dt.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650
  1. /*
  2. * Copyright (C) 2005-2006 Michael Ellerman, IBM Corporation
  3. * Copyright (C) 2000-2004, IBM Corporation
  4. *
  5. * Description:
  6. * This file contains all the routines to build a flattened device
  7. * tree for a legacy iSeries machine.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #undef DEBUG
  15. #include <linux/types.h>
  16. #include <linux/init.h>
  17. #include <linux/pci.h>
  18. #include <linux/pci_regs.h>
  19. #include <linux/pci_ids.h>
  20. #include <linux/threads.h>
  21. #include <linux/bitops.h>
  22. #include <linux/string.h>
  23. #include <linux/kernel.h>
  24. #include <linux/if_ether.h> /* ETH_ALEN */
  25. #include <asm/machdep.h>
  26. #include <asm/prom.h>
  27. #include <asm/lppaca.h>
  28. #include <asm/cputable.h>
  29. #include <asm/abs_addr.h>
  30. #include <asm/system.h>
  31. #include <asm/iseries/hv_types.h>
  32. #include <asm/iseries/hv_lp_config.h>
  33. #include <asm/iseries/hv_call_xm.h>
  34. #include <asm/udbg.h>
  35. #include "processor_vpd.h"
  36. #include "call_hpt.h"
  37. #include "call_pci.h"
  38. #include "pci.h"
  39. #include "it_exp_vpd_panel.h"
  40. #include "naca.h"
  41. #ifdef DEBUG
  42. #define DBG(fmt...) udbg_printf(fmt)
  43. #else
  44. #define DBG(fmt...)
  45. #endif
  46. /*
  47. * These are created by the linker script at the start and end
  48. * of the section containing all the strings from this file.
  49. */
  50. extern char __dt_strings_start[];
  51. extern char __dt_strings_end[];
  52. struct iseries_flat_dt {
  53. struct boot_param_header header;
  54. u64 reserve_map[2];
  55. };
  56. static void * __initdata dt_data;
  57. /*
  58. * Putting these strings here keeps them out of the section
  59. * that we rename to .dt_strings using objcopy and capture
  60. * for the strings blob of the flattened device tree.
  61. */
  62. static char __initdata device_type_cpu[] = "cpu";
  63. static char __initdata device_type_memory[] = "memory";
  64. static char __initdata device_type_serial[] = "serial";
  65. static char __initdata device_type_network[] = "network";
  66. static char __initdata device_type_pci[] = "pci";
  67. static char __initdata device_type_vdevice[] = "vdevice";
  68. static char __initdata device_type_vscsi[] = "vscsi";
  69. /* EBCDIC to ASCII conversion routines */
  70. static unsigned char __init e2a(unsigned char x)
  71. {
  72. switch (x) {
  73. case 0x81 ... 0x89:
  74. return x - 0x81 + 'a';
  75. case 0x91 ... 0x99:
  76. return x - 0x91 + 'j';
  77. case 0xA2 ... 0xA9:
  78. return x - 0xA2 + 's';
  79. case 0xC1 ... 0xC9:
  80. return x - 0xC1 + 'A';
  81. case 0xD1 ... 0xD9:
  82. return x - 0xD1 + 'J';
  83. case 0xE2 ... 0xE9:
  84. return x - 0xE2 + 'S';
  85. case 0xF0 ... 0xF9:
  86. return x - 0xF0 + '0';
  87. }
  88. return ' ';
  89. }
  90. static unsigned char * __init strne2a(unsigned char *dest,
  91. const unsigned char *src, size_t n)
  92. {
  93. int i;
  94. n = strnlen(src, n);
  95. for (i = 0; i < n; i++)
  96. dest[i] = e2a(src[i]);
  97. return dest;
  98. }
  99. static struct iseries_flat_dt * __init dt_init(void)
  100. {
  101. struct iseries_flat_dt *dt;
