pci_sabre.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868
  1. /* pci_sabre.c: Sabre specific PCI controller support.
  2. *
  3. * Copyright (C) 1997, 1998, 1999, 2007 David S. Miller (davem@davemloft.net)
  4. * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be)
  5. * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com)
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/types.h>
  9. #include <linux/pci.h>
  10. #include <linux/init.h>
  11. #include <linux/slab.h>
  12. #include <linux/interrupt.h>
  13. #include <linux/of_device.h>
  14. #include <asm/apb.h>
  15. #include <asm/iommu.h>
  16. #include <asm/irq.h>
  17. #include <asm/smp.h>
  18. #include <asm/oplib.h>
  19. #include <asm/prom.h>
  20. #include "pci_impl.h"
  21. #include "iommu_common.h"
  22. /* All SABRE registers are 64-bits. The following accessor
  23. * routines are how they are accessed. The REG parameter
  24. * is a physical address.
  25. */
  26. #define sabre_read(__reg) \
  27. ({ u64 __ret; \
  28. __asm__ __volatile__("ldxa [%1] %2, %0" \
  29. : "=r" (__ret) \
  30. : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \
  31. : "memory"); \
  32. __ret; \
  33. })
  34. #define sabre_write(__reg, __val) \
  35. __asm__ __volatile__("stxa %0, [%1] %2" \
  36. : /* no outputs */ \
  37. : "r" (__val), "r" (__reg), \
  38. "i" (ASI_PHYS_BYPASS_EC_E) \
  39. : "memory")
  40. /* SABRE PCI controller register offsets and definitions. */
  41. #define SABRE_UE_AFSR 0x0030UL
  42. #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
  43. #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
  44. #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
  45. #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
  46. #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */
  47. #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */
  48. #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
  49. #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */
  50. #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */
  51. #define SABRE_UECE_AFAR 0x0038UL
  52. #define SABRE_CE_AFSR 0x0040UL
  53. #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */
  54. #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */
  55. #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */
  56. #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */
  57. #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */
  58. #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */
  59. #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */
  60. #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */
  61. #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */
  62. #define SABRE_IOMMU_CONTROL 0x0200UL
  63. #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */
  64. #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */
  65. #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */
  66. #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */
  67. #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */
  68. #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000
  69. #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000
  70. #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000
  71. #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000
  72. #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000
  73. #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000
  74. #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000
  75. #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000
  76. #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */
  77. #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */
  78. #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */
  79. #define SABRE_IOMMU_TSBBASE 0x0208UL
  80. #define SABRE_IOMMU_FLUSH 0x0210UL
  81. #define SABRE_IMAP_A_SLOT0 0x0c00UL
  82. #define SABRE_IMAP_B_SLOT0 0x0c20UL
  83. #define SABRE_IMAP_SCSI 0x1000UL
  84. #define SABRE_IMAP_ETH 0x1008UL
  85. #define SABRE_IMAP_BPP 0x1010UL
  86. #define SABRE_IMAP_AU_REC 0x1018UL
  87. #define SABRE_IMAP_AU_PLAY 0x1020UL
  88. #define SABRE_IMAP_PFAIL 0x1028UL
  89. #define SABRE_IMAP_KMS 0x1030UL
  90. #define SABRE_IMAP_FLPY 0x1038UL
  91. #define SABRE_IMAP_SHW 0x1040UL
  92. #define SABRE_IMAP_KBD 0x1048UL
  93. #define SABRE_IMAP_MS 0x1050UL
  94. #define SABRE_IMAP_SER 0x1058UL
  95. #define SABRE_IMAP_UE 0x1070UL
  96. #define SABRE_IMAP_CE 0x1078UL
  97. #define SABRE_IMAP_PCIERR 0x1080UL
  98. #define SABRE_IMAP_GFX 0x1098UL
  99. #define SABRE_IMAP_EUPA 0x10a0UL
  100. #define SABRE_ICLR_A_SLOT0 0x1400UL
  101. #define SABRE_ICLR_B_SLOT0 0x1480UL
  102. #define SABRE_ICLR_SCSI 0x1800UL
  103. #define SABRE_ICLR_ETH 0x1808UL
  104. #define SABRE_ICLR_BPP 0x1810UL
  105. #define SABRE_ICLR_AU_REC 0x1818UL
  106. #define SABRE_ICLR_AU_PLAY 0x1820UL
  107. #define SABRE_ICLR_PFAIL 0x1828UL
  108. #define SABRE_ICLR_KMS 0x1830UL
  109. #define SABRE_ICLR_FLPY 0x1838UL
  110. #define SABRE_ICLR_SHW 0x1840UL
  111. #define SABRE_ICLR_KBD 0x1848UL
  112. #define SABRE_ICLR_MS 0x1850UL
  113. #define SABRE_ICLR_SER 0x1858UL
  114. #define SABRE_ICLR_UE 0x1870UL
  115. #define SABRE_ICLR_CE 0x1878UL
  116. #define SABRE_ICLR_PCIERR 0x1880UL
  117. #define SABRE_WRSYNC 0x1c20UL
  118. #define SABRE_PCICTRL 0x2000UL
