pci-dma.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601
  1. /*
  2. ** PARISC 1.1 Dynamic DMA mapping support.
  3. ** This implementation is for PA-RISC platforms that do not support
  4. ** I/O TLBs (aka DMA address translation hardware).
  5. ** See Documentation/DMA-mapping.txt for interface definitions.
  6. **
  7. ** (c) Copyright 1999,2000 Hewlett-Packard Company
  8. ** (c) Copyright 2000 Grant Grundler
  9. ** (c) Copyright 2000 Philipp Rumpf <prumpf@tux.org>
  10. ** (c) Copyright 2000 John Marvin
  11. **
  12. ** "leveraged" from 2.3.47: arch/ia64/kernel/pci-dma.c.
  13. ** (I assume it's from David Mosberger-Tang but there was no Copyright)
  14. **
  15. ** AFAIK, all PA7100LC and PA7300LC platforms can use this code.
  16. **
  17. ** - ggg
  18. */
  19. #include <linux/init.h>
  20. #include <linux/mm.h>
  21. #include <linux/pci.h>
  22. #include <linux/proc_fs.h>
  23. #include <linux/seq_file.h>
  24. #include <linux/slab.h>
  25. #include <linux/string.h>
  26. #include <linux/types.h>
  27. #include <linux/scatterlist.h>
  28. #include <asm/cacheflush.h>
  29. #include <asm/dma.h> /* for DMA_CHUNK_SIZE */
  30. #include <asm/io.h>
  31. #include <asm/page.h> /* get_order */
  32. #include <asm/pgalloc.h>
  33. #include <asm/uaccess.h>
  34. #include <asm/tlbflush.h> /* for purge_tlb_*() macros */
  35. static struct proc_dir_entry * proc_gsc_root __read_mostly = NULL;
  36. static unsigned long pcxl_used_bytes __read_mostly = 0;
  37. static unsigned long pcxl_used_pages __read_mostly = 0;
  38. extern unsigned long pcxl_dma_start; /* Start of pcxl dma mapping area */
  39. static spinlock_t pcxl_res_lock;
  40. static char *pcxl_res_map;
  41. static int pcxl_res_hint;
  42. static int pcxl_res_size;
  43. #ifdef DEBUG_PCXL_RESOURCE
  44. #define DBG_RES(x...) printk(x)
  45. #else
  46. #define DBG_RES(x...)
  47. #endif
  48. /*
  49. ** Dump a hex representation of the resource map.
  50. */
  51. #ifdef DUMP_RESMAP
  52. static
  53. void dump_resmap(void)
  54. {
  55. u_long *res_ptr = (unsigned long *)pcxl_res_map;
  56. u_long i = 0;
  57. printk("res_map: ");
  58. for(; i < (pcxl_res_size / sizeof(unsigned long)); ++i, ++res_ptr)
  59. printk("%08lx ", *res_ptr);
  60. printk("\n");
  61. }
  62. #else
  63. static inline void dump_resmap(void) {;}
  64. #endif
  65. static int pa11_dma_supported( struct device *dev, u64 mask)
  66. {
  67. return 1;
  68. }
  69. static inline int map_pte_uncached(pte_t * pte,
  70. unsigned long vaddr,
  71. unsigned long size, unsigned long *paddr_ptr)
  72. {
  73. unsigned long end;
  74. unsigned long orig_vaddr = vaddr;
  75. vaddr &= ~PMD_MASK;
  76. end = vaddr + size;
  77. if (end > PMD_SIZE)
  78. end = PMD_SIZE;
  79. do {
  80. if (!pte_none(*pte))
  81. printk(KERN_ERR "map_pte_uncached: page already exists\n");
