEBUG "reg %d, base: %ld%cB, range: %ld%cB, type %s\n",
  1095. i, start_base, start_factor,
  1096. size_base, size_factor,
  1097. (type == MTRR_TYPE_UNCACHABLE) ? "UC" :
  1098. ((type == MTRR_TYPE_WRPROT) ? "WP" :
  1099. ((type == MTRR_TYPE_WRBACK) ? "WB" : "Other"))
  1100. );
  1101. }
  1102. memset(range, 0, sizeof(range));
  1103. extra_remove_size = 0;
  1104. extra_remove_base = 1 << (32 - PAGE_SHIFT);
  1105. if (mtrr_tom2)
  1106. extra_remove_size =
  1107. (mtrr_tom2 >> PAGE_SHIFT) - extra_remove_base;
  1108. nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base,
  1109. extra_remove_size);
  1110. /*
  1111. * [0, 1M) should always be coverred by var mtrr with WB
  1112. * and fixed mtrrs should take effective before var mtrr for it
  1113. */
  1114. nr_range = add_range_with_merge(range, nr_range, 0,
  1115. (1ULL<<(20 - PAGE_SHIFT)) - 1);
  1116. /* sort the ranges */
  1117. sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
  1118. range_sums = sum_ranges(range, nr_range);
  1119. printk(KERN_INFO "total RAM coverred: %ldM\n",
  1120. range_sums >> (20 - PAGE_SHIFT));
  1121. if (mtrr_chunk_size && mtrr_gran_size) {
  1122. int num_reg;
  1123. char gran_factor, chunk_factor, lose_factor;
  1124. unsigned long gran_base, chunk_base, lose_base;
  1125. debug_print++;
  1126. /* convert ranges to var ranges state */
  1127. num_reg = x86_setup_var_mtrrs(range, nr_range, mtrr_chunk_size,
  1128. mtrr_gran_size);
  1129. /* we got new setting in range_state, check it */
  1130. memset(range_new, 0, sizeof(range_new));
  1131. nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
  1132. extra_remove_base,
  1133. extra_remove_size);
  1134. range_sums_new = sum_ranges(range_new, nr_range_new);
  1135. i = 0;
  1136. result[i].chunk_sizek = mtrr_chunk_size >> 10;
  1137. result[i].gran_sizek = mtrr_gran_size >> 10;
  1138. result[i].num_reg = num_reg;
  1139. if (range_sums < range_sums_new) {
  1140. result[i].lose_cover_sizek =
  1141. (range_sums_new - range_sums) << PSHIFT;
  1142. result[i].bad = 1;
  1143. } else
  1144. result[i].lose_cover_sizek =
  1145. (range_sums - range_sums_new) << PSHIFT;
  1146. gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
  1147. chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
  1148. lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
  1149. printk(KERN_INFO "%sgran_size: %ld%c \tchunk_size: %ld%c \t",
  1150. result[i].bad?"*BAD*":" ",
  1151. gran_base, gran_factor, chunk_base, chunk_factor);
  1152. printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ld%c\n",
  1153. result[i].num_reg, result[i].bad?"-":"",
  1154. lose_base, lose_factor);
  1155. if (!result[i].bad) {
  1156. set_var_mtrr_all(address_bits);
  1157. return 1;
  1158. }
  1159. printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, "
  1160. "will find optimal one\n");
  1161. debug_print--;
  1162. memset(result, 0, sizeof(result[0]));
  1163. }
  1164. i = 0;
  1165. memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn));
  1166. memset(result, 0, sizeof(result));
  1167. for (gran_size = (1ULL<<16); gran_size < (1ULL<<32); gran_size <<= 1) {
  1168. char gran_factor;
  1169. unsigned long gran_base;
  1170. if (debug_print)
  1171. gran_base = to_size_factor(gran_size >> 10, &gran_factor);
