kprobes.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668
  1. /*
  2. * Kernel Probes (KProbes)
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; either version 2 of the License, or
  7. * (at your option) any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * Copyright (C) IBM Corporation, 2002, 2006
  19. *
  20. * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
  21. */
  22. #include <linux/kprobes.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/preempt.h>
  25. #include <linux/stop_machine.h>
  26. #include <linux/kdebug.h>
  27. #include <asm/cacheflush.h>
  28. #include <asm/sections.h>
  29. #include <asm/uaccess.h>
  30. #include <linux/module.h>
  31. DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  32. DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  33. struct kretprobe_blackpoint kretprobe_blacklist[] = {{NULL, NULL}};
  34. int __kprobes arch_prepare_kprobe(struct kprobe *p)
  35. {
  36. /* Make sure the probe isn't going on a difficult instruction */
  37. if (is_prohibited_opcode((kprobe_opcode_t *) p->addr))
  38. return -EINVAL;
  39. if ((unsigned long)p->addr & 0x01)
  40. return -EINVAL;
  41. /* Use the get_insn_slot() facility for correctness */
  42. if (!(p->ainsn.insn = get_insn_slot()))
  43. return -ENOMEM;
  44. memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
  45. get_instruction_type(&p->ainsn);
  46. p->opcode = *p->addr;
  47. return 0;
  48. }
  49. int __kprobes is_prohibited_opcode(kprobe_opcode_t *instruction)
  50. {
  51. switch (*(__u8 *) instruction) {
  52. case 0x0c: /* bassm */
  53. case 0x0b: /* bsm */
  54. case 0x83: /* diag */
  55. case 0x44: /* ex */
  56. return -EINVAL;
  57. }
  58. switch (*(__u16 *) instruction) {
  59. case 0x0101: /* pr */
  60. case 0xb25a: /* bsa */
  61. case 0xb240: /* bakr */
  62. case 0xb258: /* bsg */
  63. case 0xb218: /* pc */
  64. case 0xb228: /* pt */
  65. return -EINVAL;
  66. }
  67. return 0;
  68. }
  69. void __kprobes get_instruction_type(struct arch_specific_insn *ainsn)
  70. {
  71. /* default fixup method */
  72. ainsn->fixup = FIXUP_PSW_NORMAL;
  73. /* save r1 operand */
  74. ainsn->reg = (*ainsn->insn & 0xf0) >> 4;
  75. /* save the instruction length (pop 5-5) in bytes */
  76. switch (*(__u8 *) (ainsn->insn) >> 6) {
  77. case 0:
  78. ainsn->ilen = 2;
  79. break;
  80. case 1:
  81. case 2:
  82. ainsn->ilen = 4;
  83. break;
  84. case 3:
  85. ainsn->ilen = 6;
  86. break;
  87. }
  88. switch (*(__u8 *) ainsn->insn) {
  89. case 0x05: /* balr */
  90. case 0x0d: /* basr */
  91. ainsn->fixup = FIXUP_RETURN_REGISTER;
  92. /* if r2 = 0, no branch will be taken */
  93. if ((*ainsn->insn & 0x0f) == 0)
  94. ainsn->fixup |= FIXUP_BRANCH_NOT_TAKEN;
  95. break;
  96. case 0x06: /* bctr */
  97. case 0x07: /* bcr */
  98. ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
  99. break;
  100. case 0x45: /* bal */
  101. case 0x4d: /* bas */
  102. ainsn->fixup = FIXUP_RETURN_REGISTER;
  103. break;
  104. case 0x47: /* bc */
  105. case 0x46: /* bct */
  106. case 0x86: /* bxh */
  107. case 0x87: /* bxle */
  108. ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
  109. break;
  110. case 0x82: /* lpsw */
  111. ainsn->fixup = FIXUP_NOT_REQUIRED;
  112. break;
  113. case 0xb2: /* lpswe */
  114. if (*(((__u8 *) ainsn->insn) + 1) == 0xb2) {
  115. ainsn->fixup = FIXUP_NOT_REQUIRED;
  116. }
  117. break;
  118. case 0xa7: /* bras */
  119. if ((*ainsn->insn & 0x0f) == 0x05) {
  120. ainsn->fixup |= FIXUP_RETURN_REGISTER;
  121. }
  122. break;
  123. case 0xc0:
  124. if ((*ainsn->insn & 0x0f) == 0x00 /* larl */
  125. || (*ainsn->insn & 0x0f) == 0x05) /* brasl */
  126. ainsn->fixup |= FIXUP_RETURN_REGISTER;
  127. break;
  128. case 0xeb:
  129. if (*(((__u8 *) ainsn->insn) + 5 ) == 0x44 || /* bxhg */
  130. *(((__u8 *) ainsn->insn) + 5) == 0x45) {/* bxleg */
  131. ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
  132. }
  133. break;
  134. case 0xe3: /* bctg */
  135. if (*(((__u8 *) ainsn->insn) + 5) == 0x46) {
  136. ainsn->fixup = FIXUP_BRANCH_NOT_TAKEN;
  137. }
  138. break;
  139. }
  140. }
  141. static int __kprobes swap_instruction(void *aref)
  142. {
  143. struct ins_replace_args *args = aref;
  144. u32 *addr;
  145. u32 instr;
  146. int err = -EFAULT;
  147. /*
  148. * Text segment is read-only, hence we use stura to bypass dynamic
  149. * address translation to exchange the instruction. Since stura
  150. * always operates on four bytes, but we only want to exchange two
  151. * bytes do some calculations to get things right. In addition we
  152. * shall not cross any page boundaries (vmalloc area!) when writing
  153. * the new instruction.
