mmu-hash64.h 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478
  1. #ifndef _ASM_POWERPC_MMU_HASH64_H_
  2. #define _ASM_POWERPC_MMU_HASH64_H_
  3. /*
  4. * PowerPC64 memory management structures
  5. *
  6. * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
  7. * PPC64 rework.
  8. *
  9. * This program is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU General Public License
  11. * as published by the Free Software Foundation; either version
  12. * 2 of the License, or (at your option) any later version.
  13. */
  14. #include <asm/asm-compat.h>
  15. #include <asm/page.h>
  16. /*
  17. * Segment table
  18. */
  19. #define STE_ESID_V 0x80
  20. #define STE_ESID_KS 0x20
  21. #define STE_ESID_KP 0x10
  22. #define STE_ESID_N 0x08
  23. #define STE_VSID_SHIFT 12
  24. /* Location of cpu0's segment table */
  25. #define STAB0_PAGE 0x6
  26. #define STAB0_OFFSET (STAB0_PAGE << 12)
  27. #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
  28. #ifndef __ASSEMBLY__
  29. extern char initial_stab[];
  30. #endif /* ! __ASSEMBLY */
  31. /*
  32. * SLB
  33. */
  34. #define SLB_NUM_BOLTED 3
  35. #define SLB_CACHE_ENTRIES 8
  36. /* Bits in the SLB ESID word */
  37. #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
  38. /* Bits in the SLB VSID word */
  39. #define SLB_VSID_SHIFT 12
  40. #define SLB_VSID_SHIFT_1T 24
  41. #define SLB_VSID_SSIZE_SHIFT 62
  42. #define SLB_VSID_B ASM_CONST(0xc000000000000000)
  43. #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
  44. #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
  45. #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
  46. #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
  47. #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
  48. #define SLB_VSID_L ASM_CONST(0x0000000000000100)
  49. #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
  50. #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
  51. #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
  52. #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
  53. #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
  54. #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
  55. #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
  56. #define SLB_VSID_KERNEL (SLB_VSID_KP)
  57. #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
  58. #define SLBIE_C (0x08000000)
  59. #define SLBIE_SSIZE_SHIFT 25
  60. /*
  61. * Hash table
  62. */
  63. #define HPTES_PER_GROUP 8
  64. #define HPTE_V_SSIZE_SHIFT 62
  65. #define HPTE_V_AVPN_SHIFT 7
  66. #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
  67. #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
  68. #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
  69. #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
  70. #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
  71. #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
  72. #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
  73. #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
  74. #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
  75. #define HPTE_R_TS ASM_CONST(0x4000000000000000)
  76. #define HPTE_R_RPN_SHIFT 12
  77. #define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
  78. #define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
  79. #define HPTE_R_PP ASM_CONST(0x0000000000000003)
  80. #define HPTE_R_N ASM_CONST(0x0000000000000004)
  81. #define HPTE_R_C ASM_CONST(0x0000000000000080)
  82. #define HPTE_R_R ASM_CONST(0x0000000000000100)
  83. #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
  84. #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
  85. /* Values for PP (assumes Ks=0, Kp=1) */
  86. /* pp0 will always be 0 for linux */
  87. #define PP_RWXX 0 /* Supervisor read/write, User none */
  88. #define PP_RWRX 1 /* Supervisor read/write, User read */
  89. #define PP_RWRW 2 /* Supervisor read/write, User read/write */
  90. #define PP_RXRX 3 /* Supervisor read, User read */
  91. #ifndef __ASSEMBLY__
  92. struct hash_pte {
  93. unsigned long v;
  94. unsigned long r;
  95. };
  96. extern struct hash_pte *htab_address;
  97. extern unsigned long htab_size_bytes;
  98. extern unsigned long htab_hash_mask;
  99. /*
  100. * Page size definition
  101. *
  102. * shift : is the "PAGE_SHIFT" value for that page size
  103. * sllp : is a bit mask with the value of SLB L || LP to be or'ed
  104. * directly to a slbmte "vsid" value
  105. * penc : is the HPTE encoding mask for the "LP" field:
  106. *
  107. */
  108. struct mmu_psize_def
  109. {
  110. unsigned int shift; /* number of bits */
  111. unsigned int penc; /* HPTE encoding */
  112. unsigned int tlbiel; /* tlbiel supported for that page size */
  113. unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
  114. unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
  115. };
  116. #endif /* __ASSEMBLY__ */
  117. /*
  118. * The kernel use the constants below to index in the page sizes array.