  1172. for (chunk_size = gran_size; chunk_size < (1ULL<<32);
  1173. chunk_size <<= 1) {
  1174. int num_reg;
  1175. if (debug_print) {
  1176. char chunk_factor;
  1177. unsigned long chunk_base;
  1178. chunk_base = to_size_factor(chunk_size>>10, &chunk_factor),
  1179. printk(KERN_INFO "\n");
  1180. printk(KERN_INFO "gran_size: %ld%c chunk_size: %ld%c \n",
  1181. gran_base, gran_factor, chunk_base, chunk_factor);
  1182. }
  1183. if (i >= NUM_RESULT)
  1184. continue;
  1185. /* convert ranges to var ranges state */
  1186. num_reg = x86_setup_var_mtrrs(range, nr_range,
  1187. chunk_size, gran_size);
  1188. /* we got new setting in range_state, check it */
  1189. memset(range_new, 0, sizeof(range_new));
  1190. nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
  1191. extra_remove_base, extra_remove_size);
  1192. range_sums_new = sum_ranges(range_new, nr_range_new);
  1193. result[i].chunk_sizek = chunk_size >> 10;
  1194. result[i].gran_sizek = gran_size >> 10;
  1195. result[i].num_reg = num_reg;
  1196. if (range_sums < range_sums_new) {
  1197. result[i].lose_cover_sizek =
  1198. (range_sums_new - range_sums) << PSHIFT;
  1199. result[i].bad = 1;
  1200. } else
  1201. result[i].lose_cover_sizek =
  1202. (range_sums - range_sums_new) << PSHIFT;
  1203. /* double check it */
  1204. if (!result[i].bad && !result[i].lose_cover_sizek) {
  1205. if (nr_range_new != nr_range ||
  1206. memcmp(range, range_new, sizeof(range)))
  1207. result[i].bad = 1;
  1208. }
  1209. if (!result[i].bad && (range_sums - range_sums_new <
  1210. min_loss_pfn[num_reg])) {
  1211. min_loss_pfn[num_reg] =
  1212. range_sums - range_sums_new;
  1213. }
  1214. i++;
  1215. }
  1216. }
  1217. /* print out all */
  1218. for (i = 0; i < NUM_RESULT; i++) {
  1219. char gran_factor, chunk_factor, lose_factor;
  1220. unsigned long gran_base, chunk_base, lose_base;
  1221. gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
  1222. chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
  1223. lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
  1224. printk(KERN_INFO "%sgran_size: %ld%c \tchunk_size: %ld%c \t",
  1225. result[i].bad?"*BAD*":" ",
  1226. gran_base, gran_factor, chunk_base, chunk_factor);
  1227. printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ld%c\n",
  1228. result[i].num_reg, result[i].bad?"-":"",
  1229. lose_base, lose_factor);
  1230. }
  1231. /* try to find the optimal index */
  1232. if (nr_mtrr_spare_reg >= num_var_ranges)
  1233. nr_mtrr_spare_reg = num_var_ranges - 1;
  1234. num_reg_good = -1;
  1235. for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) {
  1236. if (!min_loss_pfn[i])
  1237. num_reg_good = i;
  1238. }
  1239. index_good = -1;
  1240. if (num_reg_good != -1) {
  1241. for (i = 0; i < NUM_RESULT; i++) {
  1242. if (!result[i].bad &&
  1243. result[i].num_reg == num_reg_good &&
  1244. !result[i].lose_cover_sizek) {
  1245. index_good = i;
  1246. break;
  1247. }
  1248. }
  1249. }
  1250. if (index_good != -1) {
  1251. char gran_factor, chunk_factor, lose_factor;
  1252. unsigned long gran_base, chunk_base, lose_base;
  1253. printk(KERN_INFO "Found optimal setting for mtrr clean up\n");
  1254. i = index_good;
  1255. gran_base = to_size_factor(result[i].gran_sizek, &gran_factor),
  1256. chunk_base = to_size_factor(result[i].chunk_sizek, &chunk_factor),