  154. */
  155. addr = (u32 *)((unsigned long)args->ptr & -4UL);
  156. if ((unsigned long)args->ptr & 2)
  157. instr = ((*addr) & 0xffff0000) | args->new;
  158. else
  159. instr = ((*addr) & 0x0000ffff) | args->new << 16;
  160. asm volatile(
  161. " lra %1,0(%1)\n"
  162. "0: stura %2,%1\n"
  163. "1: la %0,0\n"
  164. "2:\n"
  165. EX_TABLE(0b,2b)
  166. : "+d" (err)
  167. : "a" (addr), "d" (instr)
  168. : "memory", "cc");
  169. return err;
  170. }
  171. void __kprobes arch_arm_kprobe(struct kprobe *p)
  172. {
  173. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  174. unsigned long status = kcb->kprobe_status;
  175. struct ins_replace_args args;
  176. args.ptr = p->addr;
  177. args.old = p->opcode;
  178. args.new = BREAKPOINT_INSTRUCTION;
  179. kcb->kprobe_status = KPROBE_SWAP_INST;
  180. stop_machine(swap_instruction, &args, NULL);
  181. kcb->kprobe_status = status;
  182. }
  183. void __kprobes arch_disarm_kprobe(struct kprobe *p)
  184. {
  185. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  186. unsigned long status = kcb->kprobe_status;
  187. struct ins_replace_args args;
  188. args.ptr = p->addr;
  189. args.old = BREAKPOINT_INSTRUCTION;
  190. args.new = p->opcode;
  191. kcb->kprobe_status = KPROBE_SWAP_INST;
  192. stop_machine(swap_instruction, &args, NULL);
  193. kcb->kprobe_status = status;
  194. }
  195. void __kprobes arch_remove_kprobe(struct kprobe *p)
  196. {
  197. mutex_lock(&kprobe_mutex);
  198. free_insn_slot(p->ainsn.insn, 0);
  199. mutex_unlock(&kprobe_mutex);
  200. }
  201. static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
  202. {
  203. per_cr_bits kprobe_per_regs[1];
  204. memset(kprobe_per_regs, 0, sizeof(per_cr_bits));
  205. regs->psw.addr = (unsigned long)p->ainsn.insn | PSW_ADDR_AMODE;
  206. /* Set up the per control reg info, will pass to lctl */
  207. kprobe_per_regs[0].em_instruction_fetch = 1;
  208. kprobe_per_regs[0].starting_addr = (unsigned long)p->ainsn.insn;
  209. kprobe_per_regs[0].ending_addr = (unsigned long)p->ainsn.insn + 1;
  210. /* Set the PER control regs, turns on single step for this address */
  211. __ctl_load(kprobe_per_regs, 9, 11);
  212. regs->psw.mask |= PSW_MASK_PER;
  213. regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
  214. }
  215. static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
  216. {
  217. kcb->prev_kprobe.kp = kprobe_running();
  218. kcb->prev_kprobe.status = kcb->kprobe_status;
  219. kcb->prev_kprobe.kprobe_saved_imask = kcb->kprobe_saved_imask;
  220. memcpy(kcb->prev_kprobe.kprobe_saved_ctl, kcb->kprobe_saved_ctl,
  221. sizeof(kcb->kprobe_saved_ctl));
  222. }
  223. static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
  224. {
  225. __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
  226. kcb->kprobe_status = kcb->prev_kprobe.status;
  227. kcb->kprobe_saved_imask = kcb->prev_kprobe.kprobe_saved_imask;
  228. memcpy(kcb->kprobe_saved_ctl, kcb->prev_kprobe.kprobe_saved_ctl,
  229. sizeof(kcb->kprobe_saved_ctl));
  230. }
  231. static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
  232. struct kprobe_ctlblk *kcb)
  233. {
  234. __get_cpu_var(current_kprobe) = p;
  235. /* Save the interrupt and per flags */
  236. kcb->kprobe_saved_imask = regs->psw.mask &
  237. (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK);
  238. /* Save the control regs that govern PER */
  239. __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
  240. }
  241. void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
  242. struct pt_regs *regs)
  243. {