  119. * The use of fixed constants for this purpose is better for performances
  120. * of the low level hash refill handlers.
  121. *
  122. * A non supported page size has a "shift" field set to 0
  123. *
  124. * Any new page size being implemented can get a new entry in here. Whether
  125. * the kernel will use it or not is a different matter though. The actual page
  126. * size used by hugetlbfs is not defined here and may be made variable
  127. */
  128. #define MMU_PAGE_4K 0 /* 4K */
  129. #define MMU_PAGE_64K 1 /* 64K */
  130. #define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
  131. #define MMU_PAGE_1M 3 /* 1M */
  132. #define MMU_PAGE_16M 4 /* 16M */
  133. #define MMU_PAGE_16G 5 /* 16G */
  134. #define MMU_PAGE_COUNT 6
  135. /*
  136. * Segment sizes.
  137. * These are the values used by hardware in the B field of
  138. * SLB entries and the first dword of MMU hashtable entries.
  139. * The B field is 2 bits; the values 2 and 3 are unused and reserved.
  140. */
  141. #define MMU_SEGSIZE_256M 0
  142. #define MMU_SEGSIZE_1T 1
  143. #ifndef __ASSEMBLY__
  144. /*
  145. * The current system page and segment sizes
  146. */
  147. extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  148. extern int mmu_linear_psize;
  149. extern int mmu_virtual_psize;
  150. extern int mmu_vmalloc_psize;
  151. extern int mmu_vmemmap_psize;
  152. extern int mmu_io_psize;
  153. extern int mmu_kernel_ssize;
  154. extern int mmu_highuser_ssize;
  155. extern u16 mmu_slb_size;
  156. extern unsigned long tce_alloc_start, tce_alloc_end;
  157. /*
  158. * If the processor supports 64k normal pages but not 64k cache
  159. * inhibited pages, we have to be prepared to switch processes
  160. * to use 4k pages when they create cache-inhibited mappings.
  161. * If this is the case, mmu_ci_restrictions will be set to 1.
  162. */
  163. extern int mmu_ci_restrictions;
  164. #ifdef CONFIG_HUGETLB_PAGE
  165. /*
  166. * The page size indexes of the huge pages for use by hugetlbfs
  167. */
  168. extern unsigned int mmu_huge_psizes[MMU_PAGE_COUNT];
  169. #endif /* CONFIG_HUGETLB_PAGE */
  170. /*
  171. * This function sets the AVPN and L fields of the HPTE appropriately
  172. * for the page size
  173. */
  174. static inline unsigned long hpte_encode_v(unsigned long va, int psize,
  175. int ssize)
  176. {
  177. unsigned long v;
  178. v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
  179. v <<= HPTE_V_AVPN_SHIFT;
  180. if (psize != MMU_PAGE_4K)
  181. v |= HPTE_V_LARGE;
  182. v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
  183. return v;
  184. }
  185. /*
  186. * This function sets the ARPN, and LP fields of the HPTE appropriately
  187. * for the page size. We assume the pa is already "clean" that is properly
  188. * aligned for the requested page size
  189. */
  190. static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
  191. {
  192. unsigned long r;
  193. /* A 4K page needs no special encoding */
  194. if (psize == MMU_PAGE_4K)
  195. return pa & HPTE_R_RPN;
  196. else {
  197. unsigned int penc = mmu_psize_defs[psize].penc;
  198. unsigned int shift = mmu_psize_defs[psize].shift;
  199. return (pa & ~((1ul << shift) - 1)) | (penc << 12);
  200. }
  201. return r;
  202. }
  203. /*
  204. * Build a VA given VSID, EA and segment size
  205. */
  206. static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
  207. int ssize)
  208. {
  209. if (ssize == MMU_SEGSIZE_256M)
  210. return (vsid << 28) | (ea & 0xfffffffUL);
  211. return (vsid << 40) | (ea & 0xffffffffffUL);
  212. }
  213. /*
  214. * This hashes a virtual address
  215. */
  216. static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
  217. int ssize)
  218. {
  219. unsigned long hash, vsid;
  220. if (ssize == MMU_SEGSIZE_256M) {
  221. hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
  222. } else {
  223. vsid = va >> 40;