  102. unsigned long str_len;
  103. str_len = __dt_strings_end - __dt_strings_start;
  104. dt = (struct iseries_flat_dt *)ALIGN(klimit, 8);
  105. dt->header.off_mem_rsvmap =
  106. offsetof(struct iseries_flat_dt, reserve_map);
  107. dt->header.off_dt_strings = ALIGN(sizeof(*dt), 8);
  108. dt->header.off_dt_struct = dt->header.off_dt_strings
  109. + ALIGN(str_len, 8);
  110. dt_data = (void *)((unsigned long)dt + dt->header.off_dt_struct);
  111. dt->header.dt_strings_size = str_len;
  112. /* There is no notion of hardware cpu id on iSeries */
  113. dt->header.boot_cpuid_phys = smp_processor_id();
  114. memcpy((char *)dt + dt->header.off_dt_strings, __dt_strings_start,
  115. str_len);
  116. dt->header.magic = OF_DT_HEADER;
  117. dt->header.version = 0x10;
  118. dt->header.last_comp_version = 0x10;
  119. dt->reserve_map[0] = 0;
  120. dt->reserve_map[1] = 0;
  121. return dt;
  122. }
  123. static void __init dt_push_u32(struct iseries_flat_dt *dt, u32 value)
  124. {
  125. *((u32 *)dt_data) = value;
  126. dt_data += sizeof(u32);
  127. }
  128. #ifdef notyet
  129. static void __init dt_push_u64(struct iseries_flat_dt *dt, u64 value)
  130. {
  131. *((u64 *)dt_data) = value;
  132. dt_data += sizeof(u64);
  133. }
  134. #endif
  135. static void __init dt_push_bytes(struct iseries_flat_dt *dt, const char *data,
  136. int len)
  137. {
  138. memcpy(dt_data, data, len);
  139. dt_data += ALIGN(len, 4);
  140. }
  141. static void __init dt_start_node(struct iseries_flat_dt *dt, const char *name)
  142. {
  143. dt_push_u32(dt, OF_DT_BEGIN_NODE);
  144. dt_push_bytes(dt, name, strlen(name) + 1);
  145. }
  146. #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
  147. static void __init dt_prop(struct iseries_flat_dt *dt, const char *name,
  148. const void *data, int len)
  149. {
  150. unsigned long offset;
  151. dt_push_u32(dt, OF_DT_PROP);
  152. /* Length of the data */
  153. dt_push_u32(dt, len);
  154. offset = name - __dt_strings_start;
  155. /* The offset of the properties name in the string blob. */
  156. dt_push_u32(dt, (u32)offset);
  157. /* The actual data. */
  158. dt_push_bytes(dt, data, len);
  159. }
  160. static void __init dt_prop_str(struct iseries_flat_dt *dt, const char *name,
  161. const char *data)
  162. {
  163. dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
  164. }
  165. static void __init dt_prop_u32(struct iseries_flat_dt *dt, const char *name,
  166. u32 data)
  167. {
  168. dt_prop(dt, name, &data, sizeof(u32));
  169. }
  170. static void __init dt_prop_u64(struct iseries_flat_dt *dt, const char *name,
  171. u64 data)
  172. {
  173. dt_prop(dt, name, &data, sizeof(u64));
  174. }
  175. static void __init dt_prop_u64_list(struct iseries_flat_dt *dt,
  176. const char *name, u64 *data, int n)
  177. {
  178. dt_prop(dt, name, data, sizeof(u64) * n);
  179. }
  180. static void __init dt_prop_u32_list(struct iseries_flat_dt *dt,
  181. const char *name, u32 *data, int n)
  182. {
  183. dt_prop(dt, name, data, sizeof(u32) * n);
  184. }
  185. #ifdef notyet
  186. static void __init dt_prop_empty(struct iseries_flat_dt *dt, const char *name)
  187. {
  188. dt_prop(dt, name, NULL, 0);
  189. }
  190. #endif
