init.c 57 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352
  1. /*
  2. * arch/sparc64/mm/init.c
  3. *
  4. * Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
  5. * Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
  6. */
  7. #include <linux/module.h>
  8. #include <linux/kernel.h>
  9. #include <linux/sched.h>
  10. #include <linux/string.h>
  11. #include <linux/init.h>
  12. #include <linux/bootmem.h>
  13. #include <linux/mm.h>
  14. #include <linux/hugetlb.h>
  15. #include <linux/slab.h>
  16. #include <linux/initrd.h>
  17. #include <linux/swap.h>
  18. #include <linux/pagemap.h>
  19. #include <linux/poison.h>
  20. #include <linux/fs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/kprobes.h>
  23. #include <linux/cache.h>
  24. #include <linux/sort.h>
  25. #include <linux/percpu.h>
  26. #include <linux/lmb.h>
  27. #include <linux/mmzone.h>
  28. #include <asm/head.h>
  29. #include <asm/system.h>
  30. #include <asm/page.h>
  31. #include <asm/pgalloc.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/oplib.h>
  34. #include <asm/iommu.h>
  35. #include <asm/io.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/mmu_context.h>
  38. #include <asm/tlbflush.h>
  39. #include <asm/dma.h>
  40. #include <asm/starfire.h>
  41. #include <asm/tlb.h>
  42. #include <asm/spitfire.h>
  43. #include <asm/sections.h>
  44. #include <asm/tsb.h>
  45. #include <asm/hypervisor.h>
  46. #include <asm/prom.h>
  47. #include <asm/sstate.h>
  48. #include <asm/mdesc.h>
  49. #include <asm/cpudata.h>
  50. #include <asm/irq.h>
  51. #define MAX_PHYS_ADDRESS (1UL << 42UL)
  52. #define KPTE_BITMAP_CHUNK_SZ (256UL * 1024UL * 1024UL)
  53. #define KPTE_BITMAP_BYTES \
  54. ((MAX_PHYS_ADDRESS / KPTE_BITMAP_CHUNK_SZ) / 8)
  55. unsigned long kern_linear_pte_xor[2] __read_mostly;
  56. /* A bitmap, one bit for every 256MB of physical memory. If the bit
  57. * is clear, we should use a 4MB page (via kern_linear_pte_xor[0]) else
  58. * if set we should use a 256MB page (via kern_linear_pte_xor[1]).
  59. */
  60. unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  61. #ifndef CONFIG_DEBUG_PAGEALLOC
  62. /* A special kernel TSB for 4MB and 256MB linear mappings.
  63. * Space is allocated for this right after the trap table
  64. * in arch/sparc64/kernel/head.S
  65. */
  66. extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  67. #endif
  68. #define MAX_BANKS 32
  69. static struct linux_prom64_registers pavail[MAX_BANKS] __initdata;
  70. static int pavail_ents __initdata;
  71. static int cmp_p64(const void *a, const void *b)
  72. {
  73. const struct linux_prom64_registers *x = a, *y = b;
  74. if (x->phys_addr > y->phys_addr)
  75. return 1;
  76. if (x->phys_addr < y->phys_addr)
  77. return -1;
  78. return 0;
  79. }
  80. static void __init read_obp_memory(const char *property,
  81. struct linux_prom64_registers *regs,
  82. int *num_ents)
  83. {
  84. int node = prom_finddevice("/memory");
  85. int prop_size = prom_getproplen(node, property);
  86. int ents, ret, i;
  87. ents = prop_size / sizeof(struct linux_prom64_registers);
  88. if (ents > MAX_BANKS) {
  89. prom_printf("The machine has more %s property entries than "
  90. "this kernel can support (%d).\n",
  91. property, MAX_BANKS);
  92. prom_halt();
  93. }
  94. ret = prom_getproperty(node, property, (char *) regs, prop_size);
  95. if (ret == -1) {
  96. prom_printf("Couldn't get %s property from /memory.\n");
  97. prom_halt();
  98. }
  99. /* Sanitize what we got from the firmware, by page aligning
  100. * everything.
  101. */
  102. for (i = 0; i < ents; i++) {
  103. unsigned long base, size;
  104. base = regs[i].phys_addr;
  105. size = regs[i].reg_size;
  106. size &= PAGE_MASK;
  107. if (base & ~PAGE_MASK) {
  108. unsigned long new_base = PAGE_ALIGN(base);
  109. size -= new_base - base;
  110. if ((long) size < 0L)
  111. size = 0UL;
  112. base = new_base;
  113. }
  114. if (size == 0UL) {
  115. /* If it is empty, simply get rid of it.
  116. * This simplifies the logic of the other
  117. * functions that process these arrays.
  118. */
  119. memmove(&regs[i], &regs[i + 1],
  120. (ents - i - 1) * sizeof(regs[0]));
  121. i--;
  122. ents--;
  123. continue;
  124. }
  125. regs[i].phys_addr = base;
  126. regs[i].reg_size = size;
  127. }
  128. *num_ents = ents;
  129. sort(regs, ents, sizeof(struct linux_prom64_registers),
  130. cmp_p64, NULL);
  131. }
  132. unsigned long *sparc64_valid_addr_bitmap __read_mostly;
  133. /* Kernel physical address base and size in bytes. */
  134. unsigned long kern_base __read_mostly;
  135. unsigned long kern_size __read_mostly;
  136. /* Initial ramdisk setup */
  137. extern unsigned long sparc_ramdisk_image64;
  138. extern unsigned int sparc_ramdisk_image;
  139. extern unsigned int sparc_ramdisk_size;
  140. struct page *mem_map_zero __read_mostly;
  141. EXPORT_SYMBOL(mem_map_zero);
  142. unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
  143. unsigned long sparc64_kern_pri_context __read_mostly;
  144. unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
  145. unsigned long sparc64_kern_sec_context __read_mostly;
  146. int num_kernel_image_mappings;
  147. #ifdef CONFIG_DEBUG_DCFLUSH
  148. atomic_t dcpage_flushes = ATOMIC_INIT(0);
  149. #ifdef CONFIG_SMP
  150. atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
  151. #endif
  152. #endif
  153. inline void flush_dcache_page_impl(struct page *page)
  154. {
  155. BUG_ON(tlb_type == hypervisor);
  156. #ifdef CONFIG_DEBUG_DCFLUSH
  157. atomic_inc(&dcpage_flushes);
  158. #endif
  159. #ifdef DCACHE_ALIASING_POSSIBLE
  160. __flush_dcache_page(page_address(page),
  161. ((tlb_type == spitfire) &&
  162. page_mapping(page) != NULL));
  163. #else
  164. if (page_mapping(page) != NULL &&
  165. tlb_type == spitfire)
  166. __flush_icache_page(__pa(page_address(page)));
  167. #endif
  168. }
  169. #define PG_dcache_dirty PG_arch_1
  170. #define PG_dcache_cpu_shift 32UL
  171. #define PG_dcache_cpu_mask \
  172. ((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
  173. #define dcache_dirty_cpu(page) \
  174. (((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
  175. static inline void set_dcache_dirty(struct page *page, int this_cpu)
  176. {
  177. unsigned long mask = this_cpu;
  178. unsigned long non_cpu_bits;
  179. non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
  180. mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
  181. __asm__ __volatile__("1:\n\t"
  182. "ldx [%2], %%g7\n\t"
  183. "and %%g7, %1, %%g1\n\t"
  184. "or %%g1, %0, %%g1\n\t"
  185. "casx [%2], %%g7, %%g1\n\t"
  186. "cmp %%g7, %%g1\n\t"
  187. "membar #StoreLoad | #StoreStore\n\t"
  188. "bne,pn %%xcc, 1b\n\t"
  189. " nop"
  190. : /* no outputs */
  191. : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
  192. : "g1", "g7");
  193. }
  194. static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
  195. {
  196. unsigned long mask = (1UL << PG_dcache_dirty);
  197. __asm__ __volatile__("! test_and_clear_dcache_dirty\n"
  198. "1:\n\t"
  199. "ldx [%2], %%g7\n\t"
  200. "srlx %%g7, %4, %%g1\n\t"
  201. "and %%g1, %3, %%g1\n\t"
  202. "cmp %%g1, %0\n\t"
  203. "bne,pn %%icc, 2f\n\t"
  204. " andn %%g7, %1, %%g1\n\t"
  205. "casx [%2], %%g7, %%g1\n\t"
  206. "cmp %%g7, %%g1\n\t"
  207. "membar #StoreLoad | #StoreStore\n\t"
  208. "bne,pn %%xcc, 1b\n\t"
  209. " nop\n"
  210. "2:"
  211. : /* no outputs */
  212. : "r" (cpu), "r" (mask), "r" (&page->flags),
  213. "i" (PG_dcache_cpu_mask),
  214. "i" (PG_dcache_cpu_shift)
  215. : "g1", "g7");
  216. }
  217. static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
  218. {
  219. unsigned long tsb_addr = (unsigned long) ent;
  220. if (tlb_type == cheetah_plus || tlb_type == hypervisor)
  221. tsb_addr = __pa(tsb_addr);
  222. __tsb_insert(tsb_addr, tag, pte);
  223. }
  224. unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
  225. unsigned long _PAGE_SZBITS __read_mostly;
  226. void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte)
  227. {
  228. struct mm_struct *mm;
  229. struct tsb *tsb;
  230. unsigned long tag, flags;
  231. unsigned long tsb_index, tsb_hash_shift;
  232. if (tlb_type != hypervisor) {
  233. unsigned long pfn = pte_pfn(pte);
  234. unsigned long pg_flags;
  235. struct page *page;
  236. if (pfn_valid(pfn) &&
  237. (page = pfn_to_page(pfn), page_mapping(page)) &&
  238. ((pg_flags = page->flags) & (1UL << PG_dcache_dirty))) {
  239. int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
  240. PG_dcache_cpu_mask);
  241. int this_cpu = get_cpu();
  242. /* This is just to optimize away some function calls
  243. * in the SMP case.