  119. #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */
  120. #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */
  121. #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */
  122. #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */
  123. #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */
  124. #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */
  125. #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */
  126. #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */
  127. #define SABRE_PIOAFSR 0x2010UL
  128. #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */
  129. #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */
  130. #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */
  131. #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */
  132. #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */
  133. #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */
  134. #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */
  135. #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */
  136. #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */
  137. #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */
  138. #define SABRE_PIOAFAR 0x2018UL
  139. #define SABRE_PCIDIAG 0x2020UL
  140. #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */
  141. #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */
  142. #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */
  143. #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */
  144. #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */
  145. #define SABRE_PCITASR 0x2028UL
  146. #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */
  147. #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */
  148. #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */
  149. #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */
  150. #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */
  151. #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */
  152. #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */
  153. #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */
  154. #define SABRE_PIOBUF_DIAG 0x5000UL
  155. #define SABRE_DMABUF_DIAGLO 0x5100UL
  156. #define SABRE_DMABUF_DIAGHI 0x51c0UL
  157. #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */
  158. #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */
  159. #define SABRE_IOMMU_VADIAG 0xa400UL
  160. #define SABRE_IOMMU_TCDIAG 0xa408UL
  161. #define SABRE_IOMMU_TAG 0xa580UL
  162. #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */
  163. #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */
  164. #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */
  165. #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */
  166. #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */
  167. #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */
  168. #define SABRE_IOMMU_DATA 0xa600UL
  169. #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */
  170. #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */
  171. #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */
  172. #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */
  173. #define SABRE_PCI_IRQSTATE 0xa800UL
  174. #define SABRE_OBIO_IRQSTATE 0xa808UL
  175. #define SABRE_FFBCFG 0xf000UL
  176. #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */
  177. #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */
  178. #define SABRE_MCCTRL0 0xf010UL
  179. #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */
  180. #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */
  181. #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */
  182. #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */
  183. #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */
  184. #define SABRE_MCCTRL1 0xf018UL
  185. #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */
  186. #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */
  187. #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */
  188. #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */
  189. #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */
  190. #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */
  191. #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */
  192. #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */
  193. #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */
  194. #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */
  195. #define SABRE_RESETCTRL 0xf020UL
  196. #define SABRE_CONFIGSPACE 0x001000000UL
  197. #define SABRE_IOSPACE 0x002000000UL
  198. #define SABRE_IOSPACE_SIZE 0x000ffffffUL
  199. #define SABRE_MEMSPACE 0x100000000UL
  200. #define SABRE_MEMSPACE_SIZE 0x07fffffffUL
  201. static int hummingbird_p;
  202. static struct pci_bus *sabre_root_bus;
  203. /* SABRE error handling support. */
  204. static void sabre_check_iommu_error(struct pci_pbm_info *pbm,
  205. unsigned long afsr,
  206. unsigned long afar)
  207. {
  208. struct iommu *iommu = pbm->iommu;
  209. unsigned long iommu_tag[16];
  210. unsigned long iommu_data[16];
  211. unsigned long flags;
  212. u64 control;
  213. int i;
  214. spin_lock_irqsave(&iommu->lock, flags);
  215. control = sabre_read(iommu->iommu_control);
  216. if (control & SABRE_IOMMUCTRL_ERR) {
  217. char *type_string;
  218. /* Clear the error encountered bit.
