123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223 |
- /* MN10300 FPU management
- *
- * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
- * Written by David Howells (dhowells@redhat.com)
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public Licence
- * as published by the Free Software Foundation; either version
- * 2 of the Licence, or (at your option) any later version.
- */
- #include <asm/uaccess.h>
- #include <asm/fpu.h>
- #include <asm/elf.h>
- #include <asm/exceptions.h>
- struct task_struct *fpu_state_owner;
- /*
- * handle an exception due to the FPU being disabled
- */
- asmlinkage void fpu_disabled(struct pt_regs *regs, enum exception_code code)
- {
- struct task_struct *tsk = current;
- if (!user_mode(regs))
- die_if_no_fixup("An FPU Disabled exception happened in"
- " kernel space\n",
- regs, code);
- #ifdef CONFIG_FPU
- preempt_disable();
- /* transfer the last process's FPU state to memory */
- if (fpu_state_owner) {
- fpu_save(&fpu_state_owner->thread.fpu_state);
- fpu_state_owner->thread.uregs->epsw &= ~EPSW_FE;
- }
- /* the current process now owns the FPU state */
- fpu_state_owner = tsk;
- regs->epsw |= EPSW_FE;
- /* load the FPU with the current process's FPU state or invent a new
- * clean one if the process doesn't have one */
- if (is_using_fpu(tsk)) {
- fpu_restore(&tsk->thread.fpu_state);
- } else {
- fpu_init_state();
- set_using_fpu(tsk);
- }
- preempt_enable();
- #else
- {
- siginfo_t info;
- info.si_signo = SIGFPE;
- info.si_errno = 0;
- info.si_addr = (void *) tsk->thread.uregs->pc;
- info.si_code = FPE_FLTINV;
- force_sig_info(SIGFPE, &info, tsk);
- }
- #endif /* CONFIG_FPU */
- }
- /*
- * handle an FPU operational exception
- * - there's a possibility that if the FPU is asynchronous, the signal might
- * be meant for a process other than the current one
- */
- asmlinkage void fpu_exception(struct pt_regs *regs, enum exception_code code)
- {
- struct task_struct *tsk = fpu_state_owner;
- siginfo_t info;
- if (!user_mode(regs))
- die_if_no_fixup("An FPU Operation exception happened in"
- " kernel space\n",
- regs, code);
- if (!tsk)
- die_if_no_fixup("An FPU Operation exception happened,"
- " but the FPU is not in use",
- regs, code);
- info.si_signo = SIGFPE;
- info.si_errno = 0;
- info.si_addr = (void *) tsk->thread.uregs->pc;
- info.si_code = FPE_FLTINV;
- #ifdef CONFIG_FPU
- {
- u32 fpcr;
- /* get FPCR (we need to enable the FPU whilst we do this) */
- asm volatile(" or %1,epsw \n"
- #ifdef CONFIG_MN10300_PROC_MN103E010
- " nop \n"
- " nop \n"
- " nop \n"
- #endif
- " fmov fpcr,%0 \n"
- #ifdef CONFIG_MN10300_PROC_MN103E010
- " nop \n"
- " nop \n"
- " nop \n"
- #endif
- " and %2,epsw \n"
- : "=&d"(fpcr)
- : "i"(EPSW_FE), "i"(~EPSW_FE)
- );
- if (fpcr & FPCR_EC_Z)
- info.si_code = FPE_FLTDIV;
- else if (fpcr & FPCR_EC_O)
- info.si_code = FPE_FLTOVF;
- else if (fpcr & FPCR_EC_U)
- info.si_code = FPE_FLTUND;
- else if (fpcr & FPCR_EC_I)
- info.si_code = FPE_FLTRES;
- }
- #endif
- force_sig_info(SIGFPE, &info, tsk);
- }
- /*
- * save the FPU state to a signal context
- */
- int fpu_setup_sigcontext(struct fpucontext *fpucontext)
- {
- #ifdef CONFIG_FPU
- struct task_struct *tsk = current;
- if (!is_using_fpu(tsk))
- return 0;
- /* transfer the current FPU state to memory and cause fpu_init() to be
- * triggered by the next attempted FPU operation by the current
- * process.
- */
- preempt_disable();
- if (fpu_state_owner == tsk) {
- fpu_save(&tsk->thread.fpu_state);
- fpu_state_owner->thread.uregs->epsw &= ~EPSW_FE;
- fpu_state_owner = NULL;
- }
- preempt_enable();
- /* we no longer have a valid current FPU state */
- clear_using_fpu(tsk);
- /* transfer the saved FPU state onto the userspace stack */
- if (copy_to_user(fpucontext,
- &tsk->thread.fpu_state,
- min(sizeof(struct fpu_state_struct),
- sizeof(struct fpucontext))))
- return -1;
- return 1;
- #else
- return 0;
- #endif
- }
- /*
- * kill a process's FPU state during restoration after signal handling
- */
- void fpu_kill_state(struct task_struct *tsk)
- {
- #ifdef CONFIG_FPU
- /* disown anything left in the FPU */
- preempt_disable();
- if (fpu_state_owner == tsk) {
- fpu_state_owner->thread.uregs->epsw &= ~EPSW_FE;
- fpu_state_owner = NULL;
- }
- preempt_enable();
- #endif
- /* we no longer have a valid current FPU state */
- clear_using_fpu(tsk);
- }
- /*
- * restore the FPU state from a signal context
- */
- int fpu_restore_sigcontext(struct fpucontext *fpucontext)
- {
- struct task_struct *tsk = current;
- int ret;
- /* load up the old FPU state */
- ret = copy_from_user(&tsk->thread.fpu_state,
- fpucontext,
- min(sizeof(struct fpu_state_struct),
- sizeof(struct fpucontext)));
- if (!ret)
- set_using_fpu(tsk);
- return ret;
- }
- /*
- * fill in the FPU structure for a core dump
- */
- int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpreg)
- {
- struct task_struct *tsk = current;
- int fpvalid;
- fpvalid = is_using_fpu(tsk);
- if (fpvalid) {
- unlazy_fpu(tsk);
- memcpy(fpreg, &tsk->thread.fpu_state, sizeof(*fpreg));
- }
- return fpvalid;
- }
|