  244. */
  245. if (cpu == this_cpu)
  246. flush_dcache_page_impl(page);
  247. else
  248. smp_flush_dcache_page_impl(page, cpu);
  249. clear_dcache_dirty_cpu(page, cpu);
  250. put_cpu();
  251. }
  252. }
  253. mm = vma->vm_mm;
  254. tsb_index = MM_TSB_BASE;
  255. tsb_hash_shift = PAGE_SHIFT;
  256. spin_lock_irqsave(&mm->context.lock, flags);
  257. #ifdef CONFIG_HUGETLB_PAGE
  258. if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL) {
  259. if ((tlb_type == hypervisor &&
  260. (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
  261. (tlb_type != hypervisor &&
  262. (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U)) {
  263. tsb_index = MM_TSB_HUGE;
  264. tsb_hash_shift = HPAGE_SHIFT;
  265. }
  266. }
  267. #endif
  268. tsb = mm->context.tsb_block[tsb_index].tsb;
  269. tsb += ((address >> tsb_hash_shift) &
  270. (mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
  271. tag = (address >> 22UL);
  272. tsb_insert(tsb, tag, pte_val(pte));
  273. spin_unlock_irqrestore(&mm->context.lock, flags);
  274. }
  275. void flush_dcache_page(struct page *page)
  276. {
  277. struct address_space *mapping;
  278. int this_cpu;
  279. if (tlb_type == hypervisor)
  280. return;
  281. /* Do not bother with the expensive D-cache flush if it
  282. * is merely the zero page. The 'bigcore' testcase in GDB
  283. * causes this case to run millions of times.
  284. */
  285. if (page == ZERO_PAGE(0))
  286. return;
  287. this_cpu = get_cpu();
  288. mapping = page_mapping(page);
  289. if (mapping && !mapping_mapped(mapping)) {
  290. int dirty = test_bit(PG_dcache_dirty, &page->flags);
  291. if (dirty) {
  292. int dirty_cpu = dcache_dirty_cpu(page);
  293. if (dirty_cpu == this_cpu)
  294. goto out;
  295. smp_flush_dcache_page_impl(page, dirty_cpu);
  296. }
  297. set_dcache_dirty(page, this_cpu);
  298. } else {
  299. /* We could delay the flush for the !page_mapping
  300. * case too. But that case is for exec env/arg
  301. * pages and those are %99 certainly going to get
  302. * faulted into the tlb (and thus flushed) anyways.
  303. */
  304. flush_dcache_page_impl(page);
  305. }
  306. out:
  307. put_cpu();
  308. }
  309. void __kprobes flush_icache_range(unsigned long start, unsigned long end)
  310. {
  311. /* Cheetah and Hypervisor platform cpus have coherent I-cache. */
  312. if (tlb_type == spitfire) {
  313. unsigned long kaddr;
  314. /* This code only runs on Spitfire cpus so this is
  315. * why we can assume _PAGE_PADDR_4U.
  316. */
  317. for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
  318. unsigned long paddr, mask = _PAGE_PADDR_4U;
  319. if (kaddr >= PAGE_OFFSET)
  320. paddr = kaddr & mask;
  321. else {
  322. pgd_t *pgdp = pgd_offset_k(kaddr);
  323. pud_t *pudp = pud_offset(pgdp, kaddr);
  324. pmd_t *pmdp = pmd_offset(pudp, kaddr);
  325. pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
  326. paddr = pte_val(*ptep) & mask;
  327. }
  328. __flush_icache_page(paddr);
  329. }
  330. }
  331. }
  332. void mmu_info(struct seq_file *m)
  333. {
  334. if (tlb_type == cheetah)
  335. seq_printf(m, "MMU Type\t: Cheetah\n");
  336. else if (tlb_type == cheetah_plus)
  337. seq_printf(m, "MMU Type\t: Cheetah+\n");
  338. else if (tlb_type == spitfire)
  339. seq_printf(m, "MMU Type\t: Spitfire\n");
  340. else if (tlb_type == hypervisor)
  341. seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
  342. else
  343. seq_printf(m, "MMU Type\t: ???\n");
  344. #ifdef CONFIG_DEBUG_DCFLUSH
  345. seq_printf(m, "DCPageFlushes\t: %d\n",
  346. atomic_read(&dcpage_flushes));
  347. #ifdef CONFIG_SMP
  348. seq_printf(m, "DCPageFlushesXC\t: %d\n",
  349. atomic_read(&dcpage_flushes_xcall));
  350. #endif /* CONFIG_SMP */
  351. #endif /* CONFIG_DEBUG_DCFLUSH */
  352. }
  353. struct linux_prom_translation {
  354. unsigned long virt;
  355. unsigned long size;
  356. unsigned long data;
  357. };
  358. /* Exported for kernel TLB miss handling in ktlb.S */
  359. struct linux_prom_translation prom_trans[512] __read_mostly;
  360. unsigned int prom_trans_ents __read_mostly;
  361. /* Exported for SMP bootup purposes. */
  362. unsigned long kern_locked_tte_data;
  363. /* The obp translations are saved based on 8k pagesize, since obp can
  364. * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
  365. * HI_OBP_ADDRESS range are handled in ktlb.S.
  366. */
  367. static inline int in_obp_range(unsigned long vaddr)
  368. {
  369. return (vaddr >= LOW_OBP_ADDRESS &&
  370. vaddr < HI_OBP_ADDRESS);
  371. }
  372. static int cmp_ptrans(const void *a, const void *b)
  373. {
  374. const struct linux_prom_translation *x = a, *y = b;
  375. if (x->virt > y->virt)
  376. return 1;
  377. if (x->virt < y->virt)
  378. return -1;
  379. return 0;
  380. }
  381. /* Read OBP translations property into 'prom_trans[]'. */
  382. static void __init read_obp_translations(void)
  383. {
  384. int n, node, ents, first, last, i;
  385. node = prom_finddevice("/virtual-memory");
  386. n = prom_getproplen(node, "translations");
  387. if (unlikely(n == 0 || n == -1)) {
  388. prom_printf("prom_mappings: Couldn't get size.\n");
  389. prom_halt();
  390. }
  391. if (unlikely(n > sizeof(prom_trans))) {
  392. prom_printf("prom_mappings: Size %Zd is too big.\n", n);
  393. prom_halt();
  394. }
  395. if ((n = prom_getproperty(node, "translations",
  396. (char *)&prom_trans[0],
  397. sizeof(prom_trans))) == -1) {
  398. prom_printf("prom_mappings: Couldn't get property.\n");
  399. prom_halt();
  400. }
  401. n = n / sizeof(struct linux_prom_translation);
  402. ents = n;
  403. sort(prom_trans, ents, sizeof(struct linux_prom_translation),
  404. cmp_ptrans, NULL);
  405. /* Now kick out all the non-OBP entries. */
  406. for (i = 0; i < ents; i++) {
  407. if (in_obp_range(prom_trans[i].virt))
  408. break;
  409. }
  410. first = i;
  411. for (; i < ents; i++) {
  412. if (!in_obp_range(prom_trans[i].virt))
  413. break;
  414. }
  415. last = i;
  416. for (i = 0; i < (last - first); i++) {
  417. struct linux_prom_translation *src = &prom_trans[i + first];
  418. struct linux_prom_translation *dest = &prom_trans[i];
  419. *dest = *src;
  420. }
  421. for (; i < ents; i++) {
  422. struct linux_prom_translation *dest = &prom_trans[i];
  423. dest->virt = dest->size = dest->data = 0x0UL;
  424. }
  425. prom_trans_ents = last - first;
  426. if (tlb_type == spitfire) {
  427. /* Clear diag TTE bits. */
  428. for (i = 0; i < prom_trans_ents; i++)
  429. prom_trans[i].data &= ~0x0003fe0000000000UL;
  430. }
  431. }
  432. static void __init hypervisor_tlb_lock(unsigned long vaddr,
  433. unsigned long pte,
  434. unsigned long mmu)
  435. {
  436. unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
  437. if (ret != 0) {
  438. prom_printf("hypervisor_tlb_lock[%lx:%lx:%lx:%lx]: "
  439. "errors with %lx\n", vaddr, 0, pte, mmu, ret);
  440. prom_halt();
  441. }
  442. }
  443. static unsigned long kern_large_tte(unsigned long paddr);
  444. static void __init remap_kernel(void)
  445. {
  446. unsigned long phys_page, tte_vaddr, tte_data;
  447. int i, tlb_ent = sparc64_highest_locked_tlbent();
  448. tte_vaddr = (unsigned long) KERNBASE;
  449. phys_page = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  450. tte_data = kern_large_tte(phys_page);
  451. kern_locked_tte_data = tte_data;
  452. /* Now lock us into the TLBs via Hypervisor or OBP. */
  453. if (tlb_type == hypervisor) {
  454. for (i = 0; i < num_kernel_image_mappings; i++) {
  455. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
  456. hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
  457. tte_vaddr += 0x400000;
  458. tte_data += 0x400000;
  459. }
  460. } else {
  461. for (i = 0; i < num_kernel_image_mappings; i++) {
  462. prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
  463. prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
  464. tte_vaddr += 0x400000;
  465. tte_data += 0x400000;
  466. }
  467. sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
  468. }
  469. if (tlb_type == cheetah_plus) {
  470. sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
  471. CTX_CHEETAH_PLUS_NUC);
  472. sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
  473. sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
  474. }
  475. }
  476. static void __init inherit_prom_mappings(void)
  477. {
  478. /* Now fixup OBP's idea about where we really are mapped. */
  479. printk("Remapping the kernel... ");
  480. remap_kernel();
  481. printk("done.\n");
  482. }
  483. void prom_world(int enter)
  484. {
  485. if (!enter)
  486. set_fs((mm_segment_t) { get_thread_current_ds() });
  487. __asm__ __volatile__("flushw");
  488. }
  489. void __flush_dcache_range(unsigned long start, unsigned long end)
  490. {
  491. unsigned long va;
  492. if (tlb_type == spitfire) {
  493. int n = 0;
  494. for (va = start; va < end; va += 32) {
  495. spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
  496. if (++n >= 512)
  497. break;
  498. }
  499. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  500. start = __pa(start);
  501. end = __pa(end);
  502. for (va = start; va < end; va += 32)
  503. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  504. "membar #Sync"
  505. : /* no outputs */
  506. : "r" (va),
  507. "i" (ASI_DCACHE_INVALIDATE));
  508. }
  509. }
  510. /* get_new_mmu_context() uses "cache + 1". */
  511. DEFINE_SPINLOCK(ctx_alloc_lock);
  512. unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
  513. #define MAX_CTX_NR (1UL << CTX_NR_BITS)
  514. #define CTX_BMAP_SLOTS BITS_TO_LONGS(MAX_CTX_NR)
  515. DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
  516. /* Caller does TLB context flushing on local CPU if necessary.