  219. * NOTE: On Sabre this is write 1 to clear,
  220. * which is different from Psycho.
  221. */
  222. sabre_write(iommu->iommu_control, control);
  223. switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) {
  224. case 1:
  225. type_string = "Invalid Error";
  226. break;
  227. case 3:
  228. type_string = "ECC Error";
  229. break;
  230. default:
  231. type_string = "Unknown";
  232. break;
  233. };
  234. printk("%s: IOMMU Error, type[%s]\n",
  235. pbm->name, type_string);
  236. /* Enter diagnostic mode and probe for error'd
  237. * entries in the IOTLB.
  238. */
  239. control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR);
  240. sabre_write(iommu->iommu_control,
  241. (control | SABRE_IOMMUCTRL_DENAB));
  242. for (i = 0; i < 16; i++) {
  243. unsigned long base = pbm->controller_regs;
  244. iommu_tag[i] =
  245. sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL));
  246. iommu_data[i] =
  247. sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL));
  248. sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0);
  249. sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0);
  250. }
  251. sabre_write(iommu->iommu_control, control);
  252. for (i = 0; i < 16; i++) {
  253. unsigned long tag, data;
  254. tag = iommu_tag[i];
  255. if (!(tag & SABRE_IOMMUTAG_ERR))
  256. continue;
  257. data = iommu_data[i];
  258. switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) {
  259. case 1:
  260. type_string = "Invalid Error";
  261. break;
  262. case 3:
  263. type_string = "ECC Error";
  264. break;
  265. default:
  266. type_string = "Unknown";
  267. break;
  268. };
  269. printk("%s: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n",
  270. pbm->name, i, tag, type_string,
  271. ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0),
  272. ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8),
  273. ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT));
  274. printk("%s: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n",
  275. pbm->name, i, data,
  276. ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0),
  277. ((data & SABRE_IOMMUDATA_USED) ? 1 : 0),
  278. ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0),
  279. ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT));
  280. }
  281. }
  282. spin_unlock_irqrestore(&iommu->lock, flags);
  283. }
  284. static irqreturn_t sabre_ue_intr(int irq, void *dev_id)
  285. {
  286. struct pci_pbm_info *pbm = dev_id;
  287. unsigned long afsr_reg = pbm->controller_regs + SABRE_UE_AFSR;
  288. unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
  289. unsigned long afsr, afar, error_bits;
  290. int reported;
  291. /* Latch uncorrectable error status. */
  292. afar = sabre_read(afar_reg);
  293. afsr = sabre_read(afsr_reg);
  294. /* Clear the primary/secondary error status bits. */
  295. error_bits = afsr &
  296. (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
  297. SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
  298. SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE);
  299. if (!error_bits)
  300. return IRQ_NONE;
  301. sabre_write(afsr_reg, error_bits);
  302. /* Log the error. */
  303. printk("%s: Uncorrectable Error, primary error type[%s%s]\n",
  304. pbm->name,
  305. ((error_bits & SABRE_UEAFSR_PDRD) ?
  306. "DMA Read" :
  307. ((error_bits & SABRE_UEAFSR_PDWR) ?
  308. "DMA Write" : "???")),
  309. ((error_bits & SABRE_UEAFSR_PDTE) ?
