ptrace.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201
  1. /*
  2. * Kernel support for the ptrace() and syscall tracing interfaces.
  3. *
  4. * Copyright (C) 1999-2005 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * Copyright (C) 2006 Intel Co
  7. * 2006-08-12 - IA64 Native Utrace implementation support added by
  8. * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
  9. *
  10. * Derived from the x86 and Alpha versions.
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/sched.h>
  14. #include <linux/slab.h>
  15. #include <linux/mm.h>
  16. #include <linux/errno.h>
  17. #include <linux/ptrace.h>
  18. #include <linux/smp_lock.h>
  19. #include <linux/user.h>
  20. #include <linux/security.h>
  21. #include <linux/audit.h>
  22. #include <linux/signal.h>
  23. #include <linux/regset.h>
  24. #include <linux/elf.h>
  25. #include <asm/pgtable.h>
  26. #include <asm/processor.h>
  27. #include <asm/ptrace_offsets.h>
  28. #include <asm/rse.h>
  29. #include <asm/system.h>
  30. #include <asm/uaccess.h>
  31. #include <asm/unwind.h>
  32. #ifdef CONFIG_PERFMON
  33. #include <asm/perfmon.h>
  34. #endif
  35. #include "entry.h"
  36. /*
  37. * Bits in the PSR that we allow ptrace() to change:
  38. * be, up, ac, mfl, mfh (the user mask; five bits total)
  39. * db (debug breakpoint fault; one bit)
  40. * id (instruction debug fault disable; one bit)
  41. * dd (data debug fault disable; one bit)
  42. * ri (restart instruction; two bits)
  43. * is (instruction set; one bit)
  44. */
  45. #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
  46. | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
  47. #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
  48. #define PFM_MASK MASK(38)
  49. #define PTRACE_DEBUG 0
  50. #if PTRACE_DEBUG
  51. # define dprintk(format...) printk(format)
  52. # define inline
  53. #else
  54. # define dprintk(format...)
  55. #endif
  56. /* Return TRUE if PT was created due to kernel-entry via a system-call. */
  57. static inline int
  58. in_syscall (struct pt_regs *pt)
  59. {
  60. return (long) pt->cr_ifs >= 0;
  61. }
  62. /*
  63. * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
  64. * bitset where bit i is set iff the NaT bit of register i is set.
  65. */
  66. unsigned long
  67. ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
  68. {
  69. # define GET_BITS(first, last, unat) \
  70. ({ \
  71. unsigned long bit = ia64_unat_pos(&pt->r##first); \
  72. unsigned long nbits = (last - first + 1); \
  73. unsigned long mask = MASK(nbits) << first; \
  74. unsigned long dist; \
  75. if (bit < first) \
  76. dist = 64 + bit - first; \
  77. else \
  78. dist = bit - first; \
  79. ia64_rotr(unat, dist) & mask; \
  80. })
  81. unsigned long val;
  82. /*
  83. * Registers that are stored consecutively in struct pt_regs
  84. * can be handled in parallel. If the register order in
  85. * struct_pt_regs changes, this code MUST be updated.
  86. */
  87. val = GET_BITS( 1, 1, scratch_unat);
  88. val |= GET_BITS( 2, 3, scratch_unat);
  89. val |= GET_BITS(12, 13, scratch_unat);
  90. val |= GET_BITS(14, 14, scratch_unat);
  91. val |= GET_BITS(15, 15, scratch_unat);
  92. val |= GET_BITS( 8, 11, scratch_unat);
  93. val |= GET_BITS(16, 31, scratch_unat);
  94. return val;
  95. # undef GET_BITS
  96. }
  97. /*
  98. * Set the NaT bits for the scratch registers according to NAT and
  99. * return the resulting unat (assuming the scratch registers are
  100. * stored in PT).
  101. */
  102. unsigned long
  103. ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
  104. {
  105. # define PUT_BITS(first, last, nat) \
  106. ({ \
  107. unsigned long bit = ia64_unat_pos(&pt->r##first); \
  108. unsigned long nbits = (last - first + 1); \
  109. unsigned long mask = MASK(nbits) << first; \
  110. long dist; \
  111. if (bit < first) \
  112. dist = 64 + bit - first; \
  113. else \
  114. dist = bit - first; \
  115. ia64_rotl(nat & mask, dist); \
  116. })
  117. unsigned long scratch_unat;
  118. /*
  119. * Registers that are stored consecutively in struct pt_regs
  120. * can be handled in parallel. If the register order in
  121. * struct_pt_regs changes, this code MUST be updated.
  122. */
  123. scratch_unat = PUT_BITS( 1, 1, nat);
  124. scratch_unat |= PUT_BITS( 2, 3, nat);
  125. scratch_unat |= PUT_BITS(12, 13, nat);
  126. scratch_unat |= PUT_BITS(14, 14, nat);
  127. scratch_unat |= PUT_BITS(15, 15, nat);
  128. scratch_unat |= PUT_BITS( 8, 11, nat);
  129. scratch_unat |= PUT_BITS(16, 31, nat);
  130. return scratch_unat;
  131. # undef PUT_BITS
  132. }
  133. #define IA64_MLX_TEMPLATE 0x2
  134. #define IA64_MOVL_OPCODE 6
  135. void
  136. ia64_increment_ip (struct pt_regs *regs)
  137. {
  138. unsigned long w0, ri = ia64_psr(regs)->ri + 1;
  139. if (ri > 2) {
  140. ri = 0;
  141. regs->cr_iip += 16;
  142. } else if (ri == 2) {
  143. get_user(w0, (char __user *) regs->cr_iip + 0);
  144. if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
  145. /*
  146. * rfi'ing to slot 2 of an MLX bundle causes
  147. * an illegal operation fault. We don't want
  148. * that to happen...
  149. */
  150. ri = 0;
  151. regs->cr_iip += 16;
  152. }
  153. }
  154. ia64_psr(regs)->ri = ri;
  155. }
  156. void
  157. ia64_decrement_ip (struct pt_regs *regs)
  158. {
  159. unsigned long w0, ri = ia64_psr(regs)->ri - 1;
  160. if (ia64_psr(regs)->ri == 0) {
  161. regs->cr_iip -= 16;
  162. ri = 2;
  163. get_user(w0, (char __user *) regs->cr_iip + 0);
  164. if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
  165. /*
  166. * rfi'ing to slot 2 of an MLX bundle causes
  167. * an illegal operation fault. We don't want
  168. * that to happen...
  169. */
  170. ri = 1;
  171. }
  172. }
  173. ia64_psr(regs)->ri = ri;
  174. }
  175. /*
  176. * This routine is used to read an rnat bits that are stored on the
  177. * kernel backing store. Since, in general, the alignment of the user
  178. * and kernel are different, this is not completely trivial. In
  179. * essence, we need to construct the user RNAT based on up to two
  180. * kernel RNAT values and/or the RNAT value saved in the child's
  181. * pt_regs.