  224. hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
  225. }
  226. return hash & 0x7fffffffffUL;
  227. }
  228. extern int __hash_page_4K(unsigned long ea, unsigned long access,
  229. unsigned long vsid, pte_t *ptep, unsigned long trap,
  230. unsigned int local, int ssize, int subpage_prot);
  231. extern int __hash_page_64K(unsigned long ea, unsigned long access,
  232. unsigned long vsid, pte_t *ptep, unsigned long trap,
  233. unsigned int local, int ssize);
  234. struct mm_struct;
  235. extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
  236. extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
  237. unsigned long ea, unsigned long vsid, int local,
  238. unsigned long trap);
  239. extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
  240. unsigned long pstart, unsigned long prot,
  241. int psize, int ssize);
  242. extern void set_huge_psize(int psize);
  243. extern void add_gpage(unsigned long addr, unsigned long page_size,
  244. unsigned long number_of_pages);
  245. extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
  246. extern void htab_initialize(void);
  247. extern void htab_initialize_secondary(void);
  248. extern void hpte_init_native(void);
  249. extern void hpte_init_lpar(void);
  250. extern void hpte_init_iSeries(void);
  251. extern void hpte_init_beat(void);
  252. extern void hpte_init_beat_v3(void);
  253. extern void stabs_alloc(void);
  254. extern void slb_initialize(void);
  255. extern void slb_flush_and_rebolt(void);
  256. extern void stab_initialize(unsigned long stab);
  257. extern void slb_vmalloc_update(void);
  258. #endif /* __ASSEMBLY__ */
  259. /*
  260. * VSID allocation
  261. *
  262. * We first generate a 36-bit "proto-VSID". For kernel addresses this
  263. * is equal to the ESID, for user addresses it is:
  264. * (context << 15) | (esid & 0x7fff)
  265. *
  266. * The two forms are distinguishable because the top bit is 0 for user
  267. * addresses, whereas the top two bits are 1 for kernel addresses.
  268. * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
  269. * now.
  270. *
  271. * The proto-VSIDs are then scrambled into real VSIDs with the
  272. * multiplicative hash:
  273. *
  274. * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
  275. * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
  276. * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
  277. *
  278. * This scramble is only well defined for proto-VSIDs below
  279. * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
  280. * reserved. VSID_MULTIPLIER is prime, so in particular it is
  281. * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
  282. * Because the modulus is 2^n-1 we can compute it efficiently without
  283. * a divide or extra multiply (see below).
  284. *
  285. * This scheme has several advantages over older methods:
  286. *
  287. * - We have VSIDs allocated for every kernel address
  288. * (i.e. everything above 0xC000000000000000), except the very top
  289. * segment, which simplifies several things.
  290. *
  291. * - We allow for 15 significant bits of ESID and 20 bits of
  292. * context for user addresses. i.e. 8T (43 bits) of address space for
  293. * up to 1M contexts (although the page table structure and context
  294. * allocation will need changes to take advantage of this).
  295. *
  296. * - The scramble function gives robust scattering in the hash
  297. * table (at least based on some initial results). The previous
  298. * method was more susceptible to pathological cases giving excessive
  299. * hash collisions.
  300. */
  301. /*
  302. * WARNING - If you change these you must make sure the asm
  303. * implementations in slb_allocate (slb_low.S), do_stab_bolted
  304. * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
  305. *
  306. * You'll also need to change the precomputed VSID values in head.S
  307. * which are used by the iSeries firmware.