  310. ":Translation Error" : ""));
  311. printk("%s: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n",
  312. pbm->name,
  313. (afsr & SABRE_UEAFSR_BMSK) >> 32UL,
  314. (afsr & SABRE_UEAFSR_OFF) >> 29UL,
  315. ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0));
  316. printk("%s: UE AFAR [%016lx]\n", pbm->name, afar);
  317. printk("%s: UE Secondary errors [", pbm->name);
  318. reported = 0;
  319. if (afsr & SABRE_UEAFSR_SDRD) {
  320. reported++;
  321. printk("(DMA Read)");
  322. }
  323. if (afsr & SABRE_UEAFSR_SDWR) {
  324. reported++;
  325. printk("(DMA Write)");
  326. }
  327. if (afsr & SABRE_UEAFSR_SDTE) {
  328. reported++;
  329. printk("(Translation Error)");
  330. }
  331. if (!reported)
  332. printk("(none)");
  333. printk("]\n");
  334. /* Interrogate IOMMU for error status. */
  335. sabre_check_iommu_error(pbm, afsr, afar);
  336. return IRQ_HANDLED;
  337. }
  338. static irqreturn_t sabre_ce_intr(int irq, void *dev_id)
  339. {
  340. struct pci_pbm_info *pbm = dev_id;
  341. unsigned long afsr_reg = pbm->controller_regs + SABRE_CE_AFSR;
  342. unsigned long afar_reg = pbm->controller_regs + SABRE_UECE_AFAR;
  343. unsigned long afsr, afar, error_bits;
  344. int reported;
  345. /* Latch error status. */
  346. afar = sabre_read(afar_reg);
  347. afsr = sabre_read(afsr_reg);
  348. /* Clear primary/secondary error status bits. */
  349. error_bits = afsr &
  350. (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
  351. SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR);
  352. if (!error_bits)
  353. return IRQ_NONE;
  354. sabre_write(afsr_reg, error_bits);
  355. /* Log the error. */
  356. printk("%s: Correctable Error, primary error type[%s]\n",
  357. pbm->name,
  358. ((error_bits & SABRE_CEAFSR_PDRD) ?
  359. "DMA Read" :
  360. ((error_bits & SABRE_CEAFSR_PDWR) ?
  361. "DMA Write" : "???")));
  362. /* XXX Use syndrome and afar to print out module string just like
  363. * XXX UDB CE trap handler does... -DaveM
  364. */
  365. printk("%s: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] "
  366. "was_block(%d)\n",
  367. pbm->name,
  368. (afsr & SABRE_CEAFSR_ESYND) >> 48UL,
  369. (afsr & SABRE_CEAFSR_BMSK) >> 32UL,
  370. (afsr & SABRE_CEAFSR_OFF) >> 29UL,
  371. ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0));
  372. printk("%s: CE AFAR [%016lx]\n", pbm->name, afar);
  373. printk("%s: CE Secondary errors [", pbm->name);
  374. reported = 0;
  375. if (afsr & SABRE_CEAFSR_SDRD) {
  376. reported++;
  377. printk("(DMA Read)");
  378. }
  379. if (afsr & SABRE_CEAFSR_SDWR) {
  380. reported++;
  381. printk("(DMA Write)");
  382. }
  383. if (!reported)
  384. printk("(none)");
  385. printk("]\n");
  386. return IRQ_HANDLED;
  387. }
  388. static irqreturn_t sabre_pcierr_intr_other(struct pci_pbm_info *pbm)
  389. {
  390. unsigned long csr_reg, csr, csr_error_bits;
  391. irqreturn_t ret = IRQ_NONE;
  392. u16 stat;
  393. csr_reg = pbm->controller_regs + SABRE_PCICTRL;
  394. csr = sabre_read(csr_reg);
  395. csr_error_bits =
  396. csr & SABRE_PCICTRL_SERR;
  397. if (csr_error_bits) {
  398. /* Clear the errors. */
  399. sabre_write(csr_reg, csr);
  400. /* Log 'em. */
  401. if (csr_error_bits & SABRE_PCICTRL_SERR)
  402. printk("%s: PCI SERR signal asserted.\n",
  403. pbm->name);
  404. ret = IRQ_HANDLED;
  405. }
  406. pci_bus_read_config_word(sabre_root_bus, 0,
  407. PCI_STATUS, &stat);