  182. *
  183. * user rbs
  184. *
  185. * +--------+ <-- lowest address
  186. * | slot62 |
  187. * +--------+
  188. * | rnat | 0x....1f8
  189. * +--------+
  190. * | slot00 | \
  191. * +--------+ |
  192. * | slot01 | > child_regs->ar_rnat
  193. * +--------+ |
  194. * | slot02 | / kernel rbs
  195. * +--------+ +--------+
  196. * <- child_regs->ar_bspstore | slot61 | <-- krbs
  197. * +- - - - + +--------+
  198. * | slot62 |
  199. * +- - - - + +--------+
  200. * | rnat |
  201. * +- - - - + +--------+
  202. * vrnat | slot00 |
  203. * +- - - - + +--------+
  204. * = =
  205. * +--------+
  206. * | slot00 | \
  207. * +--------+ |
  208. * | slot01 | > child_stack->ar_rnat
  209. * +--------+ |
  210. * | slot02 | /
  211. * +--------+
  212. * <--- child_stack->ar_bspstore
  213. *
  214. * The way to think of this code is as follows: bit 0 in the user rnat
  215. * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
  216. * value. The kernel rnat value holding this bit is stored in
  217. * variable rnat0. rnat1 is loaded with the kernel rnat value that
  218. * form the upper bits of the user rnat value.
  219. *
  220. * Boundary cases:
  221. *
  222. * o when reading the rnat "below" the first rnat slot on the kernel
  223. * backing store, rnat0/rnat1 are set to 0 and the low order bits are
  224. * merged in from pt->ar_rnat.
  225. *
  226. * o when reading the rnat "above" the last rnat slot on the kernel
  227. * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
  228. */
  229. static unsigned long
  230. get_rnat (struct task_struct *task, struct switch_stack *sw,
  231. unsigned long *krbs, unsigned long *urnat_addr,
  232. unsigned long *urbs_end)
  233. {
  234. unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
  235. unsigned long umask = 0, mask, m;
  236. unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
  237. long num_regs, nbits;
  238. struct pt_regs *pt;
  239. pt = task_pt_regs(task);
  240. kbsp = (unsigned long *) sw->ar_bspstore;
  241. ubspstore = (unsigned long *) pt->ar_bspstore;
  242. if (urbs_end < urnat_addr)
  243. nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
  244. else
  245. nbits = 63;
  246. mask = MASK(nbits);
  247. /*
  248. * First, figure out which bit number slot 0 in user-land maps
  249. * to in the kernel rnat. Do this by figuring out how many
  250. * register slots we're beyond the user's backingstore and
  251. * then computing the equivalent address in kernel space.
  252. */
  253. num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
  254. slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
  255. shift = ia64_rse_slot_num(slot0_kaddr);
  256. rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
  257. rnat0_kaddr = rnat1_kaddr - 64;
  258. if (ubspstore + 63 > urnat_addr) {
  259. /* some bits need to be merged in from pt->ar_rnat */
  260. umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
  261. urnat = (pt->ar_rnat & umask);
  262. mask &= ~umask;
  263. if (!mask)
  264. return urnat;
  265. }
  266. m = mask << shift;
  267. if (rnat0_kaddr >= kbsp)
  268. rnat0 = sw->ar_rnat;
  269. else if (rnat0_kaddr > krbs)
  270. rnat0 = *rnat0_kaddr;
  271. urnat |= (rnat0 & m) >> shift;
  272. m = mask >> (63 - shift);
  273. if (rnat1_kaddr >= kbsp)
  274. rnat1 = sw->ar_rnat;
  275. else if (rnat1_kaddr > krbs)
  276. rnat1 = *rnat1_kaddr;
  277. urnat |= (rnat1 & m) << (63 - shift);
  278. return urnat;
  279. }
  280. /*
  281. * The reverse of get_rnat.
  282. */
  283. static void
  284. put_rnat (struct task_struct *task, struct switch_stack *sw,
  285. unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
  286. unsigned long *urbs_end)
  287. {
  288. unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
  289. unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
  290. long num_regs, nbits;
  291. struct pt_regs *pt;
  292. unsigned long cfm, *urbs_kargs;
  293. pt = task_pt_regs(task);
  294. kbsp = (unsigned long *) sw->ar_bspstore;
  295. ubspstore = (unsigned long *) pt->ar_bspstore;
  296. urbs_kargs = urbs_end;
  297. if (in_syscall(pt)) {
  298. /*
  299. * If entered via syscall, don't allow user to set rnat bits
  300. * for syscall args.
  301. */
  302. cfm = pt->cr_ifs;
  303. urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
  304. }
  305. if (urbs_kargs >= urnat_addr)
  306. nbits = 63;
  307. else {
  308. if ((urnat_addr - 63) >= urbs_kargs)
  309. return;
  310. nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
  311. }
  312. mask = MASK(nbits);
  313. /*
  314. * First, figure out which bit number slot 0 in user-land maps
  315. * to in the kernel rnat. Do this by figuring out how many
  316. * register slots we're beyond the user's backingstore and
  317. * then computing the equivalent address in kernel space.
  318. */
  319. num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
  320. slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
  321. shift = ia64_rse_slot_num(slot0_kaddr);
  322. rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
  323. rnat0_kaddr = rnat1_kaddr - 64;
  324. if (ubspstore + 63 > urnat_addr) {
  325. /* some bits need to be place in pt->ar_rnat: */
  326. umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
  327. pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
  328. mask &= ~umask;
  329. if (!mask)
  330. return;
  331. }
  332. /*
  333. * Note: Section 11.1 of the EAS guarantees that bit 63 of an
  334. * rnat slot is ignored. so we don't have to clear it here.
  335. */
  336. rnat0 = (urnat << shift);
  337. m = mask << shift;
  338. if (rnat0_kaddr >= kbsp)
  339. sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
  340. else if (rnat0_kaddr > krbs)
  341. *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
  342. rnat1 = (urnat >> (63 - shift));
  343. m = mask >> (63 - shift);
  344. if (rnat1_kaddr >= kbsp)
  345. sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
  346. else if (rnat1_kaddr > krbs)
  347. *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
  348. }
  349. static inline int
  350. on_kernel_rbs (unsigned long addr, unsigned long bspstore,
  351. unsigned long urbs_end)
  352. {
  353. unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
  354. urbs_end);
  355. return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
  356. }
  357. /*
  358. * Read a word from the user-level backing store of task CHILD. ADDR
  359. * is the user-level address to read the word from, VAL a pointer to
  360. * the return value, and USER_BSP gives the end of the user-level
  361. * backing store (i.e., it's the address that would be in ar.bsp after
  362. * the user executed a "cover" instruction).
  363. *
  364. * This routine takes care of accessing the kernel register backing
  365. * store for those registers that got spilled there. It also takes
  366. * care of calculating the appropriate RNaT collection words.
  367. */
  368. long
  369. ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
  370. unsigned long user_rbs_end, unsigned long addr, long *val)
  371. {
  372. unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
  373. struct pt_regs *child_regs;
  374. size_t copied;
  375. long ret;
  376. urbs_end = (long *) user_rbs_end;
  377. laddr = (unsigned long *) addr;
  378. child_regs = task_pt_regs(child);
  379. bspstore = (unsigned long *) child_regs->ar_bspstore;
  380. krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
  381. if (on_kernel_rbs(addr, (unsigned long) bspstore,
  382. (unsigned long) urbs_end))
  383. {
  384. /*
  385. * Attempt to read the RBS in an area that's actually
  386. * on the kernel RBS => read the corresponding bits in
  387. * the kernel RBS.