  517. * The caller also ensures that CTX_VALID(mm->context) is false.
  518. *
  519. * We must be careful about boundary cases so that we never
  520. * let the user have CTX 0 (nucleus) or we ever use a CTX
  521. * version of zero (and thus NO_CONTEXT would not be caught
  522. * by version mis-match tests in mmu_context.h).
  523. *
  524. * Always invoked with interrupts disabled.
  525. */
  526. void get_new_mmu_context(struct mm_struct *mm)
  527. {
  528. unsigned long ctx, new_ctx;
  529. unsigned long orig_pgsz_bits;
  530. unsigned long flags;
  531. int new_version;
  532. spin_lock_irqsave(&ctx_alloc_lock, flags);
  533. orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
  534. ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
  535. new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
  536. new_version = 0;
  537. if (new_ctx >= (1 << CTX_NR_BITS)) {
  538. new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
  539. if (new_ctx >= ctx) {
  540. int i;
  541. new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
  542. CTX_FIRST_VERSION;
  543. if (new_ctx == 1)
  544. new_ctx = CTX_FIRST_VERSION;
  545. /* Don't call memset, for 16 entries that's just
  546. * plain silly...
  547. */
  548. mmu_context_bmap[0] = 3;
  549. mmu_context_bmap[1] = 0;
  550. mmu_context_bmap[2] = 0;
  551. mmu_context_bmap[3] = 0;
  552. for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
  553. mmu_context_bmap[i + 0] = 0;
  554. mmu_context_bmap[i + 1] = 0;
  555. mmu_context_bmap[i + 2] = 0;
  556. mmu_context_bmap[i + 3] = 0;
  557. }
  558. new_version = 1;
  559. goto out;
  560. }
  561. }
  562. mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
  563. new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
  564. out:
  565. tlb_context_cache = new_ctx;
  566. mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
  567. spin_unlock_irqrestore(&ctx_alloc_lock, flags);
  568. if (unlikely(new_version))
  569. smp_new_mmu_context_version();
  570. }
  571. static int numa_enabled = 1;
  572. static int numa_debug;
  573. static int __init early_numa(char *p)
  574. {
  575. if (!p)
  576. return 0;
  577. if (strstr(p, "off"))
  578. numa_enabled = 0;
  579. if (strstr(p, "debug"))
  580. numa_debug = 1;
  581. return 0;
  582. }
  583. early_param("numa", early_numa);
  584. #define numadbg(f, a...) \
  585. do { if (numa_debug) \
  586. printk(KERN_INFO f, ## a); \
  587. } while (0)
  588. static void __init find_ramdisk(unsigned long phys_base)
  589. {
  590. #ifdef CONFIG_BLK_DEV_INITRD
  591. if (sparc_ramdisk_image || sparc_ramdisk_image64) {
  592. unsigned long ramdisk_image;
  593. /* Older versions of the bootloader only supported a
  594. * 32-bit physical address for the ramdisk image
  595. * location, stored at sparc_ramdisk_image. Newer
  596. * SILO versions set sparc_ramdisk_image to zero and
  597. * provide a full 64-bit physical address at
  598. * sparc_ramdisk_image64.
  599. */
  600. ramdisk_image = sparc_ramdisk_image;
  601. if (!ramdisk_image)
  602. ramdisk_image = sparc_ramdisk_image64;
  603. /* Another bootloader quirk. The bootloader normalizes
  604. * the physical address to KERNBASE, so we have to
  605. * factor that back out and add in the lowest valid
  606. * physical page address to get the true physical address.
  607. */
  608. ramdisk_image -= KERNBASE;
  609. ramdisk_image += phys_base;
  610. numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
  611. ramdisk_image, sparc_ramdisk_size);
  612. initrd_start = ramdisk_image;
  613. initrd_end = ramdisk_image + sparc_ramdisk_size;
  614. lmb_reserve(initrd_start, sparc_ramdisk_size);
  615. initrd_start += PAGE_OFFSET;
  616. initrd_end += PAGE_OFFSET;
  617. }
  618. #endif
  619. }
  620. struct node_mem_mask {
  621. unsigned long mask;
  622. unsigned long val;
  623. unsigned long bootmem_paddr;
  624. };
  625. static struct node_mem_mask node_masks[MAX_NUMNODES];
  626. static int num_node_masks;
  627. int numa_cpu_lookup_table[NR_CPUS];
  628. cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
  629. #ifdef CONFIG_NEED_MULTIPLE_NODES
  630. struct mdesc_mblock {
  631. u64 base;
  632. u64 size;
  633. u64 offset; /* RA-to-PA */
  634. };
  635. static struct mdesc_mblock *mblocks;
  636. static int num_mblocks;
  637. static unsigned long ra_to_pa(unsigned long addr)
  638. {
  639. int i;
  640. for (i = 0; i < num_mblocks; i++) {
  641. struct mdesc_mblock *m = &mblocks[i];
  642. if (addr >= m->base &&
  643. addr < (m->base + m->size)) {
  644. addr += m->offset;
  645. break;
  646. }
  647. }
  648. return addr;
  649. }
  650. static int find_node(unsigned long addr)
  651. {
  652. int i;
  653. addr = ra_to_pa(addr);
  654. for (i = 0; i < num_node_masks; i++) {
  655. struct node_mem_mask *p = &node_masks[i];
  656. if ((addr & p->mask) == p->val)
  657. return i;
  658. }
  659. return -1;
  660. }
  661. static unsigned long nid_range(unsigned long start, unsigned long end,
  662. int *nid)
  663. {
  664. *nid = find_node(start);
  665. start += PAGE_SIZE;
  666. while (start < end) {
  667. int n = find_node(start);
  668. if (n != *nid)
  669. break;
  670. start += PAGE_SIZE;
  671. }
  672. if (start > end)
  673. start = end;
  674. return start;
  675. }
  676. #else
  677. static unsigned long nid_range(unsigned long start, unsigned long end,
  678. int *nid)
  679. {
  680. *nid = 0;
  681. return end;
  682. }
  683. #endif
  684. /* This must be invoked after performing all of the necessary
  685. * add_active_range() calls for 'nid'. We need to be able to get
  686. * correct data from get_pfn_range_for_nid().