  1257. lose_base = to_size_factor(result[i].lose_cover_sizek, &lose_factor),
  1258. printk(KERN_INFO "gran_size: %ld%c \tchunk_size: %ld%c \t",
  1259. gran_base, gran_factor, chunk_base, chunk_factor);
  1260. printk(KERN_CONT "num_reg: %d \tlose RAM: %ld%c\n",
  1261. result[i].num_reg, lose_base, lose_factor);
  1262. /* convert ranges to var ranges state */
  1263. chunk_size = result[i].chunk_sizek;
  1264. chunk_size <<= 10;
  1265. gran_size = result[i].gran_sizek;
  1266. gran_size <<= 10;
  1267. debug_print++;
  1268. x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
  1269. debug_print--;
  1270. set_var_mtrr_all(address_bits);
  1271. return 1;
  1272. }
  1273. printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n");
  1274. printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n");
  1275. return 0;
  1276. }
  1277. #else
  1278. static int __init mtrr_cleanup(unsigned address_bits)
  1279. {
  1280. return 0;
  1281. }
  1282. #endif
  1283. static int __initdata changed_by_mtrr_cleanup;
  1284. static int disable_mtrr_trim;
  1285. static int __init disable_mtrr_trim_setup(char *str)
  1286. {
  1287. disable_mtrr_trim = 1;
  1288. return 0;
  1289. }
  1290. early_param("disable_mtrr_trim", disable_mtrr_trim_setup);
  1291. /*
  1292. * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
  1293. * for memory >4GB. Check for that here.
  1294. * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
  1295. * apply to are wrong, but so far we don't know of any such case in the wild.
  1296. */
  1297. #define Tom2Enabled (1U << 21)
  1298. #define Tom2ForceMemTypeWB (1U << 22)
  1299. int __init amd_special_default_mtrr(void)
  1300. {
  1301. u32 l, h;
  1302. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
  1303. return 0;
  1304. if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
  1305. return 0;
  1306. /* In case some hypervisor doesn't pass SYSCFG through */
  1307. if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
  1308. return 0;
  1309. /*
  1310. * Memory between 4GB and top of mem is forced WB by this magic bit.
  1311. * Reserved before K8RevF, but should be zero there.
  1312. */
  1313. if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
  1314. (Tom2Enabled | Tom2ForceMemTypeWB))
  1315. return 1;
  1316. return 0;
  1317. }
  1318. static u64 __init real_trim_memory(unsigned long start_pfn,
  1319. unsigned long limit_pfn)
  1320. {
  1321. u64 trim_start, trim_size;
  1322. trim_start = start_pfn;
  1323. trim_start <<= PAGE_SHIFT;
  1324. trim_size = limit_pfn;
  1325. trim_size <<= PAGE_SHIFT;
  1326. trim_size -= trim_start;
  1327. return e820_update_range(trim_start, trim_size, E820_RAM,
  1328. E820_RESERVED);
  1329. }
  1330. /**
  1331. * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
  1332. * @end_pfn: ending page frame number
  1333. *
  1334. * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
  1335. * memory configurations. This routine checks that the highest MTRR matches
  1336. * the end of memory, to make sure the MTRRs having a write back type cover
  1337. * all of the memory the kernel is intending to use. If not, it'll trim any
  1338. * memory off the end by adjusting end_pfn, removing it from the kernel's
  1339. * allocation pools, warning the user with an obnoxious message.