  388. */
  389. rnat_addr = ia64_rse_rnat_addr(laddr);
  390. ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
  391. if (laddr == rnat_addr) {
  392. /* return NaT collection word itself */
  393. *val = ret;
  394. return 0;
  395. }
  396. if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
  397. /*
  398. * It is implementation dependent whether the
  399. * data portion of a NaT value gets saved on a
  400. * st8.spill or RSE spill (e.g., see EAS 2.6,
  401. * 4.4.4.6 Register Spill and Fill). To get
  402. * consistent behavior across all possible
  403. * IA-64 implementations, we return zero in
  404. * this case.
  405. */
  406. *val = 0;
  407. return 0;
  408. }
  409. if (laddr < urbs_end) {
  410. /*
  411. * The desired word is on the kernel RBS and
  412. * is not a NaT.
  413. */
  414. regnum = ia64_rse_num_regs(bspstore, laddr);
  415. *val = *ia64_rse_skip_regs(krbs, regnum);
  416. return 0;
  417. }
  418. }
  419. copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
  420. if (copied != sizeof(ret))
  421. return -EIO;
  422. *val = ret;
  423. return 0;
  424. }
  425. long
  426. ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
  427. unsigned long user_rbs_end, unsigned long addr, long val)
  428. {
  429. unsigned long *bspstore, *krbs, regnum, *laddr;
  430. unsigned long *urbs_end = (long *) user_rbs_end;
  431. struct pt_regs *child_regs;
  432. laddr = (unsigned long *) addr;
  433. child_regs = task_pt_regs(child);
  434. bspstore = (unsigned long *) child_regs->ar_bspstore;
  435. krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
  436. if (on_kernel_rbs(addr, (unsigned long) bspstore,
  437. (unsigned long) urbs_end))
  438. {
  439. /*
  440. * Attempt to write the RBS in an area that's actually
  441. * on the kernel RBS => write the corresponding bits
  442. * in the kernel RBS.
  443. */
  444. if (ia64_rse_is_rnat_slot(laddr))
  445. put_rnat(child, child_stack, krbs, laddr, val,
  446. urbs_end);
  447. else {
  448. if (laddr < urbs_end) {
  449. regnum = ia64_rse_num_regs(bspstore, laddr);
  450. *ia64_rse_skip_regs(krbs, regnum) = val;
  451. }
  452. }
  453. } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
  454. != sizeof(val))
  455. return -EIO;
  456. return 0;
  457. }
  458. /*
  459. * Calculate the address of the end of the user-level register backing
  460. * store. This is the address that would have been stored in ar.bsp
  461. * if the user had executed a "cover" instruction right before
  462. * entering the kernel. If CFMP is not NULL, it is used to return the
  463. * "current frame mask" that was active at the time the kernel was
  464. * entered.
  465. */
  466. unsigned long
  467. ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
  468. unsigned long *cfmp)
  469. {
  470. unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
  471. long ndirty;
  472. krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
  473. bspstore = (unsigned long *) pt->ar_bspstore;
  474. ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
  475. if (in_syscall(pt))
  476. ndirty += (cfm & 0x7f);
  477. else
  478. cfm &= ~(1UL << 63); /* clear valid bit */
  479. if (cfmp)
  480. *cfmp = cfm;
  481. return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
  482. }
  483. /*
  484. * Synchronize (i.e, write) the RSE backing store living in kernel
  485. * space to the VM of the CHILD task. SW and PT are the pointers to
  486. * the switch_stack and pt_regs structures, respectively.
  487. * USER_RBS_END is the user-level address at which the backing store
  488. * ends.
  489. */
  490. long
  491. ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
  492. unsigned long user_rbs_start, unsigned long user_rbs_end)
  493. {
  494. unsigned long addr, val;
  495. long ret;
  496. /* now copy word for word from kernel rbs to user rbs: */
  497. for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
  498. ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
  499. if (ret < 0)
  500. return ret;
  501. if (access_process_vm(child, addr, &val, sizeof(val), 1)
  502. != sizeof(val))
  503. return -EIO;
  504. }
  505. return 0;
  506. }
  507. static long
  508. ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
  509. unsigned long user_rbs_start, unsigned long user_rbs_end)
  510. {
  511. unsigned long addr, val;
  512. long ret;
  513. /* now copy word for word from user rbs to kernel rbs: */
  514. for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
  515. if (access_process_vm(child, addr, &val, sizeof(val), 0)
  516. != sizeof(val))
  517. return -EIO;
  518. ret = ia64_poke(child, sw, user_rbs_end, addr, val);
  519. if (ret < 0)
  520. return ret;
  521. }
  522. return 0;
  523. }
  524. typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
  525. unsigned long, unsigned long);
  526. static void do_sync_rbs(struct unw_frame_info *info, void *arg)
  527. {
  528. struct pt_regs *pt;
  529. unsigned long urbs_end;
  530. syncfunc_t fn = arg;
  531. if (unw_unwind_to_user(info) < 0)
  532. return;
  533. pt = task_pt_regs(info->task);
  534. urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
  535. fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
  536. }
  537. /*
  538. * when a thread is stopped (ptraced), debugger might change thread's user
  539. * stack (change memory directly), and we must avoid the RSE stored in kernel
  540. * to override user stack (user space's RSE is newer than kernel's in the
  541. * case). To workaround the issue, we copy kernel RSE to user RSE before the
  542. * task is stopped, so user RSE has updated data. we then copy user RSE to
  543. * kernel after the task is resummed from traced stop and kernel will use the
  544. * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
  545. * synchronize user RSE to kernel.
  546. */
  547. void ia64_ptrace_stop(void)
  548. {
  549. if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
  550. return;
  551. tsk_set_notify_resume(current);
  552. unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
  553. }
  554. /*
  555. * This is called to read back the register backing store.
  556. */
  557. void ia64_sync_krbs(void)
  558. {
  559. clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
  560. tsk_clear_notify_resume(current);
  561. unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
  562. }
  563. /*
  564. * After PTRACE_ATTACH, a thread's register backing store area in user
  565. * space is assumed to contain correct data whenever the thread is
  566. * stopped. arch_ptrace_stop takes care of this on tracing stops.
  567. * But if the child was already stopped for job control when we attach
  568. * to it, then it might not ever get into ptrace_stop by the time we
  569. * want to examine the user memory containing the RBS.
  570. */
  571. void
  572. ptrace_attach_sync_user_rbs (struct task_struct *child)
  573. {
  574. int stopped = 0;
  575. struct unw_frame_info info;
  576. /*
  577. * If the child is in TASK_STOPPED, we need to change that to
  578. * TASK_TRACED momentarily while we operate on it. This ensures
  579. * that the child won't be woken up and return to user mode while
  580. * we are doing the sync. (It can only be woken up for SIGKILL.)
  581. */
  582. read_lock(&tasklist_lock);
  583. if (child->signal) {
  584. spin_lock_irq(&child->sighand->siglock);
  585. if (child->state == TASK_STOPPED &&
  586. !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
  587. tsk_set_notify_resume(child);
  588. child->state = TASK_TRACED;
  589. stopped = 1;
  590. }
  591. spin_unlock_irq(&child->sighand->siglock);
  592. }
  593. read_unlock(&tasklist_lock);
  594. if (!stopped)
  595. return;
  596. unw_init_from_blocked_task(&info, child);
  597. do_sync_rbs(&info, ia64_sync_user_rbs);
  598. /*
  599. * Now move the child back into TASK_STOPPED if it should be in a
  600. * job control stop, so that SIGCONT can be used to wake it up.
