uaccess_pt.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464
  1. /*
  2. * arch/s390/lib/uaccess_pt.c
  3. *
  4. * User access functions based on page table walks for enhanced
  5. * system layout without hardware support.
  6. *
  7. * Copyright IBM Corp. 2006
  8. * Author(s): Gerald Schaefer (gerald.schaefer@de.ibm.com)
  9. */
  10. #include <linux/errno.h>
  11. #include <linux/hardirq.h>
  12. #include <linux/mm.h>
  13. #include <asm/uaccess.h>
  14. #include <asm/futex.h>
  15. #include "uaccess.h"
  16. static inline pte_t *follow_table(struct mm_struct *mm, unsigned long addr)
  17. {
  18. pgd_t *pgd;
  19. pud_t *pud;
  20. pmd_t *pmd;
  21. pgd = pgd_offset(mm, addr);
  22. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  23. return NULL;
  24. pud = pud_offset(pgd, addr);
  25. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  26. return NULL;
  27. pmd = pmd_offset(pud, addr);
  28. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  29. return NULL;
  30. return pte_offset_map(pmd, addr);
  31. }
  32. static int __handle_fault(struct mm_struct *mm, unsigned long address,
  33. int write_access)
  34. {
  35. struct vm_area_struct *vma;
  36. int ret = -EFAULT;
  37. int fault;
  38. if (in_atomic())
  39. return ret;
  40. down_read(&mm->mmap_sem);
  41. vma = find_vma(mm, address);
  42. if (unlikely(!vma))
  43. goto out;
  44. if (unlikely(vma->vm_start > address)) {
  45. if (!(vma->vm_flags & VM_GROWSDOWN))
  46. goto out;
  47. if (expand_stack(vma, address))
  48. goto out;
  49. }
  50. if (!write_access) {
  51. /* page not present, check vm flags */
  52. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  53. goto out;
  54. } else {
  55. if (!(vma->vm_flags & VM_WRITE))
  56. goto out;
  57. }
  58. survive:
  59. fault = handle_mm_fault(mm, vma, address, write_access);
  60. if (unlikely(fault & VM_FAULT_ERROR)) {
  61. if (fault & VM_FAULT_OOM)
  62. goto out_of_memory;
  63. else if (fault & VM_FAULT_SIGBUS)
  64. goto out_sigbus;
  65. BUG();
  66. }
  67. if (fault & VM_FAULT_MAJOR)
  68. current->maj_flt++;
  69. else
  70. current->min_flt++;
  71. ret = 0;
  72. out:
  73. up_read(&mm->mmap_sem);
  74. return ret;
  75. out_of_memory:
  76. up_read(&mm->mmap_sem);
  77. if (is_global_init(current)) {
  78. yield();
  79. down_read(&mm->mmap_sem);
  80. goto survive;
  81. }
  82. printk("VM: killing process %s\n", current->comm);
  83. return ret;
  84. out_sigbus:
  85. up_read(&mm->mmap_sem);
  86. current->thread.prot_addr = address;
  87. current->thread.trap_no = 0x11;
  88. force_sig(SIGBUS, current);
  89. return ret;
  90. }
  91. static size_t __user_copy_pt(unsigned long uaddr, void *kptr,
  92. size_t n, int write_user)
  93. {
  94. struct mm_struct *mm = current->mm;
  95. unsigned long offset, pfn, done, size;
  96. pte_t *pte;
  97. void *from, *to;
  98. done = 0;
  99. retry:
  100. spin_lock(&mm->page_table_lock);
  101. do {
  102. pte = follow_table(mm, uaddr);
  103. if (!pte || !pte_present(*pte) ||
  104. (write_user && !pte_write(*pte)))
  105. goto fault;
  106. pfn = pte_pfn(*pte);
  107. if (!pfn_valid(pfn))
  108. goto out;
  109. offset = uaddr & (PAGE_SIZE - 1);
  110. size = min(n - done, PAGE_SIZE - offset);
  111. if (write_user) {
  112. to = (void *)((pfn << PAGE_SHIFT) + offset);
  113. from = kptr + done;
  114. } else {
  115. from = (void *)((pfn << PAGE_SHIFT) + offset);
  116. to = kptr + done;
  117. }
  118. memcpy(to, from, size);
  119. done += size;
  120. uaddr += size;
  121. } while (done < n);
  122. out:
  123. spin_unlock(&mm->page_table_lock);
  124. return n - done;
  125. fault:
  126. spin_unlock(&mm->page_table_lock);
  127. if (__handle_fault(mm, uaddr, write_user))
  128. return n - done;
  129. goto retry;
  130. }
  131. /*
  132. * Do DAT for user address by page table walk, return kernel address.