  244. ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
  245. /* Replace the return addr with trampoline addr */
  246. regs->gprs[14] = (unsigned long)&kretprobe_trampoline;
  247. }
  248. static int __kprobes kprobe_handler(struct pt_regs *regs)
  249. {
  250. struct kprobe *p;
  251. int ret = 0;
  252. unsigned long *addr = (unsigned long *)
  253. ((regs->psw.addr & PSW_ADDR_INSN) - 2);
  254. struct kprobe_ctlblk *kcb;
  255. /*
  256. * We don't want to be preempted for the entire
  257. * duration of kprobe processing
  258. */
  259. preempt_disable();
  260. kcb = get_kprobe_ctlblk();
  261. /* Check we're not actually recursing */
  262. if (kprobe_running()) {
  263. p = get_kprobe(addr);
  264. if (p) {
  265. if (kcb->kprobe_status == KPROBE_HIT_SS &&
  266. *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
  267. regs->psw.mask &= ~PSW_MASK_PER;
  268. regs->psw.mask |= kcb->kprobe_saved_imask;
  269. goto no_kprobe;
  270. }
  271. /* We have reentered the kprobe_handler(), since
  272. * another probe was hit while within the handler.
  273. * We here save the original kprobes variables and
  274. * just single step on the instruction of the new probe
  275. * without calling any user handlers.
  276. */
  277. save_previous_kprobe(kcb);
  278. set_current_kprobe(p, regs, kcb);
  279. kprobes_inc_nmissed_count(p);
  280. prepare_singlestep(p, regs);
  281. kcb->kprobe_status = KPROBE_REENTER;
  282. return 1;
  283. } else {
  284. p = __get_cpu_var(current_kprobe);
  285. if (p->break_handler && p->break_handler(p, regs)) {
  286. goto ss_probe;
  287. }
  288. }
  289. goto no_kprobe;
  290. }
  291. p = get_kprobe(addr);
  292. if (!p)
  293. /*
  294. * No kprobe at this address. The fault has not been
  295. * caused by a kprobe breakpoint. The race of breakpoint
  296. * vs. kprobe remove does not exist because on s390 we
  297. * use stop_machine to arm/disarm the breakpoints.
  298. */
  299. goto no_kprobe;
  300. kcb->kprobe_status = KPROBE_HIT_ACTIVE;
  301. set_current_kprobe(p, regs, kcb);
  302. if (p->pre_handler && p->pre_handler(p, regs))
  303. /* handler has already set things up, so skip ss setup */
  304. return 1;
  305. ss_probe:
  306. prepare_singlestep(p, regs);
  307. kcb->kprobe_status = KPROBE_HIT_SS;
  308. return 1;
  309. no_kprobe:
  310. preempt_enable_no_resched();
  311. return ret;
  312. }
  313. /*
  314. * Function return probe trampoline:
  315. * - init_kprobes() establishes a probepoint here
  316. * - When the probed function returns, this probe
  317. * causes the handlers to fire
  318. */
  319. static void __used kretprobe_trampoline_holder(void)
  320. {
  321. asm volatile(".global kretprobe_trampoline\n"
  322. "kretprobe_trampoline: bcr 0,0\n");
  323. }
  324. /*
  325. * Called when the probe at kretprobe trampoline is hit
  326. */
  327. static int __kprobes trampoline_probe_handler(struct kprobe *p,
  328. struct pt_regs *regs)
  329. {
  330. struct kretprobe_instance *ri = NULL;
  331. struct hlist_head *head, empty_rp;
  332. struct hlist_node *node, *tmp;
  333. unsigned long flags, orig_ret_address = 0;
  334. unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
  335. INIT_HLIST_HEAD(&empty_rp);
  336. kretprobe_hash_lock(current, &head, &flags);
  337. /*
  338. * It is possible to have multiple instances associated with a given
  339. * task either because an multiple functions in the call path
  340. * have a return probe installed on them, and/or more then one return
  341. * return probe was registered for a target function.