  601. */
  602. read_lock(&tasklist_lock);
  603. if (child->signal) {
  604. spin_lock_irq(&child->sighand->siglock);
  605. if (child->state == TASK_TRACED &&
  606. (child->signal->flags & SIGNAL_STOP_STOPPED)) {
  607. child->state = TASK_STOPPED;
  608. }
  609. spin_unlock_irq(&child->sighand->siglock);
  610. }
  611. read_unlock(&tasklist_lock);
  612. }
  613. static inline int
  614. thread_matches (struct task_struct *thread, unsigned long addr)
  615. {
  616. unsigned long thread_rbs_end;
  617. struct pt_regs *thread_regs;
  618. if (ptrace_check_attach(thread, 0) < 0)
  619. /*
  620. * If the thread is not in an attachable state, we'll
  621. * ignore it. The net effect is that if ADDR happens
  622. * to overlap with the portion of the thread's
  623. * register backing store that is currently residing
  624. * on the thread's kernel stack, then ptrace() may end
  625. * up accessing a stale value. But if the thread
  626. * isn't stopped, that's a problem anyhow, so we're
  627. * doing as well as we can...
  628. */
  629. return 0;
  630. thread_regs = task_pt_regs(thread);
  631. thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL);
  632. if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end))
  633. return 0;
  634. return 1; /* looks like we've got a winner */
  635. }
  636. /*
  637. * Write f32-f127 back to task->thread.fph if it has been modified.
  638. */
  639. inline void
  640. ia64_flush_fph (struct task_struct *task)
  641. {
  642. struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
  643. /*
  644. * Prevent migrating this task while
  645. * we're fiddling with the FPU state
  646. */
  647. preempt_disable();
  648. if (ia64_is_local_fpu_owner(task) && psr->mfh) {
  649. psr->mfh = 0;
  650. task->thread.flags |= IA64_THREAD_FPH_VALID;
  651. ia64_save_fpu(&task->thread.fph[0]);
  652. }
  653. preempt_enable();
  654. }
  655. /*
  656. * Sync the fph state of the task so that it can be manipulated
  657. * through thread.fph. If necessary, f32-f127 are written back to
  658. * thread.fph or, if the fph state hasn't been used before, thread.fph
  659. * is cleared to zeroes. Also, access to f32-f127 is disabled to
  660. * ensure that the task picks up the state from thread.fph when it
  661. * executes again.
  662. */
  663. void
  664. ia64_sync_fph (struct task_struct *task)
  665. {
  666. struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
  667. ia64_flush_fph(task);
  668. if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
  669. task->thread.flags |= IA64_THREAD_FPH_VALID;
  670. memset(&task->thread.fph, 0, sizeof(task->thread.fph));
  671. }
  672. ia64_drop_fpu(task);
  673. psr->dfh = 1;
  674. }
  675. /*
  676. * Change the machine-state of CHILD such that it will return via the normal
  677. * kernel exit-path, rather than the syscall-exit path.
  678. */
  679. static void
  680. convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
  681. unsigned long cfm)
  682. {
  683. struct unw_frame_info info, prev_info;
  684. unsigned long ip, sp, pr;
  685. unw_init_from_blocked_task(&info, child);
  686. while (1) {
  687. prev_info = info;
  688. if (unw_unwind(&info) < 0)
  689. return;
  690. unw_get_sp(&info, &sp);
  691. if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
  692. < IA64_PT_REGS_SIZE) {
  693. dprintk("ptrace.%s: ran off the top of the kernel "
  694. "stack\n", __func__);
  695. return;
  696. }
  697. if (unw_get_pr (&prev_info, &pr) < 0) {
  698. unw_get_rp(&prev_info, &ip);
  699. dprintk("ptrace.%s: failed to read "
  700. "predicate register (ip=0x%lx)\n",
  701. __func__, ip);
  702. return;
  703. }
  704. if (unw_is_intr_frame(&info)
  705. && (pr & (1UL << PRED_USER_STACK)))
  706. break;
  707. }
  708. /*
  709. * Note: at the time of this call, the target task is blocked
  710. * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
  711. * (aka, "pLvSys") we redirect execution from
  712. * .work_pending_syscall_end to .work_processed_kernel.
  713. */
  714. unw_get_pr(&prev_info, &pr);
  715. pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
  716. pr |= (1UL << PRED_NON_SYSCALL);
  717. unw_set_pr(&prev_info, pr);
  718. pt->cr_ifs = (1UL << 63) | cfm;
  719. /*
  720. * Clear the memory that is NOT written on syscall-entry to
  721. * ensure we do not leak kernel-state to user when execution
  722. * resumes.
  723. */
  724. pt->r2 = 0;
  725. pt->r3 = 0;
  726. pt->r14 = 0;
  727. memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
  728. memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
  729. pt->b7 = 0;
  730. pt->ar_ccv = 0;
  731. pt->ar_csd = 0;
  732. pt->ar_ssd = 0;
  733. }
  734. static int
  735. access_nat_bits (struct task_struct *child, struct pt_regs *pt,
  736. struct unw_frame_info *info,
  737. unsigned long *data, int write_access)
  738. {
  739. unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
  740. char nat = 0;
  741. if (write_access) {
  742. nat_bits = *data;
  743. scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
  744. if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
  745. dprintk("ptrace: failed to set ar.unat\n");
  746. return -1;
  747. }
  748. for (regnum = 4; regnum <= 7; ++regnum) {
  749. unw_get_gr(info, regnum, &dummy, &nat);
  750. unw_set_gr(info, regnum, dummy,
  751. (nat_bits >> regnum) & 1);
  752. }
  753. } else {
  754. if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
  755. dprintk("ptrace: failed to read ar.unat\n");
  756. return -1;
  757. }
  758. nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
  759. for (regnum = 4; regnum <= 7; ++regnum) {
  760. unw_get_gr(info, regnum, &dummy, &nat);
  761. nat_bits |= (nat != 0) << regnum;
  762. }
  763. *data = nat_bits;
  764. }
  765. return 0;
  766. }
  767. static int
  768. access_uarea (struct task_struct *child, unsigned long addr,
  769. unsigned long *data, int write_access);
  770. static long
  771. ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
  772. {
  773. unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
  774. struct unw_frame_info info;
  775. struct ia64_fpreg fpval;
  776. struct switch_stack *sw;
  777. struct pt_regs *pt;
  778. long ret, retval = 0;
  779. char nat = 0;
  780. int i;
  781. if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
  782. return -EIO;
  783. pt = task_pt_regs(child);
  784. sw = (struct switch_stack *) (child->thread.ksp + 16);
  785. unw_init_from_blocked_task(&info, child);
  786. if (unw_unwind_to_user(&info) < 0) {
  787. return -EIO;
  788. }
  789. if (((unsigned long) ppr & 0x7) != 0) {
  790. dprintk("ptrace:unaligned register address %p\n", ppr);
  791. return -EIO;
  792. }
  793. if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
  794. || access_uarea(child, PT_AR_EC, &ec, 0) < 0
  795. || access_uarea(child, PT_AR_LC, &lc, 0) < 0
  796. || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
  797. || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
  798. || access_uarea(child, PT_CFM, &cfm, 0)
  799. || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
  800. return -EIO;
  801. /* control regs */
  802. retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
  803. retval |= __put_user(psr, &ppr->cr_ipsr);
  804. /* app regs */
  805. retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
  806. retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
  807. retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
  808. retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