  133. * This function needs to be called with current->mm->page_table_lock held.
  134. */
  135. static unsigned long __dat_user_addr(unsigned long uaddr)
  136. {
  137. struct mm_struct *mm = current->mm;
  138. unsigned long pfn, ret;
  139. pte_t *pte;
  140. int rc;
  141. ret = 0;
  142. retry:
  143. pte = follow_table(mm, uaddr);
  144. if (!pte || !pte_present(*pte))
  145. goto fault;
  146. pfn = pte_pfn(*pte);
  147. if (!pfn_valid(pfn))
  148. goto out;
  149. ret = (pfn << PAGE_SHIFT) + (uaddr & (PAGE_SIZE - 1));
  150. out:
  151. return ret;
  152. fault:
  153. spin_unlock(&mm->page_table_lock);
  154. rc = __handle_fault(mm, uaddr, 0);
  155. spin_lock(&mm->page_table_lock);
  156. if (rc)
  157. goto out;
  158. goto retry;
  159. }
  160. size_t copy_from_user_pt(size_t n, const void __user *from, void *to)
  161. {
  162. size_t rc;
  163. if (segment_eq(get_fs(), KERNEL_DS)) {
  164. memcpy(to, (void __kernel __force *) from, n);
  165. return 0;
  166. }
  167. rc = __user_copy_pt((unsigned long) from, to, n, 0);
  168. if (unlikely(rc))
  169. memset(to + n - rc, 0, rc);
  170. return rc;
  171. }
  172. size_t copy_to_user_pt(size_t n, void __user *to, const void *from)
  173. {
  174. if (segment_eq(get_fs(), KERNEL_DS)) {
  175. memcpy((void __kernel __force *) to, from, n);
  176. return 0;
  177. }
  178. return __user_copy_pt((unsigned long) to, (void *) from, n, 1);
  179. }
  180. static size_t clear_user_pt(size_t n, void __user *to)
  181. {
  182. long done, size, ret;
  183. if (segment_eq(get_fs(), KERNEL_DS)) {
  184. memset((void __kernel __force *) to, 0, n);
  185. return 0;
  186. }
  187. done = 0;
  188. do {
  189. if (n - done > PAGE_SIZE)
  190. size = PAGE_SIZE;
  191. else
  192. size = n - done;
  193. ret = __user_copy_pt((unsigned long) to + done,
  194. &empty_zero_page, size, 1);
  195. done += size;
  196. if (ret)
  197. return ret + n - done;
  198. } while (done < n);
  199. return 0;
  200. }
  201. static size_t strnlen_user_pt(size_t count, const char __user *src)
  202. {
  203. char *addr;
  204. unsigned long uaddr = (unsigned long) src;
  205. struct mm_struct *mm = current->mm;
  206. unsigned long offset, pfn, done, len;
  207. pte_t *pte;
  208. size_t len_str;
  209. if (segment_eq(get_fs(), KERNEL_DS))
  210. return strnlen((const char __kernel __force *) src, count) + 1;
  211. done = 0;
  212. retry:
  213. spin_lock(&mm->page_table_lock);
  214. do {
  215. pte = follow_table(mm, uaddr);
  216. if (!pte || !pte_present(*pte))
  217. goto fault;
  218. pfn = pte_pfn(*pte);
  219. if (!pfn_valid(pfn)) {
  220. done = -1;
  221. goto out;
  222. }
  223. offset = uaddr & (PAGE_SIZE-1);
  224. addr = (char *)(pfn << PAGE_SHIFT) + offset;
  225. len = min(count - done, PAGE_SIZE - offset);
  226. len_str = strnlen(addr, len);
  227. done += len_str;
  228. uaddr += len_str;
  229. } while ((len_str == len) && (done < count));
  230. out:
  231. spin_unlock(&mm->page_table_lock);
  232. return done + 1;
  233. fault:
