process_64.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695
  1. /*
  2. * arch/sh/kernel/process_64.c
  3. *
  4. * This file handles the architecture-dependent parts of process handling..
  5. *
  6. * Copyright (C) 2000, 2001 Paolo Alberelli
  7. * Copyright (C) 2003 - 2007 Paul Mundt
  8. * Copyright (C) 2003, 2004 Richard Curnow
  9. *
  10. * Started from SH3/4 version:
  11. * Copyright (C) 1999, 2000 Niibe Yutaka & Kaz Kojima
  12. *
  13. * In turn started from i386 version:
  14. * Copyright (C) 1995 Linus Torvalds
  15. *
  16. * This file is subject to the terms and conditions of the GNU General Public
  17. * License. See the file "COPYING" in the main directory of this archive
  18. * for more details.
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/fs.h>
  22. #include <linux/ptrace.h>
  23. #include <linux/reboot.h>
  24. #include <linux/init.h>
  25. #include <linux/module.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/io.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/pgtable.h>
  30. #include <asm/mmu_context.h>
  31. #include <asm/fpu.h>
  32. struct task_struct *last_task_used_math = NULL;
  33. static int hlt_counter = 1;
  34. #define HARD_IDLE_TIMEOUT (HZ / 3)
  35. static int __init nohlt_setup(char *__unused)
  36. {
  37. hlt_counter = 1;
  38. return 1;
  39. }
  40. static int __init hlt_setup(char *__unused)
  41. {
  42. hlt_counter = 0;
  43. return 1;
  44. }
  45. __setup("nohlt", nohlt_setup);
  46. __setup("hlt", hlt_setup);
  47. static inline void hlt(void)
  48. {
  49. __asm__ __volatile__ ("sleep" : : : "memory");
  50. }
  51. /*
  52. * The idle loop on a uniprocessor SH..
  53. */
  54. void cpu_idle(void)
  55. {
  56. /* endless idle loop with no priority at all */
  57. while (1) {
  58. if (hlt_counter) {
  59. while (!need_resched())
  60. cpu_relax();
  61. } else {
  62. local_irq_disable();
  63. while (!need_resched()) {
  64. local_irq_enable();
  65. hlt();
  66. local_irq_disable();
  67. }
  68. local_irq_enable();
  69. }
  70. preempt_enable_no_resched();
  71. schedule();
  72. preempt_disable();
  73. }
  74. }
  75. void machine_restart(char * __unused)
  76. {
  77. extern void phys_stext(void);
  78. phys_stext();
  79. }
  80. void machine_halt(void)
  81. {
  82. for (;;);
  83. }
  84. void machine_power_off(void)
  85. {
  86. #if 0
  87. /* Disable watchdog timer */
  88. ctrl_outl(0xa5000000, WTCSR);
  89. /* Configure deep standby on sleep */
  90. ctrl_outl(0x03, STBCR);
  91. #endif
  92. __asm__ __volatile__ (
  93. "sleep\n\t"
  94. "synci\n\t"
  95. "nop;nop;nop;nop\n\t"
  96. );
  97. panic("Unexpected wakeup!\n");
  98. }
  99. void (*pm_power_off)(void) = machine_power_off;
  100. EXPORT_SYMBOL(pm_power_off);
  101. void show_regs(struct pt_regs * regs)
  102. {
  103. unsigned long long ah, al, bh, bl, ch, cl;
  104. printk("\n");