  82. set_pte(pte, __mk_pte(*paddr_ptr, PAGE_KERNEL_UNC));
  83. purge_tlb_start();
  84. pdtlb_kernel(orig_vaddr);
  85. purge_tlb_end();
  86. vaddr += PAGE_SIZE;
  87. orig_vaddr += PAGE_SIZE;
  88. (*paddr_ptr) += PAGE_SIZE;
  89. pte++;
  90. } while (vaddr < end);
  91. return 0;
  92. }
  93. static inline int map_pmd_uncached(pmd_t * pmd, unsigned long vaddr,
  94. unsigned long size, unsigned long *paddr_ptr)
  95. {
  96. unsigned long end;
  97. unsigned long orig_vaddr = vaddr;
  98. vaddr &= ~PGDIR_MASK;
  99. end = vaddr + size;
  100. if (end > PGDIR_SIZE)
  101. end = PGDIR_SIZE;
  102. do {
  103. pte_t * pte = pte_alloc_kernel(pmd, vaddr);
  104. if (!pte)
  105. return -ENOMEM;
  106. if (map_pte_uncached(pte, orig_vaddr, end - vaddr, paddr_ptr))
  107. return -ENOMEM;
  108. vaddr = (vaddr + PMD_SIZE) & PMD_MASK;
  109. orig_vaddr += PMD_SIZE;
  110. pmd++;
  111. } while (vaddr < end);
  112. return 0;
  113. }
  114. static inline int map_uncached_pages(unsigned long vaddr, unsigned long size,
  115. unsigned long paddr)
  116. {
  117. pgd_t * dir;
  118. unsigned long end = vaddr + size;
  119. dir = pgd_offset_k(vaddr);
  120. do {
  121. pmd_t *pmd;
  122. pmd = pmd_alloc(NULL, dir, vaddr);
  123. if (!pmd)
  124. return -ENOMEM;
  125. if (map_pmd_uncached(pmd, vaddr, end - vaddr, &paddr))
  126. return -ENOMEM;
  127. vaddr = vaddr + PGDIR_SIZE;
  128. dir++;
  129. } while (vaddr && (vaddr < end));
  130. return 0;
  131. }
  132. static inline void unmap_uncached_pte(pmd_t * pmd, unsigned long vaddr,
  133. unsigned long size)
  134. {
  135. pte_t * pte;
  136. unsigned long end;
  137. unsigned long orig_vaddr = vaddr;
  138. if (pmd_none(*pmd))
  139. return;
  140. if (pmd_bad(*pmd)) {
  141. pmd_ERROR(*pmd);
  142. pmd_clear(pmd);
  143. return;
  144. }
  145. pte = pte_offset_map(pmd, vaddr);
  146. vaddr &= ~PMD_MASK;
  147. end = vaddr + size;
  148. if (end > PMD_SIZE)
  149. end = PMD_SIZE;
  150. do {
  151. pte_t page = *pte;
  152. pte_clear(&init_mm, vaddr, pte);
  153. purge_tlb_start();
  154. pdtlb_kernel(orig_vaddr);
  155. purge_tlb_end();
  156. vaddr += PAGE_SIZE;
  157. orig_vaddr += PAGE_SIZE;
  158. pte++;
  159. if (pte_none(page) || pte_present(page))
  160. continue;
  161. printk(KERN_CRIT "Whee.. Swapped out page in kernel page table\n");
  162. } while (vaddr < end);
  163. }
  164. static inline void unmap_uncached_pmd(pgd_t * dir, unsigned long vaddr,
  165. unsigned long size)
  166. {
  167. pmd_t * pmd;
  168. unsigned long end;
  169. unsigned long orig_vaddr = vaddr;
  170. if (pgd_none(*dir))
  171. return;
  172. if (pgd_bad(*dir)) {
  173. pgd_ERROR(*dir);
  174. pgd_clear(dir);
  175. return;
  176. }
  177. pmd = pmd_offset(dir, vaddr);
  178. vaddr &= ~PGDIR_MASK;
  179. end = vaddr + size;
  180. if (end > PGDIR_SIZE)