  687. */
  688. static void __init allocate_node_data(int nid)
  689. {
  690. unsigned long paddr, num_pages, start_pfn, end_pfn;
  691. struct pglist_data *p;
  692. #ifdef CONFIG_NEED_MULTIPLE_NODES
  693. paddr = lmb_alloc_nid(sizeof(struct pglist_data),
  694. SMP_CACHE_BYTES, nid, nid_range);
  695. if (!paddr) {
  696. prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
  697. prom_halt();
  698. }
  699. NODE_DATA(nid) = __va(paddr);
  700. memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
  701. NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
  702. #endif
  703. p = NODE_DATA(nid);
  704. get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
  705. p->node_start_pfn = start_pfn;
  706. p->node_spanned_pages = end_pfn - start_pfn;
  707. if (p->node_spanned_pages) {
  708. num_pages = bootmem_bootmap_pages(p->node_spanned_pages);
  709. paddr = lmb_alloc_nid(num_pages << PAGE_SHIFT, PAGE_SIZE, nid,
  710. nid_range);
  711. if (!paddr) {
  712. prom_printf("Cannot allocate bootmap for nid[%d]\n",
  713. nid);
  714. prom_halt();
  715. }
  716. node_masks[nid].bootmem_paddr = paddr;
  717. }
  718. }
  719. static void init_node_masks_nonnuma(void)
  720. {
  721. int i;
  722. numadbg("Initializing tables for non-numa.\n");
  723. node_masks[0].mask = node_masks[0].val = 0;
  724. num_node_masks = 1;
  725. for (i = 0; i < NR_CPUS; i++)
  726. numa_cpu_lookup_table[i] = 0;
  727. numa_cpumask_lookup_table[0] = CPU_MASK_ALL;
  728. }
  729. #ifdef CONFIG_NEED_MULTIPLE_NODES
  730. struct pglist_data *node_data[MAX_NUMNODES];
  731. EXPORT_SYMBOL(numa_cpu_lookup_table);
  732. EXPORT_SYMBOL(numa_cpumask_lookup_table);
  733. EXPORT_SYMBOL(node_data);
  734. struct mdesc_mlgroup {
  735. u64 node;
  736. u64 latency;
  737. u64 match;
  738. u64 mask;
  739. };
  740. static struct mdesc_mlgroup *mlgroups;
  741. static int num_mlgroups;
  742. static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
  743. u32 cfg_handle)
  744. {
  745. u64 arc;
  746. mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
  747. u64 target = mdesc_arc_target(md, arc);
  748. const u64 *val;
  749. val = mdesc_get_property(md, target,
  750. "cfg-handle", NULL);
  751. if (val && *val == cfg_handle)
  752. return 0;
  753. }
  754. return -ENODEV;
  755. }
  756. static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
  757. u32 cfg_handle)
  758. {
  759. u64 arc, candidate, best_latency = ~(u64)0;
  760. candidate = MDESC_NODE_NULL;
  761. mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
  762. u64 target = mdesc_arc_target(md, arc);
  763. const char *name = mdesc_node_name(md, target);
  764. const u64 *val;
  765. if (strcmp(name, "pio-latency-group"))
  766. continue;
  767. val = mdesc_get_property(md, target, "latency", NULL);
  768. if (!val)
  769. continue;
  770. if (*val < best_latency) {
  771. candidate = target;
  772. best_latency = *val;
  773. }
  774. }
  775. if (candidate == MDESC_NODE_NULL)
  776. return -ENODEV;
  777. return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
  778. }
  779. int of_node_to_nid(struct device_node *dp)
  780. {
  781. const struct linux_prom64_registers *regs;
  782. struct mdesc_handle *md;
  783. u32 cfg_handle;
  784. int count, nid;
  785. u64 grp;
  786. if (!mlgroups)
  787. return -1;
  788. regs = of_get_property(dp, "reg", NULL);
  789. if (!regs)
  790. return -1;
  791. cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
  792. md = mdesc_grab();
  793. count = 0;
  794. nid = -1;
  795. mdesc_for_each_node_by_name(md, grp, "group") {
  796. if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
  797. nid = count;
  798. break;
  799. }
  800. count++;
  801. }
  802. mdesc_release(md);
  803. return nid;
  804. }
  805. static void add_node_ranges(void)
  806. {
  807. int i;
  808. for (i = 0; i < lmb.memory.cnt; i++) {
  809. unsigned long size = lmb_size_bytes(&lmb.memory, i);
  810. unsigned long start, end;
  811. start = lmb.memory.region[i].base;
  812. end = start + size;
  813. while (start < end) {
  814. unsigned long this_end;
  815. int nid;
  816. this_end = nid_range(start, end, &nid);
  817. numadbg("Adding active range nid[%d] "
  818. "start[%lx] end[%lx]\n",
  819. nid, start, this_end);
  820. add_active_range(nid,
  821. start >> PAGE_SHIFT,
  822. this_end >> PAGE_SHIFT);
  823. start = this_end;
  824. }
  825. }
  826. }
  827. static int __init grab_mlgroups(struct mdesc_handle *md)
  828. {
  829. unsigned long paddr;
  830. int count = 0;
  831. u64 node;
  832. mdesc_for_each_node_by_name(md, node, "memory-latency-group")
  833. count++;
  834. if (!count)
  835. return -ENOENT;
  836. paddr = lmb_alloc(count * sizeof(struct mdesc_mlgroup),
  837. SMP_CACHE_BYTES);
  838. if (!paddr)
  839. return -ENOMEM;
  840. mlgroups = __va(paddr);
  841. num_mlgroups = count;
  842. count = 0;
  843. mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
  844. struct mdesc_mlgroup *m = &mlgroups[count++];
  845. const u64 *val;
  846. m->node = node;
  847. val = mdesc_get_property(md, node, "latency", NULL);
  848. m->latency = *val;
  849. val = mdesc_get_property(md, node, "address-match", NULL);
  850. m->match = *val;
  851. val = mdesc_get_property(md, node, "address-mask", NULL);
  852. m->mask = *val;
  853. numadbg("MLGROUP[%d]: node[%lx] latency[%lx] "
  854. "match[%lx] mask[%lx]\n",
  855. count - 1, m->node, m->latency, m->match, m->mask);
  856. }
  857. return 0;
  858. }
  859. static int __init grab_mblocks(struct mdesc_handle *md)
  860. {
  861. unsigned long paddr;
  862. int count = 0;
  863. u64 node;
  864. mdesc_for_each_node_by_name(md, node, "mblock")
  865. count++;
  866. if (!count)
  867. return -ENOENT;
  868. paddr = lmb_alloc(count * sizeof(struct mdesc_mblock),
  869. SMP_CACHE_BYTES);
  870. if (!paddr)
  871. return -ENOMEM;
  872. mblocks = __va(paddr);
  873. num_mblocks = count;
  874. count = 0;
  875. mdesc_for_each_node_by_name(md, node, "mblock") {
  876. struct mdesc_mblock *m = &mblocks[count++];
  877. const u64 *val;
  878. val = mdesc_get_property(md, node, "base", NULL);
  879. m->base = *val;
  880. val = mdesc_get_property(md, node, "size", NULL);
  881. m->size = *val;
  882. val = mdesc_get_property(md, node,
  883. "address-congruence-offset", NULL);
  884. m->offset = *val;
  885. numadbg("MBLOCK[%d]: base[%lx] size[%lx] offset[%lx]\n",
  886. count - 1, m->base, m->size, m->offset);
  887. }
  888. return 0;
  889. }
  890. static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
  891. u64 grp, cpumask_t *mask)
  892. {
  893. u64 arc;
  894. cpus_clear(*mask);
  895. mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
  896. u64 target = mdesc_arc_target(md, arc);
  897. const char *name = mdesc_node_name(md, target);
  898. const u64 *id;
  899. if (strcmp(name, "cpu"))
  900. continue;
  901. id = mdesc_get_property(md, target, "id", NULL);
  902. if (*id < NR_CPUS)
  903. cpu_set(*id, *mask);
  904. }
  905. }
  906. static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
  907. {
  908. int i;
  909. for (i = 0; i < num_mlgroups; i++) {
  910. struct mdesc_mlgroup *m = &mlgroups[i];
  911. if (m->node == node)
  912. return m;
  913. }
  914. return NULL;
  915. }
  916. static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
  917. int index)
  918. {
  919. struct mdesc_mlgroup *candidate = NULL;
  920. u64 arc, best_latency = ~(u64)0;
  921. struct node_mem_mask *n;
  922. mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
  923. u64 target = mdesc_arc_target(md, arc);
  924. struct mdesc_mlgroup *m = find_mlgroup(target);
  925. if (!m)
  926. continue;
  927. if (m->latency < best_latency) {
  928. candidate = m;
  929. best_latency = m->latency;
  930. }
  931. }
  932. if (!candidate)
  933. return -ENOENT;
  934. if (num_node_masks != index) {
  935. printk(KERN_ERR "Inconsistent NUMA state, "
  936. "index[%d] != num_node_masks[%d]\n",
  937. index, num_node_masks);
  938. return -EINVAL;
  939. }
  940. n = &node_masks[num_node_masks++];
  941. n->mask = candidate->mask;
  942. n->val = candidate->match;
  943. numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%lx])\n",
  944. index, n->mask, n->val, candidate->latency);
  945. return 0;
  946. }
  947. static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
  948. int index)
  949. {
  950. cpumask_t mask;
  951. int cpu;
  952. numa_parse_mdesc_group_cpus(md, grp, &mask);
  953. for_each_cpu_mask(cpu, mask)
  954. numa_cpu_lookup_table[cpu] = index;
  955. numa_cpumask_lookup_table[index] = mask;
  956. if (numa_debug) {
  957. printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
  958. for_each_cpu_mask(cpu, mask)
  959. printk("%d ", cpu);
  960. printk("]\n");
  961. }
  962. return numa_attach_mlgroup(md, grp, index);