  105. ah = (regs->pc) >> 32;
  106. al = (regs->pc) & 0xffffffff;
  107. bh = (regs->regs[18]) >> 32;
  108. bl = (regs->regs[18]) & 0xffffffff;
  109. ch = (regs->regs[15]) >> 32;
  110. cl = (regs->regs[15]) & 0xffffffff;
  111. printk("PC : %08Lx%08Lx LINK: %08Lx%08Lx SP : %08Lx%08Lx\n",
  112. ah, al, bh, bl, ch, cl);
  113. ah = (regs->sr) >> 32;
  114. al = (regs->sr) & 0xffffffff;
  115. asm volatile ("getcon " __TEA ", %0" : "=r" (bh));
  116. asm volatile ("getcon " __TEA ", %0" : "=r" (bl));
  117. bh = (bh) >> 32;
  118. bl = (bl) & 0xffffffff;
  119. asm volatile ("getcon " __KCR0 ", %0" : "=r" (ch));
  120. asm volatile ("getcon " __KCR0 ", %0" : "=r" (cl));
  121. ch = (ch) >> 32;
  122. cl = (cl) & 0xffffffff;
  123. printk("SR : %08Lx%08Lx TEA : %08Lx%08Lx KCR0: %08Lx%08Lx\n",
  124. ah, al, bh, bl, ch, cl);
  125. ah = (regs->regs[0]) >> 32;
  126. al = (regs->regs[0]) & 0xffffffff;
  127. bh = (regs->regs[1]) >> 32;
  128. bl = (regs->regs[1]) & 0xffffffff;
  129. ch = (regs->regs[2]) >> 32;
  130. cl = (regs->regs[2]) & 0xffffffff;
  131. printk("R0 : %08Lx%08Lx R1 : %08Lx%08Lx R2 : %08Lx%08Lx\n",
  132. ah, al, bh, bl, ch, cl);
  133. ah = (regs->regs[3]) >> 32;
  134. al = (regs->regs[3]) & 0xffffffff;
  135. bh = (regs->regs[4]) >> 32;
  136. bl = (regs->regs[4]) & 0xffffffff;
  137. ch = (regs->regs[5]) >> 32;
  138. cl = (regs->regs[5]) & 0xffffffff;
  139. printk("R3 : %08Lx%08Lx R4 : %08Lx%08Lx R5 : %08Lx%08Lx\n",
  140. ah, al, bh, bl, ch, cl);
  141. ah = (regs->regs[6]) >> 32;
  142. al = (regs->regs[6]) & 0xffffffff;
  143. bh = (regs->regs[7]) >> 32;
  144. bl = (regs->regs[7]) & 0xffffffff;
  145. ch = (regs->regs[8]) >> 32;
  146. cl = (regs->regs[8]) & 0xffffffff;
  147. printk("R6 : %08Lx%08Lx R7 : %08Lx%08Lx R8 : %08Lx%08Lx\n",
  148. ah, al, bh, bl, ch, cl);
  149. ah = (regs->regs[9]) >> 32;
  150. al = (regs->regs[9]) & 0xffffffff;
  151. bh = (regs->regs[10]) >> 32;
  152. bl = (regs->regs[10]) & 0xffffffff;
  153. ch = (regs->regs[11]) >> 32;
  154. cl = (regs->regs[11]) & 0xffffffff;
  155. printk("R9 : %08Lx%08Lx R10 : %08Lx%08Lx R11 : %08Lx%08Lx\n",
  156. ah, al, bh, bl, ch, cl);
  157. ah = (regs->regs[12]) >> 32;
  158. al = (regs->regs[12]) & 0xffffffff;
  159. bh = (regs->regs[13]) >> 32;
  160. bl = (regs->regs[13]) & 0xffffffff;
  161. ch = (regs->regs[14]) >> 32;
  162. cl = (regs->regs[14]) & 0xffffffff;
  163. printk("R12 : %08Lx%08Lx R13 : %08Lx%08Lx R14 : %08Lx%08Lx\n",
  164. ah, al, bh, bl, ch, cl);
  165. ah = (regs->regs[16]) >> 32;
  166. al = (regs->regs[16]) & 0xffffffff;
  167. bh = (regs->regs[17]) >> 32;
  168. bl = (regs->regs[17]) & 0xffffffff;
  169. ch = (regs->regs[19]) >> 32;
  170. cl = (regs->regs[19]) & 0xffffffff;
  171. printk("R16 : %08Lx%08Lx R17 : %08Lx%08Lx R19 : %08Lx%08Lx\n",
  172. ah, al, bh, bl, ch, cl);
  173. ah = (regs->regs[20]) >> 32;