  181. end = PGDIR_SIZE;
  182. do {
  183. unmap_uncached_pte(pmd, orig_vaddr, end - vaddr);
  184. vaddr = (vaddr + PMD_SIZE) & PMD_MASK;
  185. orig_vaddr += PMD_SIZE;
  186. pmd++;
  187. } while (vaddr < end);
  188. }
  189. static void unmap_uncached_pages(unsigned long vaddr, unsigned long size)
  190. {
  191. pgd_t * dir;
  192. unsigned long end = vaddr + size;
  193. dir = pgd_offset_k(vaddr);
  194. do {
  195. unmap_uncached_pmd(dir, vaddr, end - vaddr);
  196. vaddr = vaddr + PGDIR_SIZE;
  197. dir++;
  198. } while (vaddr && (vaddr < end));
  199. }
  200. #define PCXL_SEARCH_LOOP(idx, mask, size) \
  201. for(; res_ptr < res_end; ++res_ptr) \
  202. { \
  203. if(0 == ((*res_ptr) & mask)) { \
  204. *res_ptr |= mask; \
  205. idx = (int)((u_long)res_ptr - (u_long)pcxl_res_map); \
  206. pcxl_res_hint = idx + (size >> 3); \
  207. goto resource_found; \
  208. } \
  209. }
  210. #define PCXL_FIND_FREE_MAPPING(idx, mask, size) { \
  211. u##size *res_ptr = (u##size *)&(pcxl_res_map[pcxl_res_hint & ~((size >> 3) - 1)]); \
  212. u##size *res_end = (u##size *)&pcxl_res_map[pcxl_res_size]; \
  213. PCXL_SEARCH_LOOP(idx, mask, size); \
  214. res_ptr = (u##size *)&pcxl_res_map[0]; \
  215. PCXL_SEARCH_LOOP(idx, mask, size); \
  216. }
  217. unsigned long
  218. pcxl_alloc_range(size_t size)
  219. {
  220. int res_idx;
  221. u_long mask, flags;
  222. unsigned int pages_needed = size >> PAGE_SHIFT;
  223. mask = (u_long) -1L;
  224. mask >>= BITS_PER_LONG - pages_needed;
  225. DBG_RES("pcxl_alloc_range() size: %d pages_needed %d pages_mask 0x%08lx\n",
  226. size, pages_needed, mask);
  227. spin_lock_irqsave(&pcxl_res_lock, flags);
  228. if(pages_needed <= 8) {
  229. PCXL_FIND_FREE_MAPPING(res_idx, mask, 8);
  230. } else if(pages_needed <= 16) {
  231. PCXL_FIND_FREE_MAPPING(res_idx, mask, 16);
  232. } else if(pages_needed <= 32) {
  233. PCXL_FIND_FREE_MAPPING(res_idx, mask, 32);
  234. } else {
  235. panic("%s: pcxl_alloc_range() Too many pages to map.\n",
  236. __FILE__);
  237. }
  238. dump_resmap();
  239. panic("%s: pcxl_alloc_range() out of dma mapping resources\n",
  240. __FILE__);
  241. resource_found:
  242. DBG_RES("pcxl_alloc_range() res_idx %d mask 0x%08lx res_hint: %d\n",
  243. res_idx, mask, pcxl_res_hint);
  244. pcxl_used_pages += pages_needed;
  245. pcxl_used_bytes += ((pages_needed >> 3) ? (pages_needed >> 3) : 1);
  246. spin_unlock_irqrestore(&pcxl_res_lock, flags);
  247. dump_resmap();
  248. /*
  249. ** return the corresponding vaddr in the pcxl dma map
  250. */
  251. return (pcxl_dma_start + (res_idx << (PAGE_SHIFT + 3)));
  252. }
  253. #define PCXL_FREE_MAPPINGS(idx, m, size) \
  254. u##size *res_ptr = (u##size *)&(pcxl_res_map[(idx) + (((size >> 3) - 1) & (~((size >> 3) - 1)))]); \
  255. /* BUG_ON((*res_ptr & m) != m); */ \
  256. *res_ptr &= ~m;