  1340. */
  1341. int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
  1342. {
  1343. unsigned long i, base, size, highest_pfn = 0, def, dummy;
  1344. mtrr_type type;
  1345. int nr_range;
  1346. u64 total_trim_size;
  1347. /* extra one for all 0 */
  1348. int num[MTRR_NUM_TYPES + 1];
  1349. /*
  1350. * Make sure we only trim uncachable memory on machines that
  1351. * support the Intel MTRR architecture:
  1352. */
  1353. if (!is_cpu(INTEL) || disable_mtrr_trim)
  1354. return 0;
  1355. rdmsr(MTRRdefType_MSR, def, dummy);
  1356. def &= 0xff;
  1357. if (def != MTRR_TYPE_UNCACHABLE)
  1358. return 0;
  1359. /* get it and store it aside */
  1360. memset(range_state, 0, sizeof(range_state));
  1361. for (i = 0; i < num_var_ranges; i++) {
  1362. mtrr_if->get(i, &base, &size, &type);
  1363. range_state[i].base_pfn = base;
  1364. range_state[i].size_pfn = size;
  1365. range_state[i].type = type;
  1366. }
  1367. /* Find highest cached pfn */
  1368. for (i = 0; i < num_var_ranges; i++) {
  1369. type = range_state[i].type;
  1370. if (type != MTRR_TYPE_WRBACK)
  1371. continue;
  1372. base = range_state[i].base_pfn;
  1373. size = range_state[i].size_pfn;
  1374. if (highest_pfn < base + size)
  1375. highest_pfn = base + size;
  1376. }
  1377. /* kvm/qemu doesn't have mtrr set right, don't trim them all */
  1378. if (!highest_pfn) {
  1379. WARN(!kvm_para_available(), KERN_WARNING
  1380. "WARNING: strange, CPU MTRRs all blank?\n");
  1381. return 0;
  1382. }
  1383. /* check entries number */
  1384. memset(num, 0, sizeof(num));
  1385. for (i = 0; i < num_var_ranges; i++) {
  1386. type = range_state[i].type;
  1387. if (type >= MTRR_NUM_TYPES)
  1388. continue;
  1389. size = range_state[i].size_pfn;
  1390. if (!size)
  1391. type = MTRR_NUM_TYPES;
  1392. num[type]++;
  1393. }
  1394. /* no entry for WB? */
  1395. if (!num[MTRR_TYPE_WRBACK])
  1396. return 0;
  1397. /* check if we only had WB and UC */
  1398. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  1399. num_var_ranges - num[MTRR_NUM_TYPES])
  1400. return 0;
  1401. memset(range, 0, sizeof(range));
  1402. nr_range = 0;
  1403. if (mtrr_tom2) {
  1404. range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
  1405. range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1;
  1406. if (highest_pfn < range[nr_range].end + 1)
  1407. highest_pfn = range[nr_range].end + 1;
  1408. nr_range++;
  1409. }
  1410. nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);
  1411. total_trim_size = 0;
  1412. /* check the head */
  1413. if (range[0].start)
  1414. total_trim_size += real_trim_memory(0, range[0].start);
  1415. /* check the holes */
  1416. for (i = 0; i < nr_range - 1; i++) {
  1417. if (range[i].end + 1 < range[i+1].start)
  1418. total_trim_size += real_trim_memory(range[i].end + 1,
  1419. range[i+1].start);
  1420. }
  1421. /* check the top */
  1422. i = nr_range - 1;
  1423. if (range[i].end + 1 < end_pfn)
  1424. total_trim_size += real_trim_memory(range[i].end + 1,
  1425. end_pfn);
  1426. if (total_trim_size) {
  1427. printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
  1428. " all of memory, losing %lluMB of RAM.\n",
  1429. total_trim_size >> 20);
  1430. if (!changed_by_mtrr_cleanup)
  1431. WARN_ON(1);
  1432. printk(KERN_INFO "update e820 for mtrr\n");
  1433. update_e820();
  1434. return 1;
  1435. }
  1436. return 0;
  1437. }
  1438. /**
  1439. * mtrr_bp_init - initialize mtrrs on the boot CPU
  1440. *
  1441. * This needs to be called early; before any of the other CPUs are
  1442. * initialized (i.e. before smp_init()).