  342. *
  343. * We can handle this because:
  344. * - instances are always inserted at the head of the list
  345. * - when multiple return probes are registered for the same
  346. * function, the first instance's ret_addr will point to the
  347. * real return address, and all the rest will point to
  348. * kretprobe_trampoline
  349. */
  350. hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
  351. if (ri->task != current)
  352. /* another task is sharing our hash bucket */
  353. continue;
  354. if (ri->rp && ri->rp->handler)
  355. ri->rp->handler(ri, regs);
  356. orig_ret_address = (unsigned long)ri->ret_addr;
  357. recycle_rp_inst(ri, &empty_rp);
  358. if (orig_ret_address != trampoline_address) {
  359. /*
  360. * This is the real return address. Any other
  361. * instances associated with this task are for
  362. * other calls deeper on the call stack
  363. */
  364. break;
  365. }
  366. }
  367. kretprobe_assert(ri, orig_ret_address, trampoline_address);
  368. regs->psw.addr = orig_ret_address | PSW_ADDR_AMODE;
  369. reset_current_kprobe();
  370. kretprobe_hash_unlock(current, &flags);
  371. preempt_enable_no_resched();
  372. hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
  373. hlist_del(&ri->hlist);
  374. kfree(ri);
  375. }
  376. /*
  377. * By returning a non-zero value, we are telling
  378. * kprobe_handler() that we don't want the post_handler
  379. * to run (and have re-enabled preemption)
  380. */
  381. return 1;
  382. }
  383. /*
  384. * Called after single-stepping. p->addr is the address of the
  385. * instruction whose first byte has been replaced by the "breakpoint"
  386. * instruction. To avoid the SMP problems that can occur when we
  387. * temporarily put back the original opcode to single-step, we
  388. * single-stepped a copy of the instruction. The address of this
  389. * copy is p->ainsn.insn.
  390. */
  391. static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
  392. {
  393. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  394. regs->psw.addr &= PSW_ADDR_INSN;
  395. if (p->ainsn.fixup & FIXUP_PSW_NORMAL)
  396. regs->psw.addr = (unsigned long)p->addr +
  397. ((unsigned long)regs->psw.addr -
  398. (unsigned long)p->ainsn.insn);
  399. if (p->ainsn.fixup & FIXUP_BRANCH_NOT_TAKEN)
  400. if ((unsigned long)regs->psw.addr -
  401. (unsigned long)p->ainsn.insn == p->ainsn.ilen)
  402. regs->psw.addr = (unsigned long)p->addr + p->ainsn.ilen;
  403. if (p->ainsn.fixup & FIXUP_RETURN_REGISTER)
  404. regs->gprs[p->ainsn.reg] = ((unsigned long)p->addr +
  405. (regs->gprs[p->ainsn.reg] -
  406. (unsigned long)p->ainsn.insn))
  407. | PSW_ADDR_AMODE;
  408. regs->psw.addr |= PSW_ADDR_AMODE;
  409. /* turn off PER mode */
  410. regs->psw.mask &= ~PSW_MASK_PER;
  411. /* Restore the original per control regs */
  412. __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
  413. regs->psw.mask |= kcb->kprobe_saved_imask;
  414. }
  415. static int __kprobes post_kprobe_handler(struct pt_regs *regs)
  416. {
  417. struct kprobe *cur = kprobe_running();
  418. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  419. if (!cur)
  420. return 0;
  421. if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
  422. kcb->kprobe_status = KPROBE_HIT_SSDONE;
  423. cur->post_handler(cur, regs, 0);
  424. }
  425. resume_execution(cur, regs);
  426. /*Restore back the original saved kprobes variables and continue. */
  427. if (kcb->kprobe_status == KPROBE_REENTER) {
  428. restore_previous_kprobe(kcb);
  429. goto out;
  430. }
  431. reset_current_kprobe();
  432. out:
  433. preempt_enable_no_resched();
  434. /*
  435. * if somebody else is singlestepping across a probe point, psw mask
  436. * will have PER set, in which case, continue the remaining processing
  437. * of do_single_step, as if this is not a probe hit.
  438. */
  439. if (regs->psw.mask & PSW_MASK_PER) {
  440. return 0;
  441. }
  442. return 1;
  443. }
  444. int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
  445. {
  446. struct kprobe *cur = kprobe_running();
  447. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  448. const struct exception_table_entry *entry;
  449. switch(kcb->kprobe_status) {
  450. case KPROBE_SWAP_INST:
  451. /* We are here because the instruction replacement failed */
  452. return 0;
  453. case KPROBE_HIT_SS:
  454. case KPROBE_REENTER:
  455. /*
  456. * We are here because the instruction being single
  457. * stepped caused a page fault. We reset the current
  458. * kprobe and the nip points back to the probe address
  459. * and allow the page fault handler to continue as a
  460. * normal page fault.