  963. }
  964. static int __init numa_parse_mdesc(void)
  965. {
  966. struct mdesc_handle *md = mdesc_grab();
  967. int i, err, count;
  968. u64 node;
  969. node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
  970. if (node == MDESC_NODE_NULL) {
  971. mdesc_release(md);
  972. return -ENOENT;
  973. }
  974. err = grab_mblocks(md);
  975. if (err < 0)
  976. goto out;
  977. err = grab_mlgroups(md);
  978. if (err < 0)
  979. goto out;
  980. count = 0;
  981. mdesc_for_each_node_by_name(md, node, "group") {
  982. err = numa_parse_mdesc_group(md, node, count);
  983. if (err < 0)
  984. break;
  985. count++;
  986. }
  987. add_node_ranges();
  988. for (i = 0; i < num_node_masks; i++) {
  989. allocate_node_data(i);
  990. node_set_online(i);
  991. }
  992. err = 0;
  993. out:
  994. mdesc_release(md);
  995. return err;
  996. }
  997. static int __init numa_parse_sun4u(void)
  998. {
  999. return -1;
  1000. }
  1001. static int __init bootmem_init_numa(void)
  1002. {
  1003. int err = -1;
  1004. numadbg("bootmem_init_numa()\n");
  1005. if (numa_enabled) {
  1006. if (tlb_type == hypervisor)
  1007. err = numa_parse_mdesc();
  1008. else
  1009. err = numa_parse_sun4u();
  1010. }
  1011. return err;
  1012. }
  1013. #else
  1014. static int bootmem_init_numa(void)
  1015. {
  1016. return -1;
  1017. }
  1018. #endif
  1019. static void __init bootmem_init_nonnuma(void)
  1020. {
  1021. unsigned long top_of_ram = lmb_end_of_DRAM();
  1022. unsigned long total_ram = lmb_phys_mem_size();
  1023. unsigned int i;
  1024. numadbg("bootmem_init_nonnuma()\n");
  1025. printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
  1026. top_of_ram, total_ram);
  1027. printk(KERN_INFO "Memory hole size: %ldMB\n",
  1028. (top_of_ram - total_ram) >> 20);
  1029. init_node_masks_nonnuma();
  1030. for (i = 0; i < lmb.memory.cnt; i++) {
  1031. unsigned long size = lmb_size_bytes(&lmb.memory, i);
  1032. unsigned long start_pfn, end_pfn;
  1033. if (!size)
  1034. continue;
  1035. start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
  1036. end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
  1037. add_active_range(0, start_pfn, end_pfn);
  1038. }
  1039. allocate_node_data(0);
  1040. node_set_online(0);
  1041. }
  1042. static void __init reserve_range_in_node(int nid, unsigned long start,
  1043. unsigned long end)
  1044. {
  1045. numadbg(" reserve_range_in_node(nid[%d],start[%lx],end[%lx]\n",
  1046. nid, start, end);
  1047. while (start < end) {
  1048. unsigned long this_end;
  1049. int n;
  1050. this_end = nid_range(start, end, &n);
  1051. if (n == nid) {
  1052. numadbg(" MATCH reserving range [%lx:%lx]\n",
  1053. start, this_end);
  1054. reserve_bootmem_node(NODE_DATA(nid), start,
  1055. (this_end - start), BOOTMEM_DEFAULT);
  1056. } else
  1057. numadbg(" NO MATCH, advancing start to %lx\n",
  1058. this_end);
  1059. start = this_end;
  1060. }
  1061. }
  1062. static void __init trim_reserved_in_node(int nid)
  1063. {
  1064. int i;
  1065. numadbg(" trim_reserved_in_node(%d)\n", nid);
  1066. for (i = 0; i < lmb.reserved.cnt; i++) {
  1067. unsigned long start = lmb.reserved.region[i].base;
  1068. unsigned long size = lmb_size_bytes(&lmb.reserved, i);
  1069. unsigned long end = start + size;
  1070. reserve_range_in_node(nid, start, end);
  1071. }
  1072. }
  1073. static void __init bootmem_init_one_node(int nid)
  1074. {
  1075. struct pglist_data *p;
  1076. numadbg("bootmem_init_one_node(%d)\n", nid);
  1077. p = NODE_DATA(nid);
  1078. if (p->node_spanned_pages) {
  1079. unsigned long paddr = node_masks[nid].bootmem_paddr;
  1080. unsigned long end_pfn;
  1081. end_pfn = p->node_start_pfn + p->node_spanned_pages;
  1082. numadbg(" init_bootmem_node(%d, %lx, %lx, %lx)\n",
  1083. nid, paddr >> PAGE_SHIFT, p->node_start_pfn, end_pfn);
  1084. init_bootmem_node(p, paddr >> PAGE_SHIFT,
  1085. p->node_start_pfn, end_pfn);
  1086. numadbg(" free_bootmem_with_active_regions(%d, %lx)\n",
  1087. nid, end_pfn);
  1088. free_bootmem_with_active_regions(nid, end_pfn);
  1089. trim_reserved_in_node(nid);
  1090. numadbg(" sparse_memory_present_with_active_regions(%d)\n",
  1091. nid);
  1092. sparse_memory_present_with_active_regions(nid);
  1093. }
  1094. }
  1095. static unsigned long __init bootmem_init(unsigned long phys_base)
  1096. {
  1097. unsigned long end_pfn;
  1098. int nid;
  1099. end_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
  1100. max_pfn = max_low_pfn = end_pfn;
  1101. min_low_pfn = (phys_base >> PAGE_SHIFT);
  1102. if (bootmem_init_numa() < 0)
  1103. bootmem_init_nonnuma();
  1104. /* XXX cpu notifier XXX */
  1105. for_each_online_node(nid)
  1106. bootmem_init_one_node(nid);
  1107. sparse_init();
  1108. return end_pfn;
  1109. }
  1110. static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
  1111. static int pall_ents __initdata;
  1112. #ifdef CONFIG_DEBUG_PAGEALLOC
  1113. static unsigned long __ref kernel_map_range(unsigned long pstart,
  1114. unsigned long pend, pgprot_t prot)
  1115. {
  1116. unsigned long vstart = PAGE_OFFSET + pstart;
  1117. unsigned long vend = PAGE_OFFSET + pend;
  1118. unsigned long alloc_bytes = 0UL;
  1119. if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
  1120. prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
  1121. vstart, vend);
  1122. prom_halt();
  1123. }
  1124. while (vstart < vend) {
  1125. unsigned long this_end, paddr = __pa(vstart);
  1126. pgd_t *pgd = pgd_offset_k(vstart);
  1127. pud_t *pud;
  1128. pmd_t *pmd;
  1129. pte_t *pte;
  1130. pud = pud_offset(pgd, vstart);
  1131. if (pud_none(*pud)) {
  1132. pmd_t *new;
  1133. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1134. alloc_bytes += PAGE_SIZE;
  1135. pud_populate(&init_mm, pud, new);
  1136. }
  1137. pmd = pmd_offset(pud, vstart);
  1138. if (!pmd_present(*pmd)) {
  1139. pte_t *new;
  1140. new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
  1141. alloc_bytes += PAGE_SIZE;
  1142. pmd_populate_kernel(&init_mm, pmd, new);
  1143. }
  1144. pte = pte_offset_kernel(pmd, vstart);
  1145. this_end = (vstart + PMD_SIZE) & PMD_MASK;
  1146. if (this_end > vend)
  1147. this_end = vend;
  1148. while (vstart < this_end) {
  1149. pte_val(*pte) = (paddr | pgprot_val(prot));
  1150. vstart += PAGE_SIZE;
  1151. paddr += PAGE_SIZE;
  1152. pte++;
  1153. }
  1154. }
  1155. return alloc_bytes;
  1156. }
  1157. extern unsigned int kvmap_linear_patch[1];
  1158. #endif /* CONFIG_DEBUG_PAGEALLOC */
  1159. static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
  1160. {
  1161. const unsigned long shift_256MB = 28;
  1162. const unsigned long mask_256MB = ((1UL << shift_256MB) - 1UL);
  1163. const unsigned long size_256MB = (1UL << shift_256MB);
  1164. while (start < end) {
  1165. long remains;
  1166. remains = end - start;
  1167. if (remains < size_256MB)
  1168. break;
  1169. if (start & mask_256MB) {
  1170. start = (start + size_256MB) & ~mask_256MB;
  1171. continue;
  1172. }
  1173. while (remains >= size_256MB) {
  1174. unsigned long index = start >> shift_256MB;
  1175. __set_bit(index, kpte_linear_bitmap);
  1176. start += size_256MB;
  1177. remains -= size_256MB;
  1178. }
  1179. }
  1180. }
  1181. static void __init init_kpte_bitmap(void)
  1182. {
  1183. unsigned long i;
  1184. for (i = 0; i < pall_ents; i++) {
  1185. unsigned long phys_start, phys_end;
  1186. phys_start = pall[i].phys_addr;
  1187. phys_end = phys_start + pall[i].reg_size;
  1188. mark_kpte_bitmap(phys_start, phys_end);
  1189. }
  1190. }
  1191. static void __init kernel_physical_mapping_init(void)
  1192. {
  1193. #ifdef CONFIG_DEBUG_PAGEALLOC
  1194. unsigned long i, mem_alloced = 0UL;
  1195. for (i = 0; i < pall_ents; i++) {
  1196. unsigned long phys_start, phys_end;
  1197. phys_start = pall[i].phys_addr;
  1198. phys_end = phys_start + pall[i].reg_size;
  1199. mem_alloced += kernel_map_range(phys_start, phys_end,
  1200. PAGE_KERNEL);
  1201. }
  1202. printk("Allocated %ld bytes for kernel page tables.\n",
  1203. mem_alloced);
  1204. kvmap_linear_patch[0] = 0x01000000; /* nop */
  1205. flushi(&kvmap_linear_patch[0]);
  1206. __flush_tlb_all();
  1207. #endif
  1208. }
  1209. #ifdef CONFIG_DEBUG_PAGEALLOC
  1210. void kernel_map_pages(struct page *page, int numpages, int enable)
  1211. {
  1212. unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
  1213. unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
  1214. kernel_map_range(phys_start, phys_end,
  1215. (enable ? PAGE_KERNEL : __pgprot(0)));
  1216. flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
  1217. PAGE_OFFSET + phys_end);
  1218. /* we should perform an IPI and flush all tlbs,
  1219. * but that can deadlock->flush only current cpu.