  191. static void __init dt_cpus(struct iseries_flat_dt *dt)
  192. {
  193. unsigned char buf[32];
  194. unsigned char *p;
  195. unsigned int i, index;
  196. struct IoHriProcessorVpd *d;
  197. u32 pft_size[2];
  198. /* yuck */
  199. snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
  200. p = strchr(buf, ' ');
  201. if (!p) p = buf + strlen(buf);
  202. dt_start_node(dt, "cpus");
  203. dt_prop_u32(dt, "#address-cells", 1);
  204. dt_prop_u32(dt, "#size-cells", 0);
  205. pft_size[0] = 0; /* NUMA CEC cookie, 0 for non NUMA */
  206. pft_size[1] = __ilog2(HvCallHpt_getHptPages() * HW_PAGE_SIZE);
  207. for (i = 0; i < NR_CPUS; i++) {
  208. if (lppaca[i].dyn_proc_status >= 2)
  209. continue;
  210. snprintf(p, 32 - (p - buf), "@%d", i);
  211. dt_start_node(dt, buf);
  212. dt_prop_str(dt, "device_type", device_type_cpu);
  213. index = lppaca[i].dyn_hv_phys_proc_index;
  214. d = &xIoHriProcessorVpd[index];
  215. dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
  216. dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
  217. dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
  218. dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
  219. /* magic conversions to Hz copied from old code */
  220. dt_prop_u32(dt, "clock-frequency",
  221. ((1UL << 34) * 1000000) / d->xProcFreq);
  222. dt_prop_u32(dt, "timebase-frequency",
  223. ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
  224. dt_prop_u32(dt, "reg", i);
  225. dt_prop_u32_list(dt, "ibm,pft-size", pft_size, 2);
  226. dt_end_node(dt);
  227. }
  228. dt_end_node(dt);
  229. }
  230. static void __init dt_model(struct iseries_flat_dt *dt)
  231. {
  232. char buf[16] = "IBM,";
  233. /* N.B. lparcfg.c knows about the "IBM," prefixes ... */
  234. /* "IBM," + mfgId[2:3] + systemSerial[1:5] */
  235. strne2a(buf + 4, xItExtVpdPanel.mfgID + 2, 2);
  236. strne2a(buf + 6, xItExtVpdPanel.systemSerial + 1, 5);
  237. buf[11] = '\0';
  238. dt_prop_str(dt, "system-id", buf);
  239. /* "IBM," + machineType[0:4] */
  240. strne2a(buf + 4, xItExtVpdPanel.machineType, 4);
  241. buf[8] = '\0';
  242. dt_prop_str(dt, "model", buf);
  243. dt_prop_str(dt, "compatible", "IBM,iSeries");
  244. dt_prop_u32(dt, "ibm,partition-no", HvLpConfig_getLpIndex());
  245. }
  246. static void __init dt_initrd(struct iseries_flat_dt *dt)
  247. {
  248. #ifdef CONFIG_BLK_DEV_INITRD
  249. if (naca.xRamDisk) {
  250. dt_prop_u64(dt, "linux,initrd-start", (u64)naca.xRamDisk);
  251. dt_prop_u64(dt, "linux,initrd-end",
  252. (u64)naca.xRamDisk + naca.xRamDiskSize * HW_PAGE_SIZE);
  253. }
  254. #endif
  255. }
  256. static void __init dt_do_vdevice(struct iseries_flat_dt *dt,
  257. const char *name, u32 reg, int unit,
  258. const char *type, const char *compat, int end)
  259. {
  260. char buf[32];
  261. snprintf(buf, 32, "%s@%08x", name, reg + ((unit >= 0) ? unit : 0));
  262. dt_start_node(dt, buf);
  263. dt_prop_str(dt, "device_type", type);
  264. if (compat)
  265. dt_prop_str(dt, "compatible", compat);
  266. dt_prop_u32(dt, "reg", reg + ((unit >= 0) ? unit : 0));
  267. if (unit >= 0)
  268. dt_prop_u32(dt, "linux,unit_address", unit);
  269. if (end)
  270. dt_end_node(dt);
  271. }
  272. static void __init dt_vdevices(struct iseries_flat_dt *dt)