  809. retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
  810. retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
  811. retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
  812. retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
  813. retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
  814. retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
  815. retval |= __put_user(cfm, &ppr->cfm);
  816. /* gr1-gr3 */
  817. retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
  818. retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
  819. /* gr4-gr7 */
  820. for (i = 4; i < 8; i++) {
  821. if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
  822. return -EIO;
  823. retval |= __put_user(val, &ppr->gr[i]);
  824. }
  825. /* gr8-gr11 */
  826. retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
  827. /* gr12-gr15 */
  828. retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
  829. retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
  830. retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
  831. /* gr16-gr31 */
  832. retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
  833. /* b0 */
  834. retval |= __put_user(pt->b0, &ppr->br[0]);
  835. /* b1-b5 */
  836. for (i = 1; i < 6; i++) {
  837. if (unw_access_br(&info, i, &val, 0) < 0)
  838. return -EIO;
  839. __put_user(val, &ppr->br[i]);
  840. }
  841. /* b6-b7 */
  842. retval |= __put_user(pt->b6, &ppr->br[6]);
  843. retval |= __put_user(pt->b7, &ppr->br[7]);
  844. /* fr2-fr5 */
  845. for (i = 2; i < 6; i++) {
  846. if (unw_get_fr(&info, i, &fpval) < 0)
  847. return -EIO;
  848. retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
  849. }
  850. /* fr6-fr11 */
  851. retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
  852. sizeof(struct ia64_fpreg) * 6);
  853. /* fp scratch regs(12-15) */
  854. retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
  855. sizeof(struct ia64_fpreg) * 4);
  856. /* fr16-fr31 */
  857. for (i = 16; i < 32; i++) {
  858. if (unw_get_fr(&info, i, &fpval) < 0)
  859. return -EIO;
  860. retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
  861. }
  862. /* fph */
  863. ia64_flush_fph(child);
  864. retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
  865. sizeof(ppr->fr[32]) * 96);
  866. /* preds */
  867. retval |= __put_user(pt->pr, &ppr->pr);
  868. /* nat bits */
  869. retval |= __put_user(nat_bits, &ppr->nat);
  870. ret = retval ? -EIO : 0;
  871. return ret;
  872. }
  873. static long
  874. ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
  875. {
  876. unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
  877. struct unw_frame_info info;
  878. struct switch_stack *sw;
  879. struct ia64_fpreg fpval;
  880. struct pt_regs *pt;
  881. long ret, retval = 0;
  882. int i;
  883. memset(&fpval, 0, sizeof(fpval));
  884. if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
  885. return -EIO;
  886. pt = task_pt_regs(child);
  887. sw = (struct switch_stack *) (child->thread.ksp + 16);
  888. unw_init_from_blocked_task(&info, child);
  889. if (unw_unwind_to_user(&info) < 0) {
  890. return -EIO;
  891. }
  892. if (((unsigned long) ppr & 0x7) != 0) {
  893. dprintk("ptrace:unaligned register address %p\n", ppr);
  894. return -EIO;
  895. }
  896. /* control regs */
  897. retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
  898. retval |= __get_user(psr, &ppr->cr_ipsr);
  899. /* app regs */
  900. retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
  901. retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
  902. retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
  903. retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
  904. retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
  905. retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
  906. retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
  907. retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
  908. retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
  909. retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
  910. retval |= __get_user(cfm, &ppr->cfm);
  911. /* gr1-gr3 */
  912. retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
  913. retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
  914. /* gr4-gr7 */
  915. for (i = 4; i < 8; i++) {
  916. retval |= __get_user(val, &ppr->gr[i]);
  917. /* NaT bit will be set via PT_NAT_BITS: */
  918. if (unw_set_gr(&info, i, val, 0) < 0)
  919. return -EIO;
  920. }
  921. /* gr8-gr11 */
  922. retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
  923. /* gr12-gr15 */
  924. retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
  925. retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
  926. retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
  927. /* gr16-gr31 */
  928. retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
  929. /* b0 */
  930. retval |= __get_user(pt->b0, &ppr->br[0]);
  931. /* b1-b5 */
  932. for (i = 1; i < 6; i++) {
  933. retval |= __get_user(val, &ppr->br[i]);
  934. unw_set_br(&info, i, val);
  935. }
  936. /* b6-b7 */
  937. retval |= __get_user(pt->b6, &ppr->br[6]);
  938. retval |= __get_user(pt->b7, &ppr->br[7]);
  939. /* fr2-fr5 */
  940. for (i = 2; i < 6; i++) {
  941. retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
  942. if (unw_set_fr(&info, i, fpval) < 0)
  943. return -EIO;
  944. }
  945. /* fr6-fr11 */
  946. retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
  947. sizeof(ppr->fr[6]) * 6);
  948. /* fp scratch regs(12-15) */
  949. retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
  950. sizeof(ppr->fr[12]) * 4);
  951. /* fr16-fr31 */
  952. for (i = 16; i < 32; i++) {
  953. retval |= __copy_from_user(&fpval, &ppr->fr[i],
  954. sizeof(fpval));
  955. if (unw_set_fr(&info, i, fpval) < 0)
  956. return -EIO;
  957. }
  958. /* fph */
  959. ia64_sync_fph(child);
  960. retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
  961. sizeof(ppr->fr[32]) * 96);
  962. /* preds */
  963. retval |= __get_user(pt->pr, &ppr->pr);
  964. /* nat bits */
  965. retval |= __get_user(nat_bits, &ppr->nat);
  966. retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
  967. retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
  968. retval |= access_uarea(child, PT_AR_EC, &ec, 1);
  969. retval |= access_uarea(child, PT_AR_LC, &lc, 1);
  970. retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
  971. retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
  972. retval |= access_uarea(child, PT_CFM, &cfm, 1);
  973. retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
  974. ret = retval ? -EIO : 0;
  975. return ret;
  976. }
  977. void
  978. user_enable_single_step (struct task_struct *child)
  979. {
  980. struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
  981. set_tsk_thread_flag(child, TIF_SINGLESTEP);
  982. child_psr->ss = 1;
  983. }
  984. void
  985. user_enable_block_step (struct task_struct *child)
  986. {
  987. struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
  988. set_tsk_thread_flag(child, TIF_SINGLESTEP);
  989. child_psr->tb = 1;
  990. }
  991. void
  992. user_disable_single_step (struct task_struct *child)
  993. {
  994. struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
  995. /* make sure the single step/taken-branch trap bits are not set: */
  996. clear_tsk_thread_flag(child, TIF_SINGLESTEP);
  997. child_psr->ss = 0;
  998. child_psr->tb = 0;
  999. }
  1000. /*
  1001. * Called by kernel/ptrace.c when detaching..