  174. al = (regs->regs[20]) & 0xffffffff;
  175. bh = (regs->regs[21]) >> 32;
  176. bl = (regs->regs[21]) & 0xffffffff;
  177. ch = (regs->regs[22]) >> 32;
  178. cl = (regs->regs[22]) & 0xffffffff;
  179. printk("R20 : %08Lx%08Lx R21 : %08Lx%08Lx R22 : %08Lx%08Lx\n",
  180. ah, al, bh, bl, ch, cl);
  181. ah = (regs->regs[23]) >> 32;
  182. al = (regs->regs[23]) & 0xffffffff;
  183. bh = (regs->regs[24]) >> 32;
  184. bl = (regs->regs[24]) & 0xffffffff;
  185. ch = (regs->regs[25]) >> 32;
  186. cl = (regs->regs[25]) & 0xffffffff;
  187. printk("R23 : %08Lx%08Lx R24 : %08Lx%08Lx R25 : %08Lx%08Lx\n",
  188. ah, al, bh, bl, ch, cl);
  189. ah = (regs->regs[26]) >> 32;
  190. al = (regs->regs[26]) & 0xffffffff;
  191. bh = (regs->regs[27]) >> 32;
  192. bl = (regs->regs[27]) & 0xffffffff;
  193. ch = (regs->regs[28]) >> 32;
  194. cl = (regs->regs[28]) & 0xffffffff;
  195. printk("R26 : %08Lx%08Lx R27 : %08Lx%08Lx R28 : %08Lx%08Lx\n",
  196. ah, al, bh, bl, ch, cl);
  197. ah = (regs->regs[29]) >> 32;
  198. al = (regs->regs[29]) & 0xffffffff;
  199. bh = (regs->regs[30]) >> 32;
  200. bl = (regs->regs[30]) & 0xffffffff;
  201. ch = (regs->regs[31]) >> 32;
  202. cl = (regs->regs[31]) & 0xffffffff;
  203. printk("R29 : %08Lx%08Lx R30 : %08Lx%08Lx R31 : %08Lx%08Lx\n",
  204. ah, al, bh, bl, ch, cl);
  205. ah = (regs->regs[32]) >> 32;
  206. al = (regs->regs[32]) & 0xffffffff;
  207. bh = (regs->regs[33]) >> 32;
  208. bl = (regs->regs[33]) & 0xffffffff;
  209. ch = (regs->regs[34]) >> 32;
  210. cl = (regs->regs[34]) & 0xffffffff;
  211. printk("R32 : %08Lx%08Lx R33 : %08Lx%08Lx R34 : %08Lx%08Lx\n",
  212. ah, al, bh, bl, ch, cl);
  213. ah = (regs->regs[35]) >> 32;
  214. al = (regs->regs[35]) & 0xffffffff;
  215. bh = (regs->regs[36]) >> 32;
  216. bl = (regs->regs[36]) & 0xffffffff;
  217. ch = (regs->regs[37]) >> 32;
  218. cl = (regs->regs[37]) & 0xffffffff;
  219. printk("R35 : %08Lx%08Lx R36 : %08Lx%08Lx R37 : %08Lx%08Lx\n",
  220. ah, al, bh, bl, ch, cl);
  221. ah = (regs->regs[38]) >> 32;
  222. al = (regs->regs[38]) & 0xffffffff;
  223. bh = (regs->regs[39]) >> 32;
  224. bl = (regs->regs[39]) & 0xffffffff;
  225. ch = (regs->regs[40]) >> 32;
  226. cl = (regs->regs[40]) & 0xffffffff;
  227. printk("R38 : %08Lx%08Lx R39 : %08Lx%08Lx R40 : %08Lx%08Lx\n",
  228. ah, al, bh, bl, ch, cl);
  229. ah = (regs->regs[41]) >> 32;
  230. al = (regs->regs[41]) & 0xffffffff;
  231. bh = (regs->regs[42]) >> 32;
  232. bl = (regs->regs[42]) & 0xffffffff;
  233. ch = (regs->regs[43]) >> 32;
  234. cl = (regs->regs[43]) & 0xffffffff;
  235. printk("R41 : %08Lx%08Lx R42 : %08Lx%08Lx R43 : %08Lx%08Lx\n",
  236. ah, al, bh, bl, ch, cl);
  237. ah = (regs->regs[44]) >> 32;
  238. al = (regs->regs[44]) & 0xffffffff;
  239. bh = (regs->regs[45]) >> 32;
  240. bl = (regs->regs[45]) & 0xffffffff;
  241. ch = (regs->regs[46]) >> 32;
  242. cl = (regs->regs[46]) & 0xffffffff;