  1220. */
  1221. __flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
  1222. PAGE_OFFSET + phys_end);
  1223. }
  1224. #endif
  1225. unsigned long __init find_ecache_flush_span(unsigned long size)
  1226. {
  1227. int i;
  1228. for (i = 0; i < pavail_ents; i++) {
  1229. if (pavail[i].reg_size >= size)
  1230. return pavail[i].phys_addr;
  1231. }
  1232. return ~0UL;
  1233. }
  1234. static void __init tsb_phys_patch(void)
  1235. {
  1236. struct tsb_ldquad_phys_patch_entry *pquad;
  1237. struct tsb_phys_patch_entry *p;
  1238. pquad = &__tsb_ldquad_phys_patch;
  1239. while (pquad < &__tsb_ldquad_phys_patch_end) {
  1240. unsigned long addr = pquad->addr;
  1241. if (tlb_type == hypervisor)
  1242. *(unsigned int *) addr = pquad->sun4v_insn;
  1243. else
  1244. *(unsigned int *) addr = pquad->sun4u_insn;
  1245. wmb();
  1246. __asm__ __volatile__("flush %0"
  1247. : /* no outputs */
  1248. : "r" (addr));
  1249. pquad++;
  1250. }
  1251. p = &__tsb_phys_patch;
  1252. while (p < &__tsb_phys_patch_end) {
  1253. unsigned long addr = p->addr;
  1254. *(unsigned int *) addr = p->insn;
  1255. wmb();
  1256. __asm__ __volatile__("flush %0"
  1257. : /* no outputs */
  1258. : "r" (addr));
  1259. p++;
  1260. }
  1261. }
  1262. /* Don't mark as init, we give this to the Hypervisor. */
  1263. #ifndef CONFIG_DEBUG_PAGEALLOC
  1264. #define NUM_KTSB_DESCR 2
  1265. #else
  1266. #define NUM_KTSB_DESCR 1
  1267. #endif
  1268. static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
  1269. extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  1270. static void __init sun4v_ktsb_init(void)
  1271. {
  1272. unsigned long ktsb_pa;
  1273. /* First KTSB for PAGE_SIZE mappings. */
  1274. ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
  1275. switch (PAGE_SIZE) {
  1276. case 8 * 1024:
  1277. default:
  1278. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
  1279. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
  1280. break;
  1281. case 64 * 1024:
  1282. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
  1283. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
  1284. break;
  1285. case 512 * 1024:
  1286. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
  1287. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
  1288. break;
  1289. case 4 * 1024 * 1024:
  1290. ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
  1291. ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
  1292. break;
  1293. };
  1294. ktsb_descr[0].assoc = 1;
  1295. ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
  1296. ktsb_descr[0].ctx_idx = 0;
  1297. ktsb_descr[0].tsb_base = ktsb_pa;
  1298. ktsb_descr[0].resv = 0;
  1299. #ifndef CONFIG_DEBUG_PAGEALLOC
  1300. /* Second KTSB for 4MB/256MB mappings. */
  1301. ktsb_pa = (kern_base +
  1302. ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
  1303. ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
  1304. ktsb_descr[1].pgsz_mask = (HV_PGSZ_MASK_4MB |
  1305. HV_PGSZ_MASK_256MB);
  1306. ktsb_descr[1].assoc = 1;
  1307. ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
  1308. ktsb_descr[1].ctx_idx = 0;
  1309. ktsb_descr[1].tsb_base = ktsb_pa;
  1310. ktsb_descr[1].resv = 0;
  1311. #endif
  1312. }
  1313. void __cpuinit sun4v_ktsb_register(void)
  1314. {
  1315. unsigned long pa, ret;
  1316. pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
  1317. ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
  1318. if (ret != 0) {
  1319. prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
  1320. "errors with %lx\n", pa, ret);
  1321. prom_halt();
  1322. }
  1323. }
  1324. /* paging_init() sets up the page tables */
  1325. extern void central_probe(void);
  1326. static unsigned long last_valid_pfn;
  1327. pgd_t swapper_pg_dir[2048];
  1328. static void sun4u_pgprot_init(void);
  1329. static void sun4v_pgprot_init(void);
  1330. /* Dummy function */
  1331. void __init setup_per_cpu_areas(void)
  1332. {
  1333. }
  1334. void __init paging_init(void)
  1335. {
  1336. unsigned long end_pfn, shift, phys_base;
  1337. unsigned long real_end, i;
  1338. /* These build time checkes make sure that the dcache_dirty_cpu()
  1339. * page->flags usage will work.
  1340. *
  1341. * When a page gets marked as dcache-dirty, we store the
  1342. * cpu number starting at bit 32 in the page->flags. Also,
  1343. * functions like clear_dcache_dirty_cpu use the cpu mask
  1344. * in 13-bit signed-immediate instruction fields.
  1345. */
  1346. /*
  1347. * Page flags must not reach into upper 32 bits that are used
  1348. * for the cpu number
  1349. */
  1350. BUILD_BUG_ON(NR_PAGEFLAGS > 32);
  1351. /*
  1352. * The bit fields placed in the high range must not reach below
  1353. * the 32 bit boundary. Otherwise we cannot place the cpu field
  1354. * at the 32 bit boundary.
  1355. */
  1356. BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
  1357. ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
  1358. BUILD_BUG_ON(NR_CPUS > 4096);
  1359. kern_base = (prom_boot_mapping_phys_low >> 22UL) << 22UL;
  1360. kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
  1361. sstate_booting();
  1362. /* Invalidate both kernel TSBs. */
  1363. memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
  1364. #ifndef CONFIG_DEBUG_PAGEALLOC
  1365. memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
  1366. #endif
  1367. if (tlb_type == hypervisor)
  1368. sun4v_pgprot_init();
  1369. else
  1370. sun4u_pgprot_init();
  1371. if (tlb_type == cheetah_plus ||
  1372. tlb_type == hypervisor)
  1373. tsb_phys_patch();
  1374. if (tlb_type == hypervisor) {
  1375. sun4v_patch_tlb_handlers();
  1376. sun4v_ktsb_init();
  1377. }
  1378. lmb_init();
  1379. /* Find available physical memory...
  1380. *
  1381. * Read it twice in order to work around a bug in openfirmware.
  1382. * The call to grab this table itself can cause openfirmware to
  1383. * allocate memory, which in turn can take away some space from
  1384. * the list of available memory. Reading it twice makes sure
  1385. * we really do get the final value.
  1386. */
  1387. read_obp_translations();
  1388. read_obp_memory("reg", &pall[0], &pall_ents);
  1389. read_obp_memory("available", &pavail[0], &pavail_ents);
  1390. read_obp_memory("available", &pavail[0], &pavail_ents);
  1391. phys_base = 0xffffffffffffffffUL;
  1392. for (i = 0; i < pavail_ents; i++) {
  1393. phys_base = min(phys_base, pavail[i].phys_addr);
  1394. lmb_add(pavail[i].phys_addr, pavail[i].reg_size);
  1395. }
  1396. lmb_reserve(kern_base, kern_size);
  1397. find_ramdisk(phys_base);
  1398. lmb_enforce_memory_limit(cmdline_memory_size);
  1399. lmb_analyze();
  1400. lmb_dump_all();
  1401. set_bit(0, mmu_context_bmap);
  1402. shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
  1403. real_end = (unsigned long)_end;
  1404. num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << 22);
  1405. printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
  1406. num_kernel_image_mappings);
  1407. /* Set kernel pgd to upper alias so physical page computations
  1408. * work.
  1409. */
  1410. init_mm.pgd += ((shift) / (sizeof(pgd_t)));
  1411. memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
  1412. /* Now can init the kernel/bad page tables. */
  1413. pud_set(pud_offset(&swapper_pg_dir[0], 0),
  1414. swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
  1415. inherit_prom_mappings();
  1416. init_kpte_bitmap();
  1417. /* Ok, we can use our TLB miss and window trap handlers safely. */
  1418. setup_tba();
  1419. __flush_tlb_all();
  1420. if (tlb_type == hypervisor)
  1421. sun4v_ktsb_register();
  1422. /* We must setup the per-cpu areas before we pull in the
  1423. * PROM and the MDESC. The code there fills in cpu and
  1424. * other information into per-cpu data structures.
  1425. */
  1426. real_setup_per_cpu_areas();
  1427. prom_build_devicetree();
  1428. if (tlb_type == hypervisor)
  1429. sun4v_mdesc_init();
  1430. /* Once the OF device tree and MDESC have been setup, we know
  1431. * the list of possible cpus. Therefore we can allocate the
  1432. * IRQ stacks.
  1433. */
  1434. for_each_possible_cpu(i) {
  1435. /* XXX Use node local allocations... XXX */
  1436. softirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
  1437. hardirq_stack[i] = __va(lmb_alloc(THREAD_SIZE, THREAD_SIZE));
  1438. }
  1439. /* Setup bootmem... */
  1440. last_valid_pfn = end_pfn = bootmem_init(phys_base);
  1441. #ifndef CONFIG_NEED_MULTIPLE_NODES
  1442. max_mapnr = last_valid_pfn;
  1443. #endif
  1444. kernel_physical_mapping_init();
  1445. {
  1446. unsigned long max_zone_pfns[MAX_NR_ZONES];
  1447. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  1448. max_zone_pfns[ZONE_NORMAL] = end_pfn;
  1449. free_area_init_nodes(max_zone_pfns);
  1450. }
  1451. printk("Booting Linux...\n");
  1452. central_probe();
  1453. cpu_probe();
  1454. }
  1455. int __init page_in_phys_avail(unsigned long paddr)
  1456. {
  1457. int i;
  1458. paddr &= PAGE_MASK;
  1459. for (i = 0; i < pavail_ents; i++) {
  1460. unsigned long start, end;
  1461. start = pavail[i].phys_addr;
  1462. end = start + pavail[i].reg_size;
  1463. if (paddr >= start && paddr < end)
  1464. return 1;
  1465. }
  1466. if (paddr >= kern_base && paddr < (kern_base + kern_size))
  1467. return 1;
  1468. #ifdef CONFIG_BLK_DEV_INITRD
  1469. if (paddr >= __pa(initrd_start) &&
  1470. paddr < __pa(PAGE_ALIGN(initrd_end)))
  1471. return 1;
  1472. #endif
  1473. return 0;
  1474. }
  1475. static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
  1476. static int pavail_rescan_ents __initdata;
  1477. /* Certain OBP calls, such as fetching "available" properties, can
  1478. * claim physical memory. So, along with initializing the valid
  1479. * address bitmap, what we do here is refetch the physical available
  1480. * memory list again, and make sure it provides at least as much
  1481. * memory as 'pavail' does.