  1002. *
  1003. * Make sure the single step bit is not set.
  1004. */
  1005. void
  1006. ptrace_disable (struct task_struct *child)
  1007. {
  1008. user_disable_single_step(child);
  1009. }
  1010. long
  1011. arch_ptrace (struct task_struct *child, long request, long addr, long data)
  1012. {
  1013. switch (request) {
  1014. case PTRACE_PEEKTEXT:
  1015. case PTRACE_PEEKDATA:
  1016. /* read word at location addr */
  1017. if (access_process_vm(child, addr, &data, sizeof(data), 0)
  1018. != sizeof(data))
  1019. return -EIO;
  1020. /* ensure return value is not mistaken for error code */
  1021. force_successful_syscall_return();
  1022. return data;
  1023. /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
  1024. * by the generic ptrace_request().
  1025. */
  1026. case PTRACE_PEEKUSR:
  1027. /* read the word at addr in the USER area */
  1028. if (access_uarea(child, addr, &data, 0) < 0)
  1029. return -EIO;
  1030. /* ensure return value is not mistaken for error code */
  1031. force_successful_syscall_return();
  1032. return data;
  1033. case PTRACE_POKEUSR:
  1034. /* write the word at addr in the USER area */
  1035. if (access_uarea(child, addr, &data, 1) < 0)
  1036. return -EIO;
  1037. return 0;
  1038. case PTRACE_OLD_GETSIGINFO:
  1039. /* for backwards-compatibility */
  1040. return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
  1041. case PTRACE_OLD_SETSIGINFO:
  1042. /* for backwards-compatibility */
  1043. return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
  1044. case PTRACE_GETREGS:
  1045. return ptrace_getregs(child,
  1046. (struct pt_all_user_regs __user *) data);
  1047. case PTRACE_SETREGS:
  1048. return ptrace_setregs(child,
  1049. (struct pt_all_user_regs __user *) data);
  1050. default:
  1051. return ptrace_request(child, request, addr, data);
  1052. }
  1053. }
  1054. static void
  1055. syscall_trace (void)
  1056. {
  1057. /*
  1058. * The 0x80 provides a way for the tracing parent to
  1059. * distinguish between a syscall stop and SIGTRAP delivery.
  1060. */
  1061. ptrace_notify(SIGTRAP
  1062. | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0));
  1063. /*
  1064. * This isn't the same as continuing with a signal, but it
  1065. * will do for normal use. strace only continues with a
  1066. * signal if the stopping signal is not SIGTRAP. -brl
  1067. */
  1068. if (current->exit_code) {
  1069. send_sig(current->exit_code, current, 1);
  1070. current->exit_code = 0;
  1071. }
  1072. }
  1073. /* "asmlinkage" so the input arguments are preserved... */
  1074. asmlinkage void
  1075. syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
  1076. long arg4, long arg5, long arg6, long arg7,
  1077. struct pt_regs regs)
  1078. {
  1079. if (test_thread_flag(TIF_SYSCALL_TRACE)
  1080. && (current->ptrace & PT_PTRACED))
  1081. syscall_trace();
  1082. /* copy user rbs to kernel rbs */
  1083. if (test_thread_flag(TIF_RESTORE_RSE))
  1084. ia64_sync_krbs();
  1085. if (unlikely(current->audit_context)) {
  1086. long syscall;
  1087. int arch;
  1088. if (IS_IA32_PROCESS(&regs)) {
  1089. syscall = regs.r1;
  1090. arch = AUDIT_ARCH_I386;
  1091. } else {
  1092. syscall = regs.r15;
  1093. arch = AUDIT_ARCH_IA64;
  1094. }
  1095. audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3);
  1096. }
  1097. }
  1098. /* "asmlinkage" so the input arguments are preserved... */
  1099. asmlinkage void
  1100. syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
  1101. long arg4, long arg5, long arg6, long arg7,
  1102. struct pt_regs regs)
  1103. {
  1104. if (unlikely(current->audit_context)) {
  1105. int success = AUDITSC_RESULT(regs.r10);
  1106. long result = regs.r8;
  1107. if (success != AUDITSC_SUCCESS)
  1108. result = -result;
  1109. audit_syscall_exit(success, result);
  1110. }
  1111. if ((test_thread_flag(TIF_SYSCALL_TRACE)
  1112. || test_thread_flag(TIF_SINGLESTEP))
  1113. && (current->ptrace & PT_PTRACED))
  1114. syscall_trace();
  1115. /* copy user rbs to kernel rbs */
  1116. if (test_thread_flag(TIF_RESTORE_RSE))
  1117. ia64_sync_krbs();
  1118. }
  1119. /* Utrace implementation starts here */
  1120. struct regset_get {
  1121. void *kbuf;
  1122. void __user *ubuf;
  1123. };
  1124. struct regset_set {
  1125. const void *kbuf;
  1126. const void __user *ubuf;
  1127. };
  1128. struct regset_getset {
  1129. struct task_struct *target;
  1130. const struct user_regset *regset;
  1131. union {
  1132. struct regset_get get;
  1133. struct regset_set set;
  1134. } u;
  1135. unsigned int pos;
  1136. unsigned int count;
  1137. int ret;
  1138. };
  1139. static int
  1140. access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
  1141. unsigned long addr, unsigned long *data, int write_access)
  1142. {
  1143. struct pt_regs *pt;
  1144. unsigned long *ptr = NULL;
  1145. int ret;
  1146. char nat = 0;
  1147. pt = task_pt_regs(target);
  1148. switch (addr) {
  1149. case ELF_GR_OFFSET(1):
  1150. ptr = &pt->r1;
  1151. break;
  1152. case ELF_GR_OFFSET(2):
  1153. case ELF_GR_OFFSET(3):
  1154. ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
  1155. break;
  1156. case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
  1157. if (write_access) {
  1158. /* read NaT bit first: */
  1159. unsigned long dummy;
  1160. ret = unw_get_gr(info, addr/8, &dummy, &nat);
  1161. if (ret < 0)
  1162. return ret;
  1163. }
  1164. return unw_access_gr(info, addr/8, data, &nat, write_access);
  1165. case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
  1166. ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
  1167. break;
  1168. case ELF_GR_OFFSET(12):
  1169. case ELF_GR_OFFSET(13):
  1170. ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
  1171. break;
  1172. case ELF_GR_OFFSET(14):
  1173. ptr = &pt->r14;
  1174. break;
  1175. case ELF_GR_OFFSET(15):
  1176. ptr = &pt->r15;
  1177. }
  1178. if (write_access)
  1179. *ptr = *data;
  1180. else
  1181. *data = *ptr;
  1182. return 0;
  1183. }
  1184. static int
  1185. access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
  1186. unsigned long addr, unsigned long *data, int write_access)
  1187. {
  1188. struct pt_regs *pt;
  1189. unsigned long *ptr = NULL;
  1190. pt = task_pt_regs(target);
  1191. switch (addr) {
  1192. case ELF_BR_OFFSET(0):
  1193. ptr = &pt->b0;
  1194. break;
  1195. case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
  1196. return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
  1197. data, write_access);
  1198. case ELF_BR_OFFSET(6):
  1199. ptr = &pt->b6;
  1200. break;
  1201. case ELF_BR_OFFSET(7):
  1202. ptr = &pt->b7;
  1203. }
  1204. if (write_access)
  1205. *ptr = *data;
  1206. else
  1207. *data = *ptr;
  1208. return 0;
  1209. }
  1210. static int
  1211. access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
  1212. unsigned long addr, unsigned long *data, int write_access)
  1213. {
  1214. struct pt_regs *pt;
  1215. unsigned long cfm, urbs_end;
  1216. unsigned long *ptr = NULL;
  1217. pt = task_pt_regs(target);
  1218. if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
  1219. switch (addr) {
  1220. case ELF_AR_RSC_OFFSET:
  1221. /* force PL3 */
  1222. if (write_access)
  1223. pt->ar_rsc = *data | (3 << 2);
  1224. else
  1225. *data = pt->ar_rsc;
  1226. return 0;
  1227. case ELF_AR_BSP_OFFSET:
  1228. /*
  1229. * By convention, we use PT_AR_BSP to refer to
  1230. * the end of the user-level backing store.