  461. */
  462. regs->psw.addr = (unsigned long)cur->addr | PSW_ADDR_AMODE;
  463. regs->psw.mask &= ~PSW_MASK_PER;
  464. regs->psw.mask |= kcb->kprobe_saved_imask;
  465. if (kcb->kprobe_status == KPROBE_REENTER)
  466. restore_previous_kprobe(kcb);
  467. else
  468. reset_current_kprobe();
  469. preempt_enable_no_resched();
  470. break;
  471. case KPROBE_HIT_ACTIVE:
  472. case KPROBE_HIT_SSDONE:
  473. /*
  474. * We increment the nmissed count for accounting,
  475. * we can also use npre/npostfault count for accouting
  476. * these specific fault cases.
  477. */
  478. kprobes_inc_nmissed_count(cur);
  479. /*
  480. * We come here because instructions in the pre/post
  481. * handler caused the page_fault, this could happen
  482. * if handler tries to access user space by
  483. * copy_from_user(), get_user() etc. Let the
  484. * user-specified handler try to fix it first.
  485. */
  486. if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
  487. return 1;
  488. /*
  489. * In case the user-specified fault handler returned
  490. * zero, try to fix up.
  491. */
  492. entry = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
  493. if (entry) {
  494. regs->psw.addr = entry->fixup | PSW_ADDR_AMODE;
  495. return 1;
  496. }
  497. /*
  498. * fixup_exception() could not handle it,
  499. * Let do_page_fault() fix it.
  500. */
  501. break;
  502. default:
  503. break;
  504. }
  505. return 0;
  506. }
  507. /*
  508. * Wrapper routine to for handling exceptions.
  509. */
  510. int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
  511. unsigned long val, void *data)
  512. {
  513. struct die_args *args = (struct die_args *)data;
  514. int ret = NOTIFY_DONE;
  515. switch (val) {
  516. case DIE_BPT:
  517. if (kprobe_handler(args->regs))
  518. ret = NOTIFY_STOP;
  519. break;
  520. case DIE_SSTEP:
  521. if (post_kprobe_handler(args->regs))
  522. ret = NOTIFY_STOP;
  523. break;
  524. case DIE_TRAP:
  525. /* kprobe_running() needs smp_processor_id() */
  526. preempt_disable();
  527. if (kprobe_running() &&
  528. kprobe_fault_handler(args->regs, args->trapnr))
  529. ret = NOTIFY_STOP;
  530. preempt_enable();
  531. break;
  532. default:
  533. break;
  534. }
  535. return ret;
  536. }
  537. int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
  538. {
  539. struct jprobe *jp = container_of(p, struct jprobe, kp);
  540. unsigned long addr;
  541. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  542. memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
  543. /* setup return addr to the jprobe handler routine */
  544. regs->psw.addr = (unsigned long)(jp->entry) | PSW_ADDR_AMODE;
  545. /* r14 is the function return address */
  546. kcb->jprobe_saved_r14 = (unsigned long)regs->gprs[14];
  547. /* r15 is the stack pointer */
  548. kcb->jprobe_saved_r15 = (unsigned long)regs->gprs[15];
  549. addr = (unsigned long)kcb->jprobe_saved_r15;
  550. memcpy(kcb->jprobes_stack, (kprobe_opcode_t *) addr,
  551. MIN_STACK_SIZE(addr));
  552. return 1;
  553. }
  554. void __kprobes jprobe_return(void)
  555. {
  556. asm volatile(".word 0x0002");
  557. }
  558. void __kprobes jprobe_return_end(void)
  559. {
  560. asm volatile("bcr 0,0");
  561. }
  562. int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
  563. {
  564. struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
  565. unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_r15);
  566. /* Put the regs back */
  567. memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
  568. /* put the stack back */
  569. memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack,
  570. MIN_STACK_SIZE(stack_addr));
  571. preempt_enable_no_resched();
  572. return 1;
  573. }
  574. static struct kprobe trampoline_p = {
  575. .addr = (kprobe_opcode_t *) & kretprobe_trampoline,
  576. .pre_handler = trampoline_probe_handler
  577. };
  578. int __init arch_init_kprobes(void)
  579. {
  580. return register_kprobe(&trampoline_p);
  581. }
  582. int __kprobes arch_trampoline_kprobe(struct kprobe *p)
  583. {
  584. if (p->addr == (kprobe_opcode_t *) & kretprobe_trampoline)
  585. return 1;
  586. return 0;
  587. }