  257. /*
  258. ** clear bits in the pcxl resource map
  259. */
  260. static void
  261. pcxl_free_range(unsigned long vaddr, size_t size)
  262. {
  263. u_long mask, flags;
  264. unsigned int res_idx = (vaddr - pcxl_dma_start) >> (PAGE_SHIFT + 3);
  265. unsigned int pages_mapped = size >> PAGE_SHIFT;
  266. mask = (u_long) -1L;
  267. mask >>= BITS_PER_LONG - pages_mapped;
  268. DBG_RES("pcxl_free_range() res_idx: %d size: %d pages_mapped %d mask 0x%08lx\n",
  269. res_idx, size, pages_mapped, mask);
  270. spin_lock_irqsave(&pcxl_res_lock, flags);
  271. if(pages_mapped <= 8) {
  272. PCXL_FREE_MAPPINGS(res_idx, mask, 8);
  273. } else if(pages_mapped <= 16) {
  274. PCXL_FREE_MAPPINGS(res_idx, mask, 16);
  275. } else if(pages_mapped <= 32) {
  276. PCXL_FREE_MAPPINGS(res_idx, mask, 32);
  277. } else {
  278. panic("%s: pcxl_free_range() Too many pages to unmap.\n",
  279. __FILE__);
  280. }
  281. pcxl_used_pages -= (pages_mapped ? pages_mapped : 1);
  282. pcxl_used_bytes -= ((pages_mapped >> 3) ? (pages_mapped >> 3) : 1);
  283. spin_unlock_irqrestore(&pcxl_res_lock, flags);
  284. dump_resmap();
  285. }
  286. static int proc_pcxl_dma_show(struct seq_file *m, void *v)
  287. {
  288. #if 0
  289. u_long i = 0;
  290. unsigned long *res_ptr = (u_long *)pcxl_res_map;
  291. #endif
  292. unsigned long total_pages = pcxl_res_size << 3; /* 8 bits per byte */
  293. seq_printf(m, "\nDMA Mapping Area size : %d bytes (%ld pages)\n",
  294. PCXL_DMA_MAP_SIZE, total_pages);
  295. seq_printf(m, "Resource bitmap : %d bytes\n", pcxl_res_size);
  296. seq_puts(m, " total: free: used: % used:\n");
  297. seq_printf(m, "blocks %8d %8ld %8ld %8ld%%\n", pcxl_res_size,
  298. pcxl_res_size - pcxl_used_bytes, pcxl_used_bytes,
  299. (pcxl_used_bytes * 100) / pcxl_res_size);
  300. seq_printf(m, "pages %8ld %8ld %8ld %8ld%%\n", total_pages,
  301. total_pages - pcxl_used_pages, pcxl_used_pages,
  302. (pcxl_used_pages * 100 / total_pages));
  303. #if 0
  304. seq_puts(m, "\nResource bitmap:");
  305. for(; i < (pcxl_res_size / sizeof(u_long)); ++i, ++res_ptr) {
  306. if ((i & 7) == 0)
  307. seq_puts(m,"\n ");
  308. seq_printf(m, "%s %08lx", buf, *res_ptr);
  309. }
  310. #endif
  311. seq_putc(m, '\n');
  312. return 0;
  313. }
  314. static int proc_pcxl_dma_open(struct inode *inode, struct file *file)
  315. {
  316. return single_open(file, proc_pcxl_dma_show, NULL);
  317. }
  318. static const struct file_operations proc_pcxl_dma_ops = {
  319. .owner = THIS_MODULE,
  320. .open = proc_pcxl_dma_open,
  321. .read = seq_read,
  322. .llseek = seq_lseek,
  323. .release = single_release,
  324. };
  325. static int __init
  326. pcxl_dma_init(void)
  327. {
  328. if (pcxl_dma_start == 0)
  329. return 0;
  330. spin_lock_init(&pcxl_res_lock);
  331. pcxl_res_size = PCXL_DMA_MAP_SIZE >> (PAGE_SHIFT + 3);