  234. spin_unlock(&mm->page_table_lock);
  235. if (__handle_fault(mm, uaddr, 0)) {
  236. return 0;
  237. }
  238. goto retry;
  239. }
  240. static size_t strncpy_from_user_pt(size_t count, const char __user *src,
  241. char *dst)
  242. {
  243. size_t n = strnlen_user_pt(count, src);
  244. if (!n)
  245. return -EFAULT;
  246. if (n > count)
  247. n = count;
  248. if (segment_eq(get_fs(), KERNEL_DS)) {
  249. memcpy(dst, (const char __kernel __force *) src, n);
  250. if (dst[n-1] == '\0')
  251. return n-1;
  252. else
  253. return n;
  254. }
  255. if (__user_copy_pt((unsigned long) src, dst, n, 0))
  256. return -EFAULT;
  257. if (dst[n-1] == '\0')
  258. return n-1;
  259. else
  260. return n;
  261. }
  262. static size_t copy_in_user_pt(size_t n, void __user *to,
  263. const void __user *from)
  264. {
  265. struct mm_struct *mm = current->mm;
  266. unsigned long offset_from, offset_to, offset_max, pfn_from, pfn_to,
  267. uaddr, done, size;
  268. unsigned long uaddr_from = (unsigned long) from;
  269. unsigned long uaddr_to = (unsigned long) to;
  270. pte_t *pte_from, *pte_to;
  271. int write_user;
  272. if (segment_eq(get_fs(), KERNEL_DS)) {
  273. memcpy((void __force *) to, (void __force *) from, n);
  274. return 0;
  275. }
  276. done = 0;
  277. retry:
  278. spin_lock(&mm->page_table_lock);
  279. do {
  280. pte_from = follow_table(mm, uaddr_from);
  281. if (!pte_from || !pte_present(*pte_from)) {
  282. uaddr = uaddr_from;
  283. write_user = 0;
  284. goto fault;
  285. }
  286. pte_to = follow_table(mm, uaddr_to);
  287. if (!pte_to || !pte_present(*pte_to) || !pte_write(*pte_to)) {
  288. uaddr = uaddr_to;
  289. write_user = 1;
  290. goto fault;
  291. }
  292. pfn_from = pte_pfn(*pte_from);
  293. if (!pfn_valid(pfn_from))
  294. goto out;
  295. pfn_to = pte_pfn(*pte_to);
  296. if (!pfn_valid(pfn_to))
  297. goto out;
  298. offset_from = uaddr_from & (PAGE_SIZE-1);
  299. offset_to = uaddr_from & (PAGE_SIZE-1);
  300. offset_max = max(offset_from, offset_to);
  301. size = min(n - done, PAGE_SIZE - offset_max);
  302. memcpy((void *)(pfn_to << PAGE_SHIFT) + offset_to,
  303. (void *)(pfn_from << PAGE_SHIFT) + offset_from, size);
  304. done += size;
  305. uaddr_from += size;
  306. uaddr_to += size;
  307. } while (done < n);
  308. out:
  309. spin_unlock(&mm->page_table_lock);
  310. return n - done;
  311. fault:
  312. spin_unlock(&mm->page_table_lock);
  313. if (__handle_fault(mm, uaddr, write_user))
  314. return n - done;
  315. goto retry;
  316. }
  317. #define __futex_atomic_op(insn, ret, oldval, newval, uaddr, oparg) \
  318. asm volatile("0: l %1,0(%6)\n" \
  319. "1: " insn \
  320. "2: cs %1,%2,0(%6)\n" \
  321. "3: jl 1b\n" \
  322. " lhi %0,0\n" \
  323. "4:\n" \
  324. EX_TABLE(0b,4b) EX_TABLE(2b,4b) EX_TABLE(3b,4b) \
  325. : "=d" (ret), "=&d" (oldval), "=&d" (newval), \
  326. "=m" (*uaddr) \
  327. : "0" (-EFAULT), "d" (oparg), "a" (uaddr), \
  328. "m" (*uaddr) : "cc" );
  329. static int __futex_atomic_op_pt(int op, int __user *uaddr, int oparg, int *old)