  243. printk("R44 : %08Lx%08Lx R45 : %08Lx%08Lx R46 : %08Lx%08Lx\n",
  244. ah, al, bh, bl, ch, cl);
  245. ah = (regs->regs[47]) >> 32;
  246. al = (regs->regs[47]) & 0xffffffff;
  247. bh = (regs->regs[48]) >> 32;
  248. bl = (regs->regs[48]) & 0xffffffff;
  249. ch = (regs->regs[49]) >> 32;
  250. cl = (regs->regs[49]) & 0xffffffff;
  251. printk("R47 : %08Lx%08Lx R48 : %08Lx%08Lx R49 : %08Lx%08Lx\n",
  252. ah, al, bh, bl, ch, cl);
  253. ah = (regs->regs[50]) >> 32;
  254. al = (regs->regs[50]) & 0xffffffff;
  255. bh = (regs->regs[51]) >> 32;
  256. bl = (regs->regs[51]) & 0xffffffff;
  257. ch = (regs->regs[52]) >> 32;
  258. cl = (regs->regs[52]) & 0xffffffff;
  259. printk("R50 : %08Lx%08Lx R51 : %08Lx%08Lx R52 : %08Lx%08Lx\n",
  260. ah, al, bh, bl, ch, cl);
  261. ah = (regs->regs[53]) >> 32;
  262. al = (regs->regs[53]) & 0xffffffff;
  263. bh = (regs->regs[54]) >> 32;
  264. bl = (regs->regs[54]) & 0xffffffff;
  265. ch = (regs->regs[55]) >> 32;
  266. cl = (regs->regs[55]) & 0xffffffff;
  267. printk("R53 : %08Lx%08Lx R54 : %08Lx%08Lx R55 : %08Lx%08Lx\n",
  268. ah, al, bh, bl, ch, cl);
  269. ah = (regs->regs[56]) >> 32;
  270. al = (regs->regs[56]) & 0xffffffff;
  271. bh = (regs->regs[57]) >> 32;
  272. bl = (regs->regs[57]) & 0xffffffff;
  273. ch = (regs->regs[58]) >> 32;
  274. cl = (regs->regs[58]) & 0xffffffff;
  275. printk("R56 : %08Lx%08Lx R57 : %08Lx%08Lx R58 : %08Lx%08Lx\n",
  276. ah, al, bh, bl, ch, cl);
  277. ah = (regs->regs[59]) >> 32;
  278. al = (regs->regs[59]) & 0xffffffff;
  279. bh = (regs->regs[60]) >> 32;
  280. bl = (regs->regs[60]) & 0xffffffff;
  281. ch = (regs->regs[61]) >> 32;
  282. cl = (regs->regs[61]) & 0xffffffff;
  283. printk("R59 : %08Lx%08Lx R60 : %08Lx%08Lx R61 : %08Lx%08Lx\n",
  284. ah, al, bh, bl, ch, cl);
  285. ah = (regs->regs[62]) >> 32;
  286. al = (regs->regs[62]) & 0xffffffff;
  287. bh = (regs->tregs[0]) >> 32;
  288. bl = (regs->tregs[0]) & 0xffffffff;
  289. ch = (regs->tregs[1]) >> 32;
  290. cl = (regs->tregs[1]) & 0xffffffff;
  291. printk("R62 : %08Lx%08Lx T0 : %08Lx%08Lx T1 : %08Lx%08Lx\n",
  292. ah, al, bh, bl, ch, cl);
  293. ah = (regs->tregs[2]) >> 32;
  294. al = (regs->tregs[2]) & 0xffffffff;
  295. bh = (regs->tregs[3]) >> 32;
  296. bl = (regs->tregs[3]) & 0xffffffff;
  297. ch = (regs->tregs[4]) >> 32;
  298. cl = (regs->tregs[4]) & 0xffffffff;
  299. printk("T2 : %08Lx%08Lx T3 : %08Lx%08Lx T4 : %08Lx%08Lx\n",
  300. ah, al, bh, bl, ch, cl);
  301. ah = (regs->tregs[5]) >> 32;
  302. al = (regs->tregs[5]) & 0xffffffff;
  303. bh = (regs->tregs[6]) >> 32;
  304. bl = (regs->tregs[6]) & 0xffffffff;
  305. ch = (regs->tregs[7]) >> 32;
  306. cl = (regs->tregs[7]) & 0xffffffff;
  307. printk("T5 : %08Lx%08Lx T6 : %08Lx%08Lx T7 : %08Lx%08Lx\n",
  308. ah, al, bh, bl, ch, cl);
  309. /*
  310. * If we're in kernel mode, dump the stack too..