  332. pcxl_res_hint = 0;
  333. pcxl_res_map = (char *)__get_free_pages(GFP_KERNEL,
  334. get_order(pcxl_res_size));
  335. memset(pcxl_res_map, 0, pcxl_res_size);
  336. proc_gsc_root = proc_mkdir("gsc", NULL);
  337. if (!proc_gsc_root)
  338. printk(KERN_WARNING
  339. "pcxl_dma_init: Unable to create gsc /proc dir entry\n");
  340. else {
  341. struct proc_dir_entry* ent;
  342. ent = proc_create("pcxl_dma", 0, proc_gsc_root,
  343. &proc_pcxl_dma_ops);
  344. if (!ent)
  345. printk(KERN_WARNING
  346. "pci-dma.c: Unable to create pcxl_dma /proc entry.\n");
  347. }
  348. return 0;
  349. }
  350. __initcall(pcxl_dma_init);
  351. static void * pa11_dma_alloc_consistent (struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
  352. {
  353. unsigned long vaddr;
  354. unsigned long paddr;
  355. int order;
  356. order = get_order(size);
  357. size = 1 << (order + PAGE_SHIFT);
  358. vaddr = pcxl_alloc_range(size);
  359. paddr = __get_free_pages(flag, order);
  360. flush_kernel_dcache_range(paddr, size);
  361. paddr = __pa(paddr);
  362. map_uncached_pages(vaddr, size, paddr);
  363. *dma_handle = (dma_addr_t) paddr;
  364. #if 0
  365. /* This probably isn't needed to support EISA cards.
  366. ** ISA cards will certainly only support 24-bit DMA addressing.
  367. ** Not clear if we can, want, or need to support ISA.
  368. */
  369. if (!dev || *dev->coherent_dma_mask < 0xffffffff)
  370. gfp |= GFP_DMA;
  371. #endif
  372. return (void *)vaddr;
  373. }
  374. static void pa11_dma_free_consistent (struct device *dev, size_t size, void *vaddr, dma_addr_t dma_handle)
  375. {
  376. int order;
  377. order = get_order(size);
  378. size = 1 << (order + PAGE_SHIFT);
  379. unmap_uncached_pages((unsigned long)vaddr, size);
  380. pcxl_free_range((unsigned long)vaddr, size);
  381. free_pages((unsigned long)__va(dma_handle), order);
  382. }
  383. static dma_addr_t pa11_dma_map_single(struct device *dev, void *addr, size_t size, enum dma_data_direction direction)
  384. {
  385. if (direction == DMA_NONE) {
  386. printk(KERN_ERR "pa11_dma_map_single(PCI_DMA_NONE) called by %p\n", __builtin_return_address(0));
  387. BUG();
  388. }
  389. flush_kernel_dcache_range((unsigned long) addr, size);
  390. return virt_to_phys(addr);
  391. }
  392. static void pa11_dma_unmap_single(struct device *dev, dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
  393. {
  394. if (direction == DMA_NONE) {
  395. printk(KERN_ERR "pa11_dma_unmap_single(PCI_DMA_NONE) called by %p\n", __builtin_return_address(0));
  396. BUG();
  397. }
  398. if (direction == DMA_TO_DEVICE)
  399. return;
  400. /*
  401. * For PCI_DMA_FROMDEVICE this flush is not necessary for the
  402. * simple map/unmap case. However, it IS necessary if if
  403. * pci_dma_sync_single_* has been called and the buffer reused.