  273. {
  274. u32 reg = 0;
  275. HvLpIndexMap vlan_map;
  276. int i;
  277. dt_start_node(dt, "vdevice");
  278. dt_prop_str(dt, "device_type", device_type_vdevice);
  279. dt_prop_str(dt, "compatible", "IBM,iSeries-vdevice");
  280. dt_prop_u32(dt, "#address-cells", 1);
  281. dt_prop_u32(dt, "#size-cells", 0);
  282. dt_do_vdevice(dt, "vty", reg, -1, device_type_serial,
  283. "IBM,iSeries-vty", 1);
  284. reg++;
  285. dt_do_vdevice(dt, "v-scsi", reg, -1, device_type_vscsi,
  286. "IBM,v-scsi", 1);
  287. reg++;
  288. vlan_map = HvLpConfig_getVirtualLanIndexMap();
  289. for (i = 0; i < HVMAXARCHITECTEDVIRTUALLANS; i++) {
  290. unsigned char mac_addr[ETH_ALEN];
  291. if ((vlan_map & (0x8000 >> i)) == 0)
  292. continue;
  293. dt_do_vdevice(dt, "l-lan", reg, i, device_type_network,
  294. "IBM,iSeries-l-lan", 0);
  295. mac_addr[0] = 0x02;
  296. mac_addr[1] = 0x01;
  297. mac_addr[2] = 0xff;
  298. mac_addr[3] = i;
  299. mac_addr[4] = 0xff;
  300. mac_addr[5] = HvLpConfig_getLpIndex_outline();
  301. dt_prop(dt, "local-mac-address", (char *)mac_addr, ETH_ALEN);
  302. dt_prop(dt, "mac-address", (char *)mac_addr, ETH_ALEN);
  303. dt_prop_u32(dt, "max-frame-size", 9000);
  304. dt_prop_u32(dt, "address-bits", 48);
  305. dt_end_node(dt);
  306. }
  307. dt_end_node(dt);
  308. }
  309. struct pci_class_name {
  310. u16 code;
  311. const char *name;
  312. const char *type;
  313. };
  314. static struct pci_class_name __initdata pci_class_name[] = {
  315. { PCI_CLASS_NETWORK_ETHERNET, "ethernet", device_type_network },
  316. };
  317. static struct pci_class_name * __init dt_find_pci_class_name(u16 class_code)
  318. {
  319. struct pci_class_name *cp;
  320. for (cp = pci_class_name;
  321. cp < &pci_class_name[ARRAY_SIZE(pci_class_name)]; cp++)
  322. if (cp->code == class_code)
  323. return cp;
  324. return NULL;
  325. }
  326. /*
  327. * This assumes that the node slot is always on the primary bus!
  328. */
  329. static void __init scan_bridge_slot(struct iseries_flat_dt *dt,
  330. HvBusNumber bus, struct HvCallPci_BridgeInfo *bridge_info)
  331. {
  332. HvSubBusNumber sub_bus = bridge_info->subBusNumber;
  333. u16 vendor_id;
  334. u16 device_id;
  335. u32 class_id;
  336. int err;
  337. char buf[32];
  338. u32 reg[5];
  339. int id_sel = ISERIES_GET_DEVICE_FROM_SUBBUS(sub_bus);
  340. int function = ISERIES_GET_FUNCTION_FROM_SUBBUS(sub_bus);
  341. HvAgentId eads_id_sel = ISERIES_PCI_AGENTID(id_sel, function);
  342. u8 devfn;
  343. struct pci_class_name *cp;
  344. /*
  345. * Connect all functions of any device found.
  346. */
  347. for (id_sel = 1; id_sel <= bridge_info->maxAgents; id_sel++) {
  348. for (function = 0; function < 8; function++) {
  349. HvAgentId agent_id = ISERIES_PCI_AGENTID(id_sel,
  350. function);
  351. err = HvCallXm_connectBusUnit(bus, sub_bus,
  352. agent_id, 0);
  353. if (err) {
  354. if (err != 0x302)
  355. DBG("connectBusUnit(%x, %x, %x) %x\n",
  356. bus, sub_bus, agent_id, err);
  357. continue;
  358. }
  359. err = HvCallPci_configLoad16(bus, sub_bus, agent_id,
  360. PCI_VENDOR_ID, &vendor_id);
  361. if (err) {
  362. DBG("ReadVendor(%x, %x, %x) %x\n",
  363. bus, sub_bus, agent_id, err);