  311. */
  312. if (!user_mode(regs)) {
  313. void show_stack(struct task_struct *tsk, unsigned long *sp);
  314. unsigned long sp = regs->regs[15] & 0xffffffff;
  315. struct task_struct *tsk = get_current();
  316. tsk->thread.kregs = regs;
  317. show_stack(tsk, (unsigned long *)sp);
  318. }
  319. }
  320. struct task_struct * alloc_task_struct(void)
  321. {
  322. /* Get task descriptor pages */
  323. return (struct task_struct *)
  324. __get_free_pages(GFP_KERNEL, get_order(THREAD_SIZE));
  325. }
  326. void free_task_struct(struct task_struct *p)
  327. {
  328. free_pages((unsigned long) p, get_order(THREAD_SIZE));
  329. }
  330. /*
  331. * Create a kernel thread
  332. */
  333. ATTRIB_NORET void kernel_thread_helper(void *arg, int (*fn)(void *))
  334. {
  335. do_exit(fn(arg));
  336. }
  337. /*
  338. * This is the mechanism for creating a new kernel thread.
  339. *
  340. * NOTE! Only a kernel-only process(ie the swapper or direct descendants
  341. * who haven't done an "execve()") should use this: it will work within
  342. * a system call from a "real" process, but the process memory space will
  343. * not be freed until both the parent and the child have exited.
  344. */
  345. int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
  346. {
  347. struct pt_regs regs;
  348. memset(&regs, 0, sizeof(regs));
  349. regs.regs[2] = (unsigned long)arg;
  350. regs.regs[3] = (unsigned long)fn;
  351. regs.pc = (unsigned long)kernel_thread_helper;
  352. regs.sr = (1 << 30);
  353. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0,
  354. &regs, 0, NULL, NULL);
  355. }
  356. /*
  357. * Free current thread data structures etc..
  358. */
  359. void exit_thread(void)
  360. {
  361. /*
  362. * See arch/sparc/kernel/process.c for the precedent for doing
  363. * this -- RPC.
  364. *
  365. * The SH-5 FPU save/restore approach relies on
  366. * last_task_used_math pointing to a live task_struct. When
  367. * another task tries to use the FPU for the 1st time, the FPUDIS
  368. * trap handling (see arch/sh/kernel/cpu/sh5/fpu.c) will save the
  369. * existing FPU state to the FP regs field within
  370. * last_task_used_math before re-loading the new task's FPU state
  371. * (or initialising it if the FPU has been used before). So if
  372. * last_task_used_math is stale, and its page has already been
  373. * re-allocated for another use, the consequences are rather
  374. * grim. Unless we null it here, there is no other path through
  375. * which it would get safely nulled.