  408. if (stat & (PCI_STATUS_PARITY |
  409. PCI_STATUS_SIG_TARGET_ABORT |
  410. PCI_STATUS_REC_TARGET_ABORT |
  411. PCI_STATUS_REC_MASTER_ABORT |
  412. PCI_STATUS_SIG_SYSTEM_ERROR)) {
  413. printk("%s: PCI bus error, PCI_STATUS[%04x]\n",
  414. pbm->name, stat);
  415. pci_bus_write_config_word(sabre_root_bus, 0,
  416. PCI_STATUS, 0xffff);
  417. ret = IRQ_HANDLED;
  418. }
  419. return ret;
  420. }
  421. static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id)
  422. {
  423. struct pci_pbm_info *pbm = dev_id;
  424. unsigned long afsr_reg, afar_reg;
  425. unsigned long afsr, afar, error_bits;
  426. int reported;
  427. afsr_reg = pbm->controller_regs + SABRE_PIOAFSR;
  428. afar_reg = pbm->controller_regs + SABRE_PIOAFAR;
  429. /* Latch error status. */
  430. afar = sabre_read(afar_reg);
  431. afsr = sabre_read(afsr_reg);
  432. /* Clear primary/secondary error status bits. */
  433. error_bits = afsr &
  434. (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA |
  435. SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR |
  436. SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA |
  437. SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR);
  438. if (!error_bits)
  439. return sabre_pcierr_intr_other(pbm);
  440. sabre_write(afsr_reg, error_bits);
  441. /* Log the error. */
  442. printk("%s: PCI Error, primary error type[%s]\n",
  443. pbm->name,
  444. (((error_bits & SABRE_PIOAFSR_PMA) ?
  445. "Master Abort" :
  446. ((error_bits & SABRE_PIOAFSR_PTA) ?
  447. "Target Abort" :
  448. ((error_bits & SABRE_PIOAFSR_PRTRY) ?
  449. "Excessive Retries" :
  450. ((error_bits & SABRE_PIOAFSR_PPERR) ?
  451. "Parity Error" : "???"))))));
  452. printk("%s: bytemask[%04lx] was_block(%d)\n",
  453. pbm->name,
  454. (afsr & SABRE_PIOAFSR_BMSK) >> 32UL,
  455. (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0);
  456. printk("%s: PCI AFAR [%016lx]\n", pbm->name, afar);
  457. printk("%s: PCI Secondary errors [", pbm->name);
  458. reported = 0;
  459. if (afsr & SABRE_PIOAFSR_SMA) {
  460. reported++;
  461. printk("(Master Abort)");
  462. }
  463. if (afsr & SABRE_PIOAFSR_STA) {
  464. reported++;
  465. printk("(Target Abort)");
  466. }
  467. if (afsr & SABRE_PIOAFSR_SRTRY) {
  468. reported++;
  469. printk("(Excessive Retries)");
  470. }
  471. if (afsr & SABRE_PIOAFSR_SPERR) {
  472. reported++;
  473. printk("(Parity Error)");
  474. }
  475. if (!reported)
  476. printk("(none)");
  477. printk("]\n");
  478. /* For the error types shown, scan both PCI buses for devices
  479. * which have logged that error type.
  480. */
  481. /* If we see a Target Abort, this could be the result of an
  482. * IOMMU translation error of some sort. It is extremely
  483. * useful to log this information as usually it indicates
  484. * a bug in the IOMMU support code or a PCI device driver.
  485. */
  486. if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) {
  487. sabre_check_iommu_error(pbm, afsr, afar);
  488. pci_scan_for_target_abort(pbm, pbm->pci_bus);
  489. }
  490. if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA))
  491. pci_scan_for_master_abort(pbm, pbm->pci_bus);
  492. /* For excessive retries, SABRE/PBM will abort the device
  493. * and there is no way to specifically check for excessive
  494. * retries in the config space status registers. So what
  495. * we hope is that we'll catch it via the master/target
  496. * abort events.