  1231. * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
  1232. * to get the real value of ar.bsp at the time
  1233. * the kernel was entered.
  1234. *
  1235. * Furthermore, when changing the contents of
  1236. * PT_AR_BSP (or PT_CFM) while the task is
  1237. * blocked in a system call, convert the state
  1238. * so that the non-system-call exit
  1239. * path is used. This ensures that the proper
  1240. * state will be picked up when resuming
  1241. * execution. However, it *also* means that
  1242. * once we write PT_AR_BSP/PT_CFM, it won't be
  1243. * possible to modify the syscall arguments of
  1244. * the pending system call any longer. This
  1245. * shouldn't be an issue because modifying
  1246. * PT_AR_BSP/PT_CFM generally implies that
  1247. * we're either abandoning the pending system
  1248. * call or that we defer it's re-execution
  1249. * (e.g., due to GDB doing an inferior
  1250. * function call).
  1251. */
  1252. urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
  1253. if (write_access) {
  1254. if (*data != urbs_end) {
  1255. if (in_syscall(pt))
  1256. convert_to_non_syscall(target,
  1257. pt,
  1258. cfm);
  1259. /*
  1260. * Simulate user-level write
  1261. * of ar.bsp:
  1262. */
  1263. pt->loadrs = 0;
  1264. pt->ar_bspstore = *data;
  1265. }
  1266. } else
  1267. *data = urbs_end;
  1268. return 0;
  1269. case ELF_AR_BSPSTORE_OFFSET:
  1270. ptr = &pt->ar_bspstore;
  1271. break;
  1272. case ELF_AR_RNAT_OFFSET:
  1273. ptr = &pt->ar_rnat;
  1274. break;
  1275. case ELF_AR_CCV_OFFSET:
  1276. ptr = &pt->ar_ccv;
  1277. break;
  1278. case ELF_AR_UNAT_OFFSET:
  1279. ptr = &pt->ar_unat;
  1280. break;
  1281. case ELF_AR_FPSR_OFFSET:
  1282. ptr = &pt->ar_fpsr;
  1283. break;
  1284. case ELF_AR_PFS_OFFSET:
  1285. ptr = &pt->ar_pfs;
  1286. break;
  1287. case ELF_AR_LC_OFFSET:
  1288. return unw_access_ar(info, UNW_AR_LC, data,
  1289. write_access);
  1290. case ELF_AR_EC_OFFSET:
  1291. return unw_access_ar(info, UNW_AR_EC, data,
  1292. write_access);
  1293. case ELF_AR_CSD_OFFSET:
  1294. ptr = &pt->ar_csd;
  1295. break;
  1296. case ELF_AR_SSD_OFFSET:
  1297. ptr = &pt->ar_ssd;
  1298. }
  1299. } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
  1300. switch (addr) {
  1301. case ELF_CR_IIP_OFFSET:
  1302. ptr = &pt->cr_iip;
  1303. break;
  1304. case ELF_CFM_OFFSET:
  1305. urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
  1306. if (write_access) {
  1307. if (((cfm ^ *data) & PFM_MASK) != 0) {
  1308. if (in_syscall(pt))
  1309. convert_to_non_syscall(target,
  1310. pt,
  1311. cfm);
  1312. pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
  1313. | (*data & PFM_MASK));
  1314. }
  1315. } else
  1316. *data = cfm;
  1317. return 0;
  1318. case ELF_CR_IPSR_OFFSET:
  1319. if (write_access) {
  1320. unsigned long tmp = *data;
  1321. /* psr.ri==3 is a reserved value: SDM 2:25 */
  1322. if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
  1323. tmp &= ~IA64_PSR_RI;
  1324. pt->cr_ipsr = ((tmp & IPSR_MASK)
  1325. | (pt->cr_ipsr & ~IPSR_MASK));
  1326. } else
  1327. *data = (pt->cr_ipsr & IPSR_MASK);
  1328. return 0;
  1329. }
  1330. } else if (addr == ELF_NAT_OFFSET)
  1331. return access_nat_bits(target, pt, info,
  1332. data, write_access);
  1333. else if (addr == ELF_PR_OFFSET)
  1334. ptr = &pt->pr;
  1335. else
  1336. return -1;
  1337. if (write_access)
  1338. *ptr = *data;
  1339. else
  1340. *data = *ptr;
  1341. return 0;
  1342. }
  1343. static int
  1344. access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
  1345. unsigned long addr, unsigned long *data, int write_access)
  1346. {
  1347. if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
  1348. return access_elf_gpreg(target, info, addr, data, write_access);
  1349. else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
  1350. return access_elf_breg(target, info, addr, data, write_access);
  1351. else
  1352. return access_elf_areg(target, info, addr, data, write_access);
  1353. }
  1354. void do_gpregs_get(struct unw_frame_info *info, void *arg)
  1355. {
  1356. struct pt_regs *pt;
  1357. struct regset_getset *dst = arg;
  1358. elf_greg_t tmp[16];
  1359. unsigned int i, index, min_copy;
  1360. if (unw_unwind_to_user(info) < 0)
  1361. return;
  1362. /*
  1363. * coredump format:
  1364. * r0-r31
  1365. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  1366. * predicate registers (p0-p63)
  1367. * b0-b7
  1368. * ip cfm user-mask
  1369. * ar.rsc ar.bsp ar.bspstore ar.rnat
  1370. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  1371. */
  1372. /* Skip r0 */
  1373. if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
  1374. dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
  1375. &dst->u.get.kbuf,
  1376. &dst->u.get.ubuf,
  1377. 0, ELF_GR_OFFSET(1));
  1378. if (dst->ret || dst->count == 0)
  1379. return;
  1380. }
  1381. /* gr1 - gr15 */
  1382. if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
  1383. index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
  1384. min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
  1385. (dst->pos + dst->count) : ELF_GR_OFFSET(16);
  1386. for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
  1387. index++)
  1388. if (access_elf_reg(dst->target, info, i,
  1389. &tmp[index], 0) < 0) {
  1390. dst->ret = -EIO;
  1391. return;
  1392. }
  1393. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1394. &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
  1395. ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
  1396. if (dst->ret || dst->count == 0)
  1397. return;
  1398. }
  1399. /* r16-r31 */
  1400. if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
  1401. pt = task_pt_regs(dst->target);
  1402. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1403. &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
  1404. ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
  1405. if (dst->ret || dst->count == 0)
  1406. return;
  1407. }
  1408. /* nat, pr, b0 - b7 */
  1409. if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
  1410. index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
  1411. min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
  1412. (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
  1413. for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
  1414. index++)
  1415. if (access_elf_reg(dst->target, info, i,
  1416. &tmp[index], 0) < 0) {
  1417. dst->ret = -EIO;
  1418. return;
  1419. }
  1420. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1421. &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
  1422. ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
  1423. if (dst->ret || dst->count == 0)
  1424. return;
  1425. }
  1426. /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
  1427. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
  1428. */
  1429. if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
  1430. index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
  1431. min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
  1432. (dst->pos + dst->count) : ELF_AR_END_OFFSET;
  1433. for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