  330. {
  331. int oldval = 0, newval, ret;
  332. switch (op) {
  333. case FUTEX_OP_SET:
  334. __futex_atomic_op("lr %2,%5\n",
  335. ret, oldval, newval, uaddr, oparg);
  336. break;
  337. case FUTEX_OP_ADD:
  338. __futex_atomic_op("lr %2,%1\nar %2,%5\n",
  339. ret, oldval, newval, uaddr, oparg);
  340. break;
  341. case FUTEX_OP_OR:
  342. __futex_atomic_op("lr %2,%1\nor %2,%5\n",
  343. ret, oldval, newval, uaddr, oparg);
  344. break;
  345. case FUTEX_OP_ANDN:
  346. __futex_atomic_op("lr %2,%1\nnr %2,%5\n",
  347. ret, oldval, newval, uaddr, oparg);
  348. break;
  349. case FUTEX_OP_XOR:
  350. __futex_atomic_op("lr %2,%1\nxr %2,%5\n",
  351. ret, oldval, newval, uaddr, oparg);
  352. break;
  353. default:
  354. ret = -ENOSYS;
  355. }
  356. if (ret == 0)
  357. *old = oldval;
  358. return ret;
  359. }
  360. int futex_atomic_op_pt(int op, int __user *uaddr, int oparg, int *old)
  361. {
  362. int ret;
  363. if (segment_eq(get_fs(), KERNEL_DS))
  364. return __futex_atomic_op_pt(op, uaddr, oparg, old);
  365. spin_lock(&current->mm->page_table_lock);
  366. uaddr = (int __user *) __dat_user_addr((unsigned long) uaddr);
  367. if (!uaddr) {
  368. spin_unlock(&current->mm->page_table_lock);
  369. return -EFAULT;
  370. }
  371. get_page(virt_to_page(uaddr));
  372. spin_unlock(&current->mm->page_table_lock);
  373. ret = __futex_atomic_op_pt(op, uaddr, oparg, old);
  374. put_page(virt_to_page(uaddr));
  375. return ret;
  376. }
  377. static int __futex_atomic_cmpxchg_pt(int __user *uaddr, int oldval, int newval)
  378. {
  379. int ret;
  380. asm volatile("0: cs %1,%4,0(%5)\n"
  381. "1: lr %0,%1\n"
  382. "2:\n"
  383. EX_TABLE(0b,2b) EX_TABLE(1b,2b)
  384. : "=d" (ret), "+d" (oldval), "=m" (*uaddr)
  385. : "0" (-EFAULT), "d" (newval), "a" (uaddr), "m" (*uaddr)
  386. : "cc", "memory" );
  387. return ret;
  388. }
  389. int futex_atomic_cmpxchg_pt(int __user *uaddr, int oldval, int newval)
  390. {
  391. int ret;
  392. if (segment_eq(get_fs(), KERNEL_DS))
  393. return __futex_atomic_cmpxchg_pt(uaddr, oldval, newval);
  394. spin_lock(&current->mm->page_table_lock);
  395. uaddr = (int __user *) __dat_user_addr((unsigned long) uaddr);
  396. if (!uaddr) {
  397. spin_unlock(&current->mm->page_table_lock);
  398. return -EFAULT;
  399. }
  400. get_page(virt_to_page(uaddr));
  401. spin_unlock(&current->mm->page_table_lock);
  402. ret = __futex_atomic_cmpxchg_pt(uaddr, oldval, newval);
  403. put_page(virt_to_page(uaddr));
  404. return ret;
  405. }
  406. struct uaccess_ops uaccess_pt = {
  407. .copy_from_user = copy_from_user_pt,
  408. .copy_from_user_small = copy_from_user_pt,
  409. .copy_to_user = copy_to_user_pt,
  410. .copy_to_user_small = copy_to_user_pt,
  411. .copy_in_user = copy_in_user_pt,
  412. .clear_user = clear_user_pt,
  413. .strnlen_user = strnlen_user_pt,
  414. .strncpy_from_user = strncpy_from_user_pt,
  415. .futex_atomic_op = futex_atomic_op_pt,
  416. .futex_atomic_cmpxchg = futex_atomic_cmpxchg_pt,
  417. };