  497. */
  498. if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR))
  499. pci_scan_for_parity_error(pbm, pbm->pci_bus);
  500. return IRQ_HANDLED;
  501. }
  502. static void sabre_register_error_handlers(struct pci_pbm_info *pbm)
  503. {
  504. struct device_node *dp = pbm->prom_node;
  505. struct of_device *op;
  506. unsigned long base = pbm->controller_regs;
  507. u64 tmp;
  508. int err;
  509. if (pbm->chip_type == PBM_CHIP_TYPE_SABRE)
  510. dp = dp->parent;
  511. op = of_find_device_by_node(dp);
  512. if (!op)
  513. return;
  514. /* Sabre/Hummingbird IRQ property layout is:
  515. * 0: PCI ERR
  516. * 1: UE ERR
  517. * 2: CE ERR
  518. * 3: POWER FAIL
  519. */
  520. if (op->num_irqs < 4)
  521. return;
  522. /* We clear the error bits in the appropriate AFSR before
  523. * registering the handler so that we don't get spurious
  524. * interrupts.
  525. */
  526. sabre_write(base + SABRE_UE_AFSR,
  527. (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR |
  528. SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR |
  529. SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE));
  530. err = request_irq(op->irqs[1], sabre_ue_intr, 0, "SABRE_UE", pbm);
  531. if (err)
  532. printk(KERN_WARNING "%s: Couldn't register UE, err=%d.\n",
  533. pbm->name, err);
  534. sabre_write(base + SABRE_CE_AFSR,
  535. (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR |
  536. SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR));
  537. err = request_irq(op->irqs[2], sabre_ce_intr, 0, "SABRE_CE", pbm);
  538. if (err)
  539. printk(KERN_WARNING "%s: Couldn't register CE, err=%d.\n",
  540. pbm->name, err);
  541. err = request_irq(op->irqs[0], sabre_pcierr_intr, 0,
  542. "SABRE_PCIERR", pbm);
  543. if (err)
  544. printk(KERN_WARNING "%s: Couldn't register PCIERR, err=%d.\n",
  545. pbm->name, err);
  546. tmp = sabre_read(base + SABRE_PCICTRL);
  547. tmp |= SABRE_PCICTRL_ERREN;
  548. sabre_write(base + SABRE_PCICTRL, tmp);
  549. }
  550. static void apb_init(struct pci_bus *sabre_bus)
  551. {
  552. struct pci_dev *pdev;
  553. list_for_each_entry(pdev, &sabre_bus->devices, bus_list) {
  554. if (pdev->vendor == PCI_VENDOR_ID_SUN &&
  555. pdev->device == PCI_DEVICE_ID_SUN_SIMBA) {
  556. u16 word16;
  557. pci_read_config_word(pdev, PCI_COMMAND, &word16);
  558. word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
  559. PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY |
  560. PCI_COMMAND_IO;
  561. pci_write_config_word(pdev, PCI_COMMAND, word16);
  562. /* Status register bits are "write 1 to clear". */
  563. pci_write_config_word(pdev, PCI_STATUS, 0xffff);
  564. pci_write_config_word(pdev, PCI_SEC_STATUS, 0xffff);
  565. /* Use a primary/seconday latency timer value
  566. * of 64.
  567. */
  568. pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 64);
  569. pci_write_config_byte(pdev, PCI_SEC_LATENCY_TIMER, 64);
  570. /* Enable reporting/forwarding of master aborts,
  571. * parity, and SERR.
  572. */
  573. pci_write_config_byte(pdev, PCI_BRIDGE_CONTROL,
  574. (PCI_BRIDGE_CTL_PARITY |
  575. PCI_BRIDGE_CTL_SERR |
  576. PCI_BRIDGE_CTL_MASTER_ABORT));
  577. }
  578. }
  579. }
  580. static void __init sabre_scan_bus(struct pci_pbm_info *pbm)
  581. {
  582. static int once;
  583. /* The APB bridge speaks to the Sabre host PCI bridge
  584. * at 66Mhz, but the front side of APB runs at 33Mhz
  585. * for both segments.