  376. */
  377. #ifdef CONFIG_SH_FPU
  378. if (last_task_used_math == current) {
  379. last_task_used_math = NULL;
  380. }
  381. #endif
  382. }
  383. void flush_thread(void)
  384. {
  385. /* Called by fs/exec.c (flush_old_exec) to remove traces of a
  386. * previously running executable. */
  387. #ifdef CONFIG_SH_FPU
  388. if (last_task_used_math == current) {
  389. last_task_used_math = NULL;
  390. }
  391. /* Force FPU state to be reinitialised after exec */
  392. clear_used_math();
  393. #endif
  394. /* if we are a kernel thread, about to change to user thread,
  395. * update kreg
  396. */
  397. if(current->thread.kregs==&fake_swapper_regs) {
  398. current->thread.kregs =
  399. ((struct pt_regs *)(THREAD_SIZE + (unsigned long) current) - 1);
  400. current->thread.uregs = current->thread.kregs;
  401. }
  402. }
  403. void release_thread(struct task_struct *dead_task)
  404. {
  405. /* do nothing */
  406. }
  407. /* Fill in the fpu structure for a core dump.. */
  408. int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpu)
  409. {
  410. #ifdef CONFIG_SH_FPU
  411. int fpvalid;
  412. struct task_struct *tsk = current;
  413. fpvalid = !!tsk_used_math(tsk);
  414. if (fpvalid) {
  415. if (current == last_task_used_math) {
  416. enable_fpu();
  417. save_fpu(tsk, regs);
  418. disable_fpu();
  419. last_task_used_math = 0;
  420. regs->sr |= SR_FD;
  421. }
  422. memcpy(fpu, &tsk->thread.fpu.hard, sizeof(*fpu));
  423. }
  424. return fpvalid;
  425. #else
  426. return 0; /* Task didn't use the fpu at all. */
  427. #endif
  428. }
  429. asmlinkage void ret_from_fork(void);
  430. int copy_thread(int nr, unsigned long clone_flags, unsigned long usp,
  431. unsigned long unused,
  432. struct task_struct *p, struct pt_regs *regs)
  433. {
  434. struct pt_regs *childregs;
  435. unsigned long long se; /* Sign extension */
  436. #ifdef CONFIG_SH_FPU
  437. if(last_task_used_math == current) {
  438. enable_fpu();
  439. save_fpu(current, regs);
  440. disable_fpu();
  441. last_task_used_math = NULL;
  442. regs->sr |= SR_FD;
  443. }
  444. #endif
  445. /* Copy from sh version */
  446. childregs = (struct pt_regs *)(THREAD_SIZE + task_stack_page(p)) - 1;
  447. *childregs = *regs;
  448. if (user_mode(regs)) {
  449. childregs->regs[15] = usp;
  450. p->thread.uregs = childregs;
  451. } else {
  452. childregs->regs[15] = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  453. }
  454. childregs->regs[9] = 0; /* Set return value for child */
  455. childregs->sr |= SR_FD; /* Invalidate FPU flag */
  456. p->thread.sp = (unsigned long) childregs;
  457. p->thread.pc = (unsigned long) ret_from_fork;
  458. /*
  459. * Sign extend the edited stack.
  460. * Note that thread.pc and thread.pc will stay
  461. * 32-bit wide and context switch must take care
  462. * of NEFF sign extension.
  463. */
  464. se = childregs->regs[15];
  465. se = (se & NEFF_SIGN) ? (se | NEFF_MASK) : se;
  466. childregs->regs[15] = se;
  467. return 0;
  468. }
  469. asmlinkage int sys_fork(unsigned long r2, unsigned long r3,
  470. unsigned long r4, unsigned long r5,
  471. unsigned long r6, unsigned long r7,
  472. struct pt_regs *pregs)
  473. {
  474. return do_fork(SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
  475. }
  476. asmlinkage int sys_clone(unsigned long clone_flags, unsigned long newsp,
  477. unsigned long r4, unsigned long r5,
  478. unsigned long r6, unsigned long r7,
  479. struct pt_regs *pregs)
  480. {
  481. if (!newsp)
  482. newsp = pregs->regs[15];
  483. return do_fork(clone_flags, newsp, pregs, 0, 0, 0);
  484. }
  485. /*
  486. * This is trivial, and on the face of it looks like it
  487. * could equally well be done in user mode.
  488. *
  489. * Not so, for quite unobvious reasons - register pressure.
  490. * In user mode vfork() cannot have a stack frame, and if
  491. * done by calling the "clone()" system call directly, you
  492. * do not have enough call-clobbered registers to hold all
  493. * the information you need.
  494. */
  495. asmlinkage int sys_vfork(unsigned long r2, unsigned long r3,
  496. unsigned long r4, unsigned long r5,
  497. unsigned long r6, unsigned long r7,
  498. struct pt_regs *pregs)
  499. {
  500. return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, pregs->regs[15], pregs, 0, 0, 0);
  501. }
  502. /*
  503. * sys_execve() executes a new program.