  404. */
  405. flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle), size);
  406. return;
  407. }
  408. static int pa11_dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
  409. {
  410. int i;
  411. if (direction == DMA_NONE)
  412. BUG();
  413. for (i = 0; i < nents; i++, sglist++ ) {
  414. unsigned long vaddr = sg_virt_addr(sglist);
  415. sg_dma_address(sglist) = (dma_addr_t) virt_to_phys(vaddr);
  416. sg_dma_len(sglist) = sglist->length;
  417. flush_kernel_dcache_range(vaddr, sglist->length);
  418. }
  419. return nents;
  420. }
  421. static void pa11_dma_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
  422. {
  423. int i;
  424. if (direction == DMA_NONE)
  425. BUG();
  426. if (direction == DMA_TO_DEVICE)
  427. return;
  428. /* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
  429. for (i = 0; i < nents; i++, sglist++ )
  430. flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length);
  431. return;
  432. }
  433. static void pa11_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction)
  434. {
  435. if (direction == DMA_NONE)
  436. BUG();
  437. flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle) + offset, size);
  438. }
  439. static void pa11_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, unsigned long offset, size_t size, enum dma_data_direction direction)
  440. {
  441. if (direction == DMA_NONE)
  442. BUG();
  443. flush_kernel_dcache_range((unsigned long) phys_to_virt(dma_handle) + offset, size);
  444. }
  445. static void pa11_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
  446. {
  447. int i;
  448. /* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
  449. for (i = 0; i < nents; i++, sglist++ )
  450. flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length);
  451. }
  452. static void pa11_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, int nents, enum dma_data_direction direction)
  453. {
  454. int i;
  455. /* once we do combining we'll need to use phys_to_virt(sg_dma_address(sglist)) */
  456. for (i = 0; i < nents; i++, sglist++ )
  457. flush_kernel_dcache_range(sg_virt_addr(sglist), sglist->length);
  458. }
  459. struct hppa_dma_ops pcxl_dma_ops = {
  460. .dma_supported = pa11_dma_supported,
  461. .alloc_consistent = pa11_dma_alloc_consistent,
  462. .alloc_noncoherent = pa11_dma_alloc_consistent,
  463. .free_consistent = pa11_dma_free_consistent,
  464. .map_single = pa11_dma_map_single,
  465. .unmap_single = pa11_dma_unmap_single,
  466. .map_sg = pa11_dma_map_sg,
  467. .unmap_sg = pa11_dma_unmap_sg,
  468. .dma_sync_single_for_cpu = pa11_dma_sync_single_for_cpu,
  469. .dma_sync_single_for_device = pa11_dma_sync_single_for_device,
  470. .dma_sync_sg_for_cpu = pa11_dma_sync_sg_for_cpu,
  471. .dma_sync_sg_for_device = pa11_dma_sync_sg_for_device,
  472. };
  473. static void *fail_alloc_consistent(struct device *dev, size_t size,
  474. dma_addr_t *dma_handle, gfp_t flag)
  475. {
  476. return NULL;
  477. }
  478. static void *pa11_dma_alloc_noncoherent(struct device *dev, size_t size,
  479. dma_addr_t *dma_handle, gfp_t flag)
  480. {
  481. void *addr;
  482. addr = (void *)__get_free_pages(flag, get_order(size));
  483. if (addr)
  484. *dma_handle = (dma_addr_t)virt_to_phys(addr);
  485. return addr;
  486. }
  487. static void pa11_dma_free_noncoherent(struct device *dev, size_t size,
  488. void *vaddr, dma_addr_t iova)
  489. {
  490. free_pages((unsigned long)vaddr, get_order(size));
  491. return;
  492. }
  493. struct hppa_dma_ops pcx_dma_ops = {
  494. .dma_supported = pa11_dma_supported,
  495. .alloc_consistent = fail_alloc_consistent,
  496. .alloc_noncoherent = pa11_dma_alloc_noncoherent,
  497. .free_consistent = pa11_dma_free_noncoherent,
  498. .map_single = pa11_dma_map_single,
  499. .unmap_single = pa11_dma_unmap_single,
  500. .map_sg = pa11_dma_map_sg,
  501. .unmap_sg = pa11_dma_unmap_sg,
  502. .dma_sync_single_for_cpu = pa11_dma_sync_single_for_cpu,
  503. .dma_sync_single_for_device = pa11_dma_sync_single_for_device,
  504. .dma_sync_sg_for_cpu = pa11_dma_sync_sg_for_cpu,
  505. .dma_sync_sg_for_device = pa11_dma_sync_sg_for_device,
  506. };