  586. *
  587. * Hummingbird systems do not use APB, so they run
  588. * at 66MHZ.
  589. */
  590. if (hummingbird_p)
  591. pbm->is_66mhz_capable = 1;
  592. else
  593. pbm->is_66mhz_capable = 0;
  594. /* This driver has not been verified to handle
  595. * multiple SABREs yet, so trap this.
  596. *
  597. * Also note that the SABRE host bridge is hardwired
  598. * to live at bus 0.
  599. */
  600. if (once != 0) {
  601. prom_printf("SABRE: Multiple controllers unsupported.\n");
  602. prom_halt();
  603. }
  604. once++;
  605. pbm->pci_bus = pci_scan_one_pbm(pbm);
  606. if (!pbm->pci_bus)
  607. return;
  608. sabre_root_bus = pbm->pci_bus;
  609. apb_init(pbm->pci_bus);
  610. sabre_register_error_handlers(pbm);
  611. }
  612. static int sabre_iommu_init(struct pci_pbm_info *pbm,
  613. int tsbsize, unsigned long dvma_offset,
  614. u32 dma_mask)
  615. {
  616. struct iommu *iommu = pbm->iommu;
  617. unsigned long i;
  618. u64 control;
  619. int err;
  620. /* Register addresses. */
  621. iommu->iommu_control = pbm->controller_regs + SABRE_IOMMU_CONTROL;
  622. iommu->iommu_tsbbase = pbm->controller_regs + SABRE_IOMMU_TSBBASE;
  623. iommu->iommu_flush = pbm->controller_regs + SABRE_IOMMU_FLUSH;
  624. iommu->iommu_tags = iommu->iommu_flush + (0xa580UL - 0x0210UL);
  625. iommu->write_complete_reg = pbm->controller_regs + SABRE_WRSYNC;
  626. /* Sabre's IOMMU lacks ctx flushing. */
  627. iommu->iommu_ctxflush = 0;
  628. /* Invalidate TLB Entries. */
  629. control = sabre_read(pbm->controller_regs + SABRE_IOMMU_CONTROL);
  630. control |= SABRE_IOMMUCTRL_DENAB;
  631. sabre_write(pbm->controller_regs + SABRE_IOMMU_CONTROL, control);
  632. for(i = 0; i < 16; i++) {
  633. sabre_write(pbm->controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0);
  634. sabre_write(pbm->controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0);
  635. }
  636. /* Leave diag mode enabled for full-flushing done
  637. * in pci_iommu.c
  638. */
  639. err = iommu_table_init(iommu, tsbsize * 1024 * 8,
  640. dvma_offset, dma_mask, pbm->numa_node);
  641. if (err)
  642. return err;
  643. sabre_write(pbm->controller_regs + SABRE_IOMMU_TSBBASE,
  644. __pa(iommu->page_table));
  645. control = sabre_read(pbm->controller_regs + SABRE_IOMMU_CONTROL);
  646. control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ);
  647. control |= SABRE_IOMMUCTRL_ENAB;
  648. switch(tsbsize) {
  649. case 64:
  650. control |= SABRE_IOMMU_TSBSZ_64K;
  651. break;
  652. case 128:
  653. control |= SABRE_IOMMU_TSBSZ_128K;
  654. break;
  655. default:
  656. prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize);
  657. prom_halt();
  658. break;
  659. }
  660. sabre_write(pbm->controller_regs + SABRE_IOMMU_CONTROL, control);
  661. return 0;
  662. }
  663. static void __init sabre_pbm_init(struct pci_controller_info *p,
  664. struct pci_pbm_info *pbm, struct device_node *dp)
  665. {
  666. pbm->name = dp->full_name;
  667. printk("%s: SABRE PCI Bus Module\n", pbm->name);
  668. pbm->numa_node = -1;
  669. pbm->scan_bus = sabre_scan_bus;
  670. pbm->pci_ops = &sun4u_pci_ops;
  671. pbm->config_space_reg_bits = 8;
  672. pbm->index = pci_num_pbms++;
  673. pbm->chip_type = PBM_CHIP_TYPE_SABRE;
  674. pbm->parent = p;