  308. */
  309. #define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
  310. #define VSID_BITS_256M 36
  311. #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
  312. #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
  313. #define VSID_BITS_1T 24
  314. #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
  315. #define CONTEXT_BITS 19
  316. #define USER_ESID_BITS 16
  317. #define USER_ESID_BITS_1T 4
  318. #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
  319. /*
  320. * This macro generates asm code to compute the VSID scramble
  321. * function. Used in slb_allocate() and do_stab_bolted. The function
  322. * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
  323. *
  324. * rt = register continaing the proto-VSID and into which the
  325. * VSID will be stored
  326. * rx = scratch register (clobbered)
  327. *
  328. * - rt and rx must be different registers
  329. * - The answer will end up in the low VSID_BITS bits of rt. The higher
  330. * bits may contain other garbage, so you may need to mask the
  331. * result.
  332. */
  333. #define ASM_VSID_SCRAMBLE(rt, rx, size) \
  334. lis rx,VSID_MULTIPLIER_##size@h; \
  335. ori rx,rx,VSID_MULTIPLIER_##size@l; \
  336. mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
  337. \
  338. srdi rx,rt,VSID_BITS_##size; \
  339. clrldi rt,rt,(64-VSID_BITS_##size); \
  340. add rt,rt,rx; /* add high and low bits */ \
  341. /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
  342. * 2^36-1+2^28-1. That in particular means that if r3 >= \
  343. * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
  344. * the bit clear, r3 already has the answer we want, if it \
  345. * doesn't, the answer is the low 36 bits of r3+1. So in all \
  346. * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
  347. addi rx,rt,1; \
  348. srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
  349. add rt,rt,rx
  350. #ifndef __ASSEMBLY__
  351. typedef unsigned long mm_context_id_t;
  352. typedef struct {
  353. mm_context_id_t id;
  354. u16 user_psize; /* page size index */
  355. #ifdef CONFIG_PPC_MM_SLICES
  356. u64 low_slices_psize; /* SLB page size encodings */
  357. u64 high_slices_psize; /* 4 bits per slice for now */
  358. #else
  359. u16 sllp; /* SLB page size encoding */
  360. #endif
  361. unsigned long vdso_base;
  362. } mm_context_t;
  363. #if 0
  364. /*
  365. * The code below is equivalent to this function for arguments
  366. * < 2^VSID_BITS, which is all this should ever be called
  367. * with. However gcc is not clever enough to compute the
  368. * modulus (2^n-1) without a second multiply.
  369. */
  370. #define vsid_scrample(protovsid, size) \
  371. ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
  372. #else /* 1 */
  373. #define vsid_scramble(protovsid, size) \
  374. ({ \
  375. unsigned long x; \
  376. x = (protovsid) * VSID_MULTIPLIER_##size; \
  377. x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
  378. (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
  379. })
  380. #endif /* 1 */
  381. /* This is only valid for addresses >= KERNELBASE */
  382. static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
  383. {
  384. if (ssize == MMU_SEGSIZE_256M)
  385. return vsid_scramble(ea >> SID_SHIFT, 256M);
  386. return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
  387. }
  388. /* Returns the segment size indicator for a user address */
  389. static inline int user_segment_size(unsigned long addr)
  390. {
  391. /* Use 1T segments if possible for addresses >= 1T */
  392. if (addr >= (1UL << SID_SHIFT_1T))
  393. return mmu_highuser_ssize;
  394. return MMU_SEGSIZE_256M;
  395. }
  396. /* This is only valid for user addresses (which are below 2^44) */
  397. static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
  398. int ssize)
  399. {
  400. if (ssize == MMU_SEGSIZE_256M)
  401. return vsid_scramble((context << USER_ESID_BITS)
  402. | (ea >> SID_SHIFT), 256M);
  403. return vsid_scramble((context << USER_ESID_BITS_1T)
  404. | (ea >> SID_SHIFT_1T), 1T);
  405. }
  406. /*
  407. * This is only used on legacy iSeries in lparmap.c,
  408. * hence the 256MB segment assumption.
  409. */
  410. #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
  411. VSID_MODULUS_256M)
  412. #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
  413. #endif /* __ASSEMBLY__ */
  414. #endif /* _ASM_POWERPC_MMU_HASH64_H_ */