  1443. *
  1444. */
  1445. void __init mtrr_bp_init(void)
  1446. {
  1447. u32 phys_addr;
  1448. init_ifs();
  1449. phys_addr = 32;
  1450. if (cpu_has_mtrr) {
  1451. mtrr_if = &generic_mtrr_ops;
  1452. size_or_mask = 0xff000000; /* 36 bits */
  1453. size_and_mask = 0x00f00000;
  1454. phys_addr = 36;
  1455. /* This is an AMD specific MSR, but we assume(hope?) that
  1456. Intel will implement it to when they extend the address
  1457. bus of the Xeon. */
  1458. if (cpuid_eax(0x80000000) >= 0x80000008) {
  1459. phys_addr = cpuid_eax(0x80000008) & 0xff;
  1460. /* CPUID workaround for Intel 0F33/0F34 CPU */
  1461. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  1462. boot_cpu_data.x86 == 0xF &&
  1463. boot_cpu_data.x86_model == 0x3 &&
  1464. (boot_cpu_data.x86_mask == 0x3 ||
  1465. boot_cpu_data.x86_mask == 0x4))
  1466. phys_addr = 36;
  1467. size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
  1468. size_and_mask = ~size_or_mask & 0xfffff00000ULL;
  1469. } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
  1470. boot_cpu_data.x86 == 6) {
  1471. /* VIA C* family have Intel style MTRRs, but
  1472. don't support PAE */
  1473. size_or_mask = 0xfff00000; /* 32 bits */
  1474. size_and_mask = 0;
  1475. phys_addr = 32;
  1476. }
  1477. } else {
  1478. switch (boot_cpu_data.x86_vendor) {
  1479. case X86_VENDOR_AMD:
  1480. if (cpu_has_k6_mtrr) {
  1481. /* Pre-Athlon (K6) AMD CPU MTRRs */
  1482. mtrr_if = mtrr_ops[X86_VENDOR_AMD];
  1483. size_or_mask = 0xfff00000; /* 32 bits */
  1484. size_and_mask = 0;
  1485. }
  1486. break;
  1487. case X86_VENDOR_CENTAUR:
  1488. if (cpu_has_centaur_mcr) {
  1489. mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
  1490. size_or_mask = 0xfff00000; /* 32 bits */
  1491. size_and_mask = 0;
  1492. }
  1493. break;
  1494. case X86_VENDOR_CYRIX:
  1495. if (cpu_has_cyrix_arr) {
  1496. mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
  1497. size_or_mask = 0xfff00000; /* 32 bits */
  1498. size_and_mask = 0;
  1499. }
  1500. break;
  1501. default:
  1502. break;
  1503. }
  1504. }
  1505. if (mtrr_if) {
  1506. set_num_var_ranges();
  1507. init_table();
  1508. if (use_intel()) {
  1509. get_mtrr_state();
  1510. if (mtrr_cleanup(phys_addr)) {
  1511. changed_by_mtrr_cleanup = 1;
  1512. mtrr_if->set_all();
  1513. }
  1514. }
  1515. }
  1516. }
  1517. void mtrr_ap_init(void)
  1518. {
  1519. unsigned long flags;
  1520. if (!mtrr_if || !use_intel())
  1521. return;
  1522. /*
  1523. * Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
  1524. * but this routine will be called in cpu boot time, holding the lock
  1525. * breaks it. This routine is called in two cases: 1.very earily time
  1526. * of software resume, when there absolutely isn't mtrr entry changes;
  1527. * 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
  1528. * prevent mtrr entry changes
  1529. */
  1530. local_irq_save(flags);
  1531. mtrr_if->set_all();
  1532. local_irq_restore(flags);
  1533. }
  1534. /**
  1535. * Save current fixed-range MTRR state of the BSP
  1536. */
  1537. void mtrr_save_state(void)
  1538. {
  1539. smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1);
  1540. }
  1541. static int __init mtrr_init_finialize(void)
  1542. {
  1543. if (!mtrr_if)
  1544. return 0;
  1545. if (use_intel()) {
  1546. if (!changed_by_mtrr_cleanup)
  1547. mtrr_state_warn();
  1548. } else {
  1549. /* The CPUs haven't MTRR and seem to not support SMP. They have
  1550. * specific drivers, we use a tricky method to support
  1551. * suspend/resume for them.
  1552. * TBD: is there any system with such CPU which supports
  1553. * suspend/resume? if no, we should remove the code.
  1554. */
  1555. sysdev_driver_register(&cpu_sysdev_class,
  1556. &mtrr_sysdev_driver);
  1557. }
  1558. return 0;
  1559. }
  1560. subsys_initcall(mtrr_init_finialize);