  675. pbm->prom_node = dp;
  676. pci_get_pbm_props(pbm);
  677. pci_determine_mem_io_space(pbm);
  678. }
  679. void __init sabre_init(struct device_node *dp, char *model_name)
  680. {
  681. const struct linux_prom64_registers *pr_regs;
  682. struct pci_controller_info *p;
  683. struct pci_pbm_info *pbm;
  684. struct iommu *iommu;
  685. int tsbsize;
  686. const u32 *vdma;
  687. u32 upa_portid, dma_mask;
  688. u64 clear_irq;
  689. hummingbird_p = 0;
  690. if (!strcmp(model_name, "pci108e,a001"))
  691. hummingbird_p = 1;
  692. else if (!strcmp(model_name, "SUNW,sabre")) {
  693. const char *compat = of_get_property(dp, "compatible", NULL);
  694. if (compat && !strcmp(compat, "pci108e,a001"))
  695. hummingbird_p = 1;
  696. if (!hummingbird_p) {
  697. struct device_node *dp;
  698. /* Of course, Sun has to encode things a thousand
  699. * different ways, inconsistently.
  700. */
  701. for_each_node_by_type(dp, "cpu") {
  702. if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe"))
  703. hummingbird_p = 1;
  704. }
  705. }
  706. }
  707. p = kzalloc(sizeof(*p), GFP_ATOMIC);
  708. if (!p)
  709. goto fatal_memory_error;
  710. iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC);
  711. if (!iommu)
  712. goto fatal_memory_error;
  713. pbm = &p->pbm_A;
  714. pbm->iommu = iommu;
  715. upa_portid = of_getintprop_default(dp, "upa-portid", 0xff);
  716. pbm->next = pci_pbm_root;
  717. pci_pbm_root = pbm;
  718. pbm->portid = upa_portid;
  719. /*
  720. * Map in SABRE register set and report the presence of this SABRE.
  721. */
  722. pr_regs = of_get_property(dp, "reg", NULL);
  723. /*
  724. * First REG in property is base of entire SABRE register space.
  725. */
  726. pbm->controller_regs = pr_regs[0].phys_addr;
  727. /* Clear interrupts */
  728. /* PCI first */
  729. for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8)
  730. sabre_write(pbm->controller_regs + clear_irq, 0x0UL);
  731. /* Then OBIO */
  732. for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8)
  733. sabre_write(pbm->controller_regs + clear_irq, 0x0UL);
  734. /* Error interrupts are enabled later after the bus scan. */
  735. sabre_write(pbm->controller_regs + SABRE_PCICTRL,
  736. (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR |
  737. SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN));
  738. /* Now map in PCI config space for entire SABRE. */
  739. pbm->config_space =
  740. (pbm->controller_regs + SABRE_CONFIGSPACE);
  741. vdma = of_get_property(dp, "virtual-dma", NULL);
  742. dma_mask = vdma[0];
  743. switch(vdma[1]) {
  744. case 0x20000000:
  745. dma_mask |= 0x1fffffff;
  746. tsbsize = 64;
  747. break;
  748. case 0x40000000:
  749. dma_mask |= 0x3fffffff;
  750. tsbsize = 128;
  751. break;
  752. case 0x80000000:
  753. dma_mask |= 0x7fffffff;
  754. tsbsize = 128;
  755. break;
  756. default:
  757. prom_printf("SABRE: strange virtual-dma size.\n");
  758. prom_halt();
  759. }
  760. if (sabre_iommu_init(pbm, tsbsize, vdma[0], dma_mask))
  761. goto fatal_memory_error;
  762. /*
  763. * Look for APB underneath.
  764. */
  765. sabre_pbm_init(p, pbm, dp);
  766. return;
  767. fatal_memory_error:
  768. prom_printf("SABRE: Fatal memory allocation error.\n");
  769. prom_halt();
  770. }