  1482. */
  1483. static void __init setup_valid_addr_bitmap_from_pavail(void)
  1484. {
  1485. int i;
  1486. read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
  1487. for (i = 0; i < pavail_ents; i++) {
  1488. unsigned long old_start, old_end;
  1489. old_start = pavail[i].phys_addr;
  1490. old_end = old_start + pavail[i].reg_size;
  1491. while (old_start < old_end) {
  1492. int n;
  1493. for (n = 0; n < pavail_rescan_ents; n++) {
  1494. unsigned long new_start, new_end;
  1495. new_start = pavail_rescan[n].phys_addr;
  1496. new_end = new_start +
  1497. pavail_rescan[n].reg_size;
  1498. if (new_start <= old_start &&
  1499. new_end >= (old_start + PAGE_SIZE)) {
  1500. set_bit(old_start >> 22,
  1501. sparc64_valid_addr_bitmap);
  1502. goto do_next_page;
  1503. }
  1504. }
  1505. prom_printf("mem_init: Lost memory in pavail\n");
  1506. prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
  1507. pavail[i].phys_addr,
  1508. pavail[i].reg_size);
  1509. prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
  1510. pavail_rescan[i].phys_addr,
  1511. pavail_rescan[i].reg_size);
  1512. prom_printf("mem_init: Cannot continue, aborting.\n");
  1513. prom_halt();
  1514. do_next_page:
  1515. old_start += PAGE_SIZE;
  1516. }
  1517. }
  1518. }
  1519. void __init mem_init(void)
  1520. {
  1521. unsigned long codepages, datapages, initpages;
  1522. unsigned long addr, last;
  1523. int i;
  1524. i = last_valid_pfn >> ((22 - PAGE_SHIFT) + 6);
  1525. i += 1;
  1526. sparc64_valid_addr_bitmap = (unsigned long *) alloc_bootmem(i << 3);
  1527. if (sparc64_valid_addr_bitmap == NULL) {
  1528. prom_printf("mem_init: Cannot alloc valid_addr_bitmap.\n");
  1529. prom_halt();
  1530. }
  1531. memset(sparc64_valid_addr_bitmap, 0, i << 3);
  1532. addr = PAGE_OFFSET + kern_base;
  1533. last = PAGE_ALIGN(kern_size) + addr;
  1534. while (addr < last) {
  1535. set_bit(__pa(addr) >> 22, sparc64_valid_addr_bitmap);
  1536. addr += PAGE_SIZE;
  1537. }
  1538. setup_valid_addr_bitmap_from_pavail();
  1539. high_memory = __va(last_valid_pfn << PAGE_SHIFT);
  1540. #ifdef CONFIG_NEED_MULTIPLE_NODES
  1541. for_each_online_node(i) {
  1542. if (NODE_DATA(i)->node_spanned_pages != 0) {
  1543. totalram_pages +=
  1544. free_all_bootmem_node(NODE_DATA(i));
  1545. }
  1546. }
  1547. #else
  1548. totalram_pages = free_all_bootmem();
  1549. #endif
  1550. /* We subtract one to account for the mem_map_zero page
  1551. * allocated below.
  1552. */
  1553. totalram_pages -= 1;
  1554. num_physpages = totalram_pages;
  1555. /*
  1556. * Set up the zero page, mark it reserved, so that page count
  1557. * is not manipulated when freeing the page from user ptes.
  1558. */
  1559. mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
  1560. if (mem_map_zero == NULL) {
  1561. prom_printf("paging_init: Cannot alloc zero page.\n");
  1562. prom_halt();
  1563. }
  1564. SetPageReserved(mem_map_zero);
  1565. codepages = (((unsigned long) _etext) - ((unsigned long) _start));
  1566. codepages = PAGE_ALIGN(codepages) >> PAGE_SHIFT;
  1567. datapages = (((unsigned long) _edata) - ((unsigned long) _etext));
  1568. datapages = PAGE_ALIGN(datapages) >> PAGE_SHIFT;
  1569. initpages = (((unsigned long) __init_end) - ((unsigned long) __init_begin));
  1570. initpages = PAGE_ALIGN(initpages) >> PAGE_SHIFT;
  1571. printk("Memory: %luk available (%ldk kernel code, %ldk data, %ldk init) [%016lx,%016lx]\n",
  1572. nr_free_pages() << (PAGE_SHIFT-10),
  1573. codepages << (PAGE_SHIFT-10),
  1574. datapages << (PAGE_SHIFT-10),
  1575. initpages << (PAGE_SHIFT-10),
  1576. PAGE_OFFSET, (last_valid_pfn << PAGE_SHIFT));
  1577. if (tlb_type == cheetah || tlb_type == cheetah_plus)
  1578. cheetah_ecache_flush_init();
  1579. }
  1580. void free_initmem(void)
  1581. {
  1582. unsigned long addr, initend;
  1583. int do_free = 1;
  1584. /* If the physical memory maps were trimmed by kernel command
  1585. * line options, don't even try freeing this initmem stuff up.
  1586. * The kernel image could have been in the trimmed out region
  1587. * and if so the freeing below will free invalid page structs.
  1588. */
  1589. if (cmdline_memory_size)
  1590. do_free = 0;
  1591. /*
  1592. * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
  1593. */
  1594. addr = PAGE_ALIGN((unsigned long)(__init_begin));
  1595. initend = (unsigned long)(__init_end) & PAGE_MASK;
  1596. for (; addr < initend; addr += PAGE_SIZE) {
  1597. unsigned long page;
  1598. struct page *p;
  1599. page = (addr +
  1600. ((unsigned long) __va(kern_base)) -
  1601. ((unsigned long) KERNBASE));
  1602. memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
  1603. if (do_free) {
  1604. p = virt_to_page(page);
  1605. ClearPageReserved(p);
  1606. init_page_count(p);
  1607. __free_page(p);
  1608. num_physpages++;
  1609. totalram_pages++;
  1610. }
  1611. }
  1612. }
  1613. #ifdef CONFIG_BLK_DEV_INITRD
  1614. void free_initrd_mem(unsigned long start, unsigned long end)
  1615. {
  1616. if (start < end)
  1617. printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  1618. for (; start < end; start += PAGE_SIZE) {
  1619. struct page *p = virt_to_page(start);
  1620. ClearPageReserved(p);
  1621. init_page_count(p);
  1622. __free_page(p);
  1623. num_physpages++;
  1624. totalram_pages++;
  1625. }
  1626. }
  1627. #endif
  1628. #define _PAGE_CACHE_4U (_PAGE_CP_4U | _PAGE_CV_4U)
  1629. #define _PAGE_CACHE_4V (_PAGE_CP_4V | _PAGE_CV_4V)
  1630. #define __DIRTY_BITS_4U (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
  1631. #define __DIRTY_BITS_4V (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
  1632. #define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
  1633. #define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
  1634. pgprot_t PAGE_KERNEL __read_mostly;
  1635. EXPORT_SYMBOL(PAGE_KERNEL);
  1636. pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
  1637. pgprot_t PAGE_COPY __read_mostly;
  1638. pgprot_t PAGE_SHARED __read_mostly;
  1639. EXPORT_SYMBOL(PAGE_SHARED);
  1640. pgprot_t PAGE_EXEC __read_mostly;
  1641. unsigned long pg_iobits __read_mostly;
  1642. unsigned long _PAGE_IE __read_mostly;
  1643. EXPORT_SYMBOL(_PAGE_IE);
  1644. unsigned long _PAGE_E __read_mostly;
  1645. EXPORT_SYMBOL(_PAGE_E);
  1646. unsigned long _PAGE_CACHE __read_mostly;
  1647. EXPORT_SYMBOL(_PAGE_CACHE);
  1648. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  1649. #define VMEMMAP_CHUNK_SHIFT 22
  1650. #define VMEMMAP_CHUNK (1UL << VMEMMAP_CHUNK_SHIFT)
  1651. #define VMEMMAP_CHUNK_MASK ~(VMEMMAP_CHUNK - 1UL)
  1652. #define VMEMMAP_ALIGN(x) (((x)+VMEMMAP_CHUNK-1UL)&VMEMMAP_CHUNK_MASK)
  1653. #define VMEMMAP_SIZE ((((1UL << MAX_PHYSADDR_BITS) >> PAGE_SHIFT) * \
  1654. sizeof(struct page *)) >> VMEMMAP_CHUNK_SHIFT)
  1655. unsigned long vmemmap_table[VMEMMAP_SIZE];
  1656. int __meminit vmemmap_populate(struct page *start, unsigned long nr, int node)
  1657. {
  1658. unsigned long vstart = (unsigned long) start;
  1659. unsigned long vend = (unsigned long) (start + nr);
  1660. unsigned long phys_start = (vstart - VMEMMAP_BASE);
  1661. unsigned long phys_end = (vend - VMEMMAP_BASE);
  1662. unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
  1663. unsigned long end = VMEMMAP_ALIGN(phys_end);
  1664. unsigned long pte_base;
  1665. pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1666. _PAGE_CP_4U | _PAGE_CV_4U |
  1667. _PAGE_P_4U | _PAGE_W_4U);
  1668. if (tlb_type == hypervisor)
  1669. pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1670. _PAGE_CP_4V | _PAGE_CV_4V |
  1671. _PAGE_P_4V | _PAGE_W_4V);
  1672. for (; addr < end; addr += VMEMMAP_CHUNK) {
  1673. unsigned long *vmem_pp =
  1674. vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
  1675. void *block;
  1676. if (!(*vmem_pp & _PAGE_VALID)) {
  1677. block = vmemmap_alloc_block(1UL << 22, node);
  1678. if (!block)
  1679. return -ENOMEM;
  1680. *vmem_pp = pte_base | __pa(block);
  1681. printk(KERN_INFO "[%p-%p] page_structs=%lu "
  1682. "node=%d entry=%lu/%lu\n", start, block, nr,
  1683. node,
  1684. addr >> VMEMMAP_CHUNK_SHIFT,
  1685. VMEMMAP_SIZE >> VMEMMAP_CHUNK_SHIFT);
  1686. }
  1687. }
  1688. return 0;
  1689. }
  1690. #endif /* CONFIG_SPARSEMEM_VMEMMAP */
  1691. static void prot_init_common(unsigned long page_none,
  1692. unsigned long page_shared,
  1693. unsigned long page_copy,
  1694. unsigned long page_readonly,
  1695. unsigned long page_exec_bit)
  1696. {
  1697. PAGE_COPY = __pgprot(page_copy);
  1698. PAGE_SHARED = __pgprot(page_shared);