  364. continue;
  365. }
  366. err = HvCallPci_configLoad16(bus, sub_bus, agent_id,
  367. PCI_DEVICE_ID, &device_id);
  368. if (err) {
  369. DBG("ReadDevice(%x, %x, %x) %x\n",
  370. bus, sub_bus, agent_id, err);
  371. continue;
  372. }
  373. err = HvCallPci_configLoad32(bus, sub_bus, agent_id,
  374. PCI_CLASS_REVISION , &class_id);
  375. if (err) {
  376. DBG("ReadClass(%x, %x, %x) %x\n",
  377. bus, sub_bus, agent_id, err);
  378. continue;
  379. }
  380. devfn = PCI_DEVFN(ISERIES_ENCODE_DEVICE(eads_id_sel),
  381. function);
  382. cp = dt_find_pci_class_name(class_id >> 16);
  383. if (cp && cp->name)
  384. strncpy(buf, cp->name, sizeof(buf) - 1);
  385. else
  386. snprintf(buf, sizeof(buf), "pci%x,%x",
  387. vendor_id, device_id);
  388. buf[sizeof(buf) - 1] = '\0';
  389. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf),
  390. "@%x", PCI_SLOT(devfn));
  391. buf[sizeof(buf) - 1] = '\0';
  392. if (function != 0)
  393. snprintf(buf + strlen(buf),
  394. sizeof(buf) - strlen(buf),
  395. ",%x", function);
  396. dt_start_node(dt, buf);
  397. reg[0] = (bus << 16) | (devfn << 8);
  398. reg[1] = 0;
  399. reg[2] = 0;
  400. reg[3] = 0;
  401. reg[4] = 0;
  402. dt_prop_u32_list(dt, "reg", reg, 5);
  403. if (cp && (cp->type || cp->name))
  404. dt_prop_str(dt, "device_type",
  405. cp->type ? cp->type : cp->name);
  406. dt_prop_u32(dt, "vendor-id", vendor_id);
  407. dt_prop_u32(dt, "device-id", device_id);
  408. dt_prop_u32(dt, "class-code", class_id >> 8);
  409. dt_prop_u32(dt, "revision-id", class_id & 0xff);
  410. dt_prop_u32(dt, "linux,subbus", sub_bus);
  411. dt_prop_u32(dt, "linux,agent-id", agent_id);
  412. dt_prop_u32(dt, "linux,logical-slot-number",
  413. bridge_info->logicalSlotNumber);
  414. dt_end_node(dt);
  415. }
  416. }
  417. }
  418. static void __init scan_bridge(struct iseries_flat_dt *dt, HvBusNumber bus,
  419. HvSubBusNumber sub_bus, int id_sel)
  420. {
  421. struct HvCallPci_BridgeInfo bridge_info;
  422. HvAgentId agent_id;
  423. int function;
  424. int ret;
  425. /* Note: hvSubBus and irq is always be 0 at this level! */
  426. for (function = 0; function < 8; ++function) {
  427. agent_id = ISERIES_PCI_AGENTID(id_sel, function);
  428. ret = HvCallXm_connectBusUnit(bus, sub_bus, agent_id, 0);
  429. if (ret != 0) {
  430. if (ret != 0xb)
  431. DBG("connectBusUnit(%x, %x, %x) %x\n",
  432. bus, sub_bus, agent_id, ret);
  433. continue;
  434. }
  435. DBG("found device at bus %d idsel %d func %d (AgentId %x)\n",
  436. bus, id_sel, function, agent_id);
  437. ret = HvCallPci_getBusUnitInfo(bus, sub_bus, agent_id,
  438. iseries_hv_addr(&bridge_info),
  439. sizeof(struct HvCallPci_BridgeInfo));
  440. if (ret != 0)
  441. continue;
  442. DBG("bridge info: type %x subbus %x "
  443. "maxAgents %x maxsubbus %x logslot %x\n",
  444. bridge_info.busUnitInfo.deviceType,
  445. bridge_info.subBusNumber,
  446. bridge_info.maxAgents,
  447. bridge_info.maxSubBusNumber,
  448. bridge_info.logicalSlotNumber);
  449. if (bridge_info.busUnitInfo.deviceType ==
  450. HvCallPci_BridgeDevice)
  451. scan_bridge_slot(dt, bus, &bridge_info);
  452. else
  453. DBG("PCI: Invalid Bridge Configuration(0x%02X)",
  454. bridge_info.busUnitInfo.deviceType);