  504. */
  505. asmlinkage int sys_execve(char *ufilename, char **uargv,
  506. char **uenvp, unsigned long r5,
  507. unsigned long r6, unsigned long r7,
  508. struct pt_regs *pregs)
  509. {
  510. int error;
  511. char *filename;
  512. lock_kernel();
  513. filename = getname((char __user *)ufilename);
  514. error = PTR_ERR(filename);
  515. if (IS_ERR(filename))
  516. goto out;
  517. error = do_execve(filename,
  518. (char __user * __user *)uargv,
  519. (char __user * __user *)uenvp,
  520. pregs);
  521. if (error == 0) {
  522. task_lock(current);
  523. current->ptrace &= ~PT_DTRACE;
  524. task_unlock(current);
  525. }
  526. putname(filename);
  527. out:
  528. unlock_kernel();
  529. return error;
  530. }
  531. /*
  532. * These bracket the sleeping functions..
  533. */
  534. extern void interruptible_sleep_on(wait_queue_head_t *q);
  535. #define mid_sched ((unsigned long) interruptible_sleep_on)
  536. #ifdef CONFIG_FRAME_POINTER
  537. static int in_sh64_switch_to(unsigned long pc)
  538. {
  539. extern char __sh64_switch_to_end;
  540. /* For a sleeping task, the PC is somewhere in the middle of the function,
  541. so we don't have to worry about masking the LSB off */
  542. return (pc >= (unsigned long) sh64_switch_to) &&
  543. (pc < (unsigned long) &__sh64_switch_to_end);
  544. }
  545. #endif
  546. unsigned long get_wchan(struct task_struct *p)
  547. {
  548. unsigned long pc;
  549. if (!p || p == current || p->state == TASK_RUNNING)
  550. return 0;
  551. /*
  552. * The same comment as on the Alpha applies here, too ...
  553. */
  554. pc = thread_saved_pc(p);
  555. #ifdef CONFIG_FRAME_POINTER
  556. if (in_sh64_switch_to(pc)) {
  557. unsigned long schedule_fp;
  558. unsigned long sh64_switch_to_fp;
  559. unsigned long schedule_caller_pc;
  560. sh64_switch_to_fp = (long) p->thread.sp;
  561. /* r14 is saved at offset 4 in the sh64_switch_to frame */
  562. schedule_fp = *(unsigned long *) (long)(sh64_switch_to_fp + 4);
  563. /* and the caller of 'schedule' is (currently!) saved at offset 24
  564. in the frame of schedule (from disasm) */
  565. schedule_caller_pc = *(unsigned long *) (long)(schedule_fp + 24);
  566. return schedule_caller_pc;
  567. }
  568. #endif
  569. return pc;
  570. }
  571. /* Provide a /proc/asids file that lists out the
  572. ASIDs currently associated with the processes. (If the DM.PC register is
  573. examined through the debug link, this shows ASID + PC. To make use of this,
  574. the PID->ASID relationship needs to be known. This is primarily for
  575. debugging.)
  576. */
  577. #if defined(CONFIG_SH64_PROC_ASIDS)
  578. static int
  579. asids_proc_info(char *buf, char **start, off_t fpos, int length, int *eof, void *data)
  580. {
  581. int len=0;
  582. struct task_struct *p;
  583. read_lock(&tasklist_lock);
  584. for_each_process(p) {
  585. int pid = p->pid;
  586. if (!pid)
  587. continue;
  588. if (p->mm)
  589. len += sprintf(buf+len, "%5d : %02lx\n", pid,
  590. asid_cache(smp_processor_id()));
  591. else
  592. len += sprintf(buf+len, "%5d : (none)\n", pid);
  593. }
  594. read_unlock(&tasklist_lock);
  595. *eof = 1;
  596. return len;
  597. }
  598. static int __init register_proc_asids(void)
  599. {
  600. create_proc_read_entry("asids", 0, NULL, asids_proc_info, NULL);
  601. return 0;
  602. }
  603. __initcall(register_proc_asids);
  604. #endif