  1699. protection_map[0x0] = __pgprot(page_none);
  1700. protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
  1701. protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
  1702. protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
  1703. protection_map[0x4] = __pgprot(page_readonly);
  1704. protection_map[0x5] = __pgprot(page_readonly);
  1705. protection_map[0x6] = __pgprot(page_copy);
  1706. protection_map[0x7] = __pgprot(page_copy);
  1707. protection_map[0x8] = __pgprot(page_none);
  1708. protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
  1709. protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
  1710. protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
  1711. protection_map[0xc] = __pgprot(page_readonly);
  1712. protection_map[0xd] = __pgprot(page_readonly);
  1713. protection_map[0xe] = __pgprot(page_shared);
  1714. protection_map[0xf] = __pgprot(page_shared);
  1715. }
  1716. static void __init sun4u_pgprot_init(void)
  1717. {
  1718. unsigned long page_none, page_shared, page_copy, page_readonly;
  1719. unsigned long page_exec_bit;
  1720. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1721. _PAGE_CACHE_4U | _PAGE_P_4U |
  1722. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1723. _PAGE_EXEC_4U);
  1724. PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
  1725. _PAGE_CACHE_4U | _PAGE_P_4U |
  1726. __ACCESS_BITS_4U | __DIRTY_BITS_4U |
  1727. _PAGE_EXEC_4U | _PAGE_L_4U);
  1728. PAGE_EXEC = __pgprot(_PAGE_EXEC_4U);
  1729. _PAGE_IE = _PAGE_IE_4U;
  1730. _PAGE_E = _PAGE_E_4U;
  1731. _PAGE_CACHE = _PAGE_CACHE_4U;
  1732. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
  1733. __ACCESS_BITS_4U | _PAGE_E_4U);
  1734. #ifdef CONFIG_DEBUG_PAGEALLOC
  1735. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4U) ^
  1736. 0xfffff80000000000;
  1737. #else
  1738. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
  1739. 0xfffff80000000000;
  1740. #endif
  1741. kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
  1742. _PAGE_P_4U | _PAGE_W_4U);
  1743. /* XXX Should use 256MB on Panther. XXX */
  1744. kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
  1745. _PAGE_SZBITS = _PAGE_SZBITS_4U;
  1746. _PAGE_ALL_SZ_BITS = (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
  1747. _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
  1748. _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
  1749. page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
  1750. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1751. __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
  1752. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1753. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1754. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
  1755. __ACCESS_BITS_4U | _PAGE_EXEC_4U);
  1756. page_exec_bit = _PAGE_EXEC_4U;
  1757. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1758. page_exec_bit);
  1759. }
  1760. static void __init sun4v_pgprot_init(void)
  1761. {
  1762. unsigned long page_none, page_shared, page_copy, page_readonly;
  1763. unsigned long page_exec_bit;
  1764. PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
  1765. _PAGE_CACHE_4V | _PAGE_P_4V |
  1766. __ACCESS_BITS_4V | __DIRTY_BITS_4V |
  1767. _PAGE_EXEC_4V);
  1768. PAGE_KERNEL_LOCKED = PAGE_KERNEL;
  1769. PAGE_EXEC = __pgprot(_PAGE_EXEC_4V);
  1770. _PAGE_IE = _PAGE_IE_4V;
  1771. _PAGE_E = _PAGE_E_4V;
  1772. _PAGE_CACHE = _PAGE_CACHE_4V;
  1773. #ifdef CONFIG_DEBUG_PAGEALLOC
  1774. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
  1775. 0xfffff80000000000;
  1776. #else
  1777. kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
  1778. 0xfffff80000000000;
  1779. #endif
  1780. kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1781. _PAGE_P_4V | _PAGE_W_4V);
  1782. #ifdef CONFIG_DEBUG_PAGEALLOC
  1783. kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZBITS_4V) ^
  1784. 0xfffff80000000000;
  1785. #else
  1786. kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
  1787. 0xfffff80000000000;
  1788. #endif
  1789. kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
  1790. _PAGE_P_4V | _PAGE_W_4V);
  1791. pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
  1792. __ACCESS_BITS_4V | _PAGE_E_4V);
  1793. _PAGE_SZBITS = _PAGE_SZBITS_4V;
  1794. _PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
  1795. _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
  1796. _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
  1797. _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
  1798. page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
  1799. page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1800. __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
  1801. page_copy = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1802. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1803. page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
  1804. __ACCESS_BITS_4V | _PAGE_EXEC_4V);
  1805. page_exec_bit = _PAGE_EXEC_4V;
  1806. prot_init_common(page_none, page_shared, page_copy, page_readonly,
  1807. page_exec_bit);
  1808. }
  1809. unsigned long pte_sz_bits(unsigned long sz)
  1810. {
  1811. if (tlb_type == hypervisor) {
  1812. switch (sz) {
  1813. case 8 * 1024:
  1814. default:
  1815. return _PAGE_SZ8K_4V;
  1816. case 64 * 1024:
  1817. return _PAGE_SZ64K_4V;
  1818. case 512 * 1024:
  1819. return _PAGE_SZ512K_4V;
  1820. case 4 * 1024 * 1024:
  1821. return _PAGE_SZ4MB_4V;
  1822. };
  1823. } else {
  1824. switch (sz) {
  1825. case 8 * 1024:
  1826. default:
  1827. return _PAGE_SZ8K_4U;
  1828. case 64 * 1024:
  1829. return _PAGE_SZ64K_4U;
  1830. case 512 * 1024:
  1831. return _PAGE_SZ512K_4U;
  1832. case 4 * 1024 * 1024:
  1833. return _PAGE_SZ4MB_4U;
  1834. };
  1835. }
  1836. }
  1837. pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
  1838. {
  1839. pte_t pte;
  1840. pte_val(pte) = page | pgprot_val(pgprot_noncached(prot));
  1841. pte_val(pte) |= (((unsigned long)space) << 32);
  1842. pte_val(pte) |= pte_sz_bits(page_size);
  1843. return pte;
  1844. }
  1845. static unsigned long kern_large_tte(unsigned long paddr)
  1846. {
  1847. unsigned long val;
  1848. val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
  1849. _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
  1850. _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
  1851. if (tlb_type == hypervisor)
  1852. val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
  1853. _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
  1854. _PAGE_EXEC_4V | _PAGE_W_4V);
  1855. return val | paddr;
  1856. }
  1857. /* If not locked, zap it. */
  1858. void __flush_tlb_all(void)
  1859. {
  1860. unsigned long pstate;
  1861. int i;
  1862. __asm__ __volatile__("flushw\n\t"
  1863. "rdpr %%pstate, %0\n\t"
  1864. "wrpr %0, %1, %%pstate"
  1865. : "=r" (pstate)
  1866. : "i" (PSTATE_IE));
  1867. if (tlb_type == hypervisor) {
  1868. sun4v_mmu_demap_all();
  1869. } else if (tlb_type == spitfire) {
  1870. for (i = 0; i < 64; i++) {
  1871. /* Spitfire Errata #32 workaround */
  1872. /* NOTE: Always runs on spitfire, so no
  1873. * cheetah+ page size encodings.
  1874. */
  1875. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1876. "flush %%g6"
  1877. : /* No outputs */
  1878. : "r" (0),
  1879. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1880. if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
  1881. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1882. "membar #Sync"
  1883. : /* no outputs */
  1884. : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
  1885. spitfire_put_dtlb_data(i, 0x0UL);
  1886. }
  1887. /* Spitfire Errata #32 workaround */
  1888. /* NOTE: Always runs on spitfire, so no
  1889. * cheetah+ page size encodings.
  1890. */
  1891. __asm__ __volatile__("stxa %0, [%1] %2\n\t"
  1892. "flush %%g6"
  1893. : /* No outputs */
  1894. : "r" (0),
  1895. "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
  1896. if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
  1897. __asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
  1898. "membar #Sync"
  1899. : /* no outputs */
  1900. : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
  1901. spitfire_put_itlb_data(i, 0x0UL);
  1902. }
  1903. }
  1904. } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
  1905. cheetah_flush_dtlb_all();
  1906. cheetah_flush_itlb_all();
  1907. }
  1908. __asm__ __volatile__("wrpr %0, 0, %%pstate"
  1909. : : "r" (pstate));
  1910. }