  455. }
  456. }
  457. static void __init scan_phb(struct iseries_flat_dt *dt, HvBusNumber bus)
  458. {
  459. struct HvCallPci_DeviceInfo dev_info;
  460. const HvSubBusNumber sub_bus = 0; /* EADs is always 0. */
  461. int err;
  462. int id_sel;
  463. const int max_agents = 8;
  464. /*
  465. * Probe for EADs Bridges
  466. */
  467. for (id_sel = 1; id_sel < max_agents; ++id_sel) {
  468. err = HvCallPci_getDeviceInfo(bus, sub_bus, id_sel,
  469. iseries_hv_addr(&dev_info),
  470. sizeof(struct HvCallPci_DeviceInfo));
  471. if (err) {
  472. if (err != 0x302)
  473. DBG("getDeviceInfo(%x, %x, %x) %x\n",
  474. bus, sub_bus, id_sel, err);
  475. continue;
  476. }
  477. if (dev_info.deviceType != HvCallPci_NodeDevice) {
  478. DBG("PCI: Invalid System Configuration"
  479. "(0x%02X) for bus 0x%02x id 0x%02x.\n",
  480. dev_info.deviceType, bus, id_sel);
  481. continue;
  482. }
  483. scan_bridge(dt, bus, sub_bus, id_sel);
  484. }
  485. }
  486. static void __init dt_pci_devices(struct iseries_flat_dt *dt)
  487. {
  488. HvBusNumber bus;
  489. char buf[32];
  490. u32 buses[2];
  491. int phb_num = 0;
  492. /* Check all possible buses. */
  493. for (bus = 0; bus < 256; bus++) {
  494. int err = HvCallXm_testBus(bus);
  495. if (err) {
  496. /*
  497. * Check for Unexpected Return code, a clue that
  498. * something has gone wrong.
  499. */
  500. if (err != 0x0301)
  501. DBG("Unexpected Return on Probe(0x%02X) "
  502. "0x%04X\n", bus, err);
  503. continue;
  504. }
  505. DBG("bus %d appears to exist\n", bus);
  506. snprintf(buf, 32, "pci@%d", phb_num);
  507. dt_start_node(dt, buf);
  508. dt_prop_str(dt, "device_type", device_type_pci);
  509. dt_prop_str(dt, "compatible", "IBM,iSeries-Logical-PHB");
  510. dt_prop_u32(dt, "#address-cells", 3);
  511. dt_prop_u32(dt, "#size-cells", 2);
  512. buses[0] = buses[1] = bus;
  513. dt_prop_u32_list(dt, "bus-range", buses, 2);
  514. scan_phb(dt, bus);
  515. dt_end_node(dt);
  516. phb_num++;
  517. }
  518. }
  519. static void dt_finish(struct iseries_flat_dt *dt)
  520. {
  521. dt_push_u32(dt, OF_DT_END);
  522. dt->header.totalsize = (unsigned long)dt_data - (unsigned long)dt;
  523. klimit = ALIGN((unsigned long)dt_data, 8);
  524. }
  525. void * __init build_flat_dt(unsigned long phys_mem_size)
  526. {
  527. struct iseries_flat_dt *iseries_dt;
  528. u64 tmp[2];
  529. iseries_dt = dt_init();
  530. dt_start_node(iseries_dt, "");
  531. dt_prop_u32(iseries_dt, "#address-cells", 2);
  532. dt_prop_u32(iseries_dt, "#size-cells", 2);
  533. dt_model(iseries_dt);
  534. /* /memory */
  535. dt_start_node(iseries_dt, "memory@0");
  536. dt_prop_str(iseries_dt, "device_type", device_type_memory);
  537. tmp[0] = 0;
  538. tmp[1] = phys_mem_size;
  539. dt_prop_u64_list(iseries_dt, "reg", tmp, 2);
  540. dt_end_node(iseries_dt);
  541. /* /chosen */
  542. dt_start_node(iseries_dt, "chosen");
  543. dt_prop_str(iseries_dt, "bootargs", cmd_line);
  544. dt_initrd(iseries_dt);
  545. dt_end_node(iseries_dt);
  546. dt_cpus(iseries_dt);
  547. dt_vdevices(iseries_dt);
  548. dt_pci_devices(iseries_dt);
  549. dt_end_node(iseries_dt);
  550. dt_finish(iseries_dt);
  551. return iseries_dt;
  552. }