  1434. index++)
  1435. if (access_elf_reg(dst->target, info, i,
  1436. &tmp[index], 0) < 0) {
  1437. dst->ret = -EIO;
  1438. return;
  1439. }
  1440. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1441. &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
  1442. ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
  1443. }
  1444. }
  1445. void do_gpregs_set(struct unw_frame_info *info, void *arg)
  1446. {
  1447. struct pt_regs *pt;
  1448. struct regset_getset *dst = arg;
  1449. elf_greg_t tmp[16];
  1450. unsigned int i, index;
  1451. if (unw_unwind_to_user(info) < 0)
  1452. return;
  1453. /* Skip r0 */
  1454. if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
  1455. dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
  1456. &dst->u.set.kbuf,
  1457. &dst->u.set.ubuf,
  1458. 0, ELF_GR_OFFSET(1));
  1459. if (dst->ret || dst->count == 0)
  1460. return;
  1461. }
  1462. /* gr1-gr15 */
  1463. if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
  1464. i = dst->pos;
  1465. index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
  1466. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1467. &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
  1468. ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
  1469. if (dst->ret)
  1470. return;
  1471. for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
  1472. if (access_elf_reg(dst->target, info, i,
  1473. &tmp[index], 1) < 0) {
  1474. dst->ret = -EIO;
  1475. return;
  1476. }
  1477. if (dst->count == 0)
  1478. return;
  1479. }
  1480. /* gr16-gr31 */
  1481. if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
  1482. pt = task_pt_regs(dst->target);
  1483. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1484. &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
  1485. ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
  1486. if (dst->ret || dst->count == 0)
  1487. return;
  1488. }
  1489. /* nat, pr, b0 - b7 */
  1490. if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
  1491. i = dst->pos;
  1492. index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
  1493. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1494. &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
  1495. ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
  1496. if (dst->ret)
  1497. return;
  1498. for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
  1499. if (access_elf_reg(dst->target, info, i,
  1500. &tmp[index], 1) < 0) {
  1501. dst->ret = -EIO;
  1502. return;
  1503. }
  1504. if (dst->count == 0)
  1505. return;
  1506. }
  1507. /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
  1508. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
  1509. */
  1510. if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
  1511. i = dst->pos;
  1512. index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
  1513. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1514. &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
  1515. ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
  1516. if (dst->ret)
  1517. return;
  1518. for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
  1519. if (access_elf_reg(dst->target, info, i,
  1520. &tmp[index], 1) < 0) {
  1521. dst->ret = -EIO;
  1522. return;
  1523. }
  1524. }
  1525. }
  1526. #define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
  1527. void do_fpregs_get(struct unw_frame_info *info, void *arg)
  1528. {
  1529. struct regset_getset *dst = arg;
  1530. struct task_struct *task = dst->target;
  1531. elf_fpreg_t tmp[30];
  1532. int index, min_copy, i;
  1533. if (unw_unwind_to_user(info) < 0)
  1534. return;
  1535. /* Skip pos 0 and 1 */
  1536. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
  1537. dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
  1538. &dst->u.get.kbuf,
  1539. &dst->u.get.ubuf,
  1540. 0, ELF_FP_OFFSET(2));
  1541. if (dst->count == 0 || dst->ret)
  1542. return;
  1543. }
  1544. /* fr2-fr31 */
  1545. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
  1546. index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
  1547. min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
  1548. dst->pos + dst->count);
  1549. for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
  1550. index++)
  1551. if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
  1552. &tmp[index])) {
  1553. dst->ret = -EIO;
  1554. return;
  1555. }
  1556. dst->ret = user_regset_copyout(&dst->pos, &dst->count,
  1557. &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
  1558. ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
  1559. if (dst->count == 0 || dst->ret)
  1560. return;
  1561. }
  1562. /* fph */
  1563. if (dst->count > 0) {
  1564. ia64_flush_fph(dst->target);
  1565. if (task->thread.flags & IA64_THREAD_FPH_VALID)
  1566. dst->ret = user_regset_copyout(
  1567. &dst->pos, &dst->count,
  1568. &dst->u.get.kbuf, &dst->u.get.ubuf,
  1569. &dst->target->thread.fph,
  1570. ELF_FP_OFFSET(32), -1);
  1571. else
  1572. /* Zero fill instead. */
  1573. dst->ret = user_regset_copyout_zero(
  1574. &dst->pos, &dst->count,
  1575. &dst->u.get.kbuf, &dst->u.get.ubuf,
  1576. ELF_FP_OFFSET(32), -1);
  1577. }
  1578. }
  1579. void do_fpregs_set(struct unw_frame_info *info, void *arg)
  1580. {
  1581. struct regset_getset *dst = arg;
  1582. elf_fpreg_t fpreg, tmp[30];
  1583. int index, start, end;
  1584. if (unw_unwind_to_user(info) < 0)
  1585. return;
  1586. /* Skip pos 0 and 1 */
  1587. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
  1588. dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
  1589. &dst->u.set.kbuf,
  1590. &dst->u.set.ubuf,
  1591. 0, ELF_FP_OFFSET(2));
  1592. if (dst->count == 0 || dst->ret)
  1593. return;
  1594. }
  1595. /* fr2-fr31 */
  1596. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
  1597. start = dst->pos;
  1598. end = min(((unsigned int)ELF_FP_OFFSET(32)),
  1599. dst->pos + dst->count);
  1600. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1601. &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
  1602. ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
  1603. if (dst->ret)
  1604. return;
  1605. if (start & 0xF) { /* only write high part */
  1606. if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
  1607. &fpreg)) {
  1608. dst->ret = -EIO;
  1609. return;
  1610. }
  1611. tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
  1612. = fpreg.u.bits[0];
  1613. start &= ~0xFUL;
  1614. }
  1615. if (end & 0xF) { /* only write low part */
  1616. if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
  1617. &fpreg)) {
  1618. dst->ret = -EIO;
  1619. return;
  1620. }
  1621. tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
  1622. = fpreg.u.bits[1];
  1623. end = (end + 0xF) & ~0xFUL;
  1624. }
  1625. for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
  1626. index = start / sizeof(elf_fpreg_t);
  1627. if (unw_set_fr(info, index, tmp[index - 2])) {
  1628. dst->ret = -EIO;
  1629. return;
  1630. }
  1631. }
  1632. if (dst->ret || dst->count == 0)
  1633. return;
  1634. }
  1635. /* fph */
  1636. if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
  1637. ia64_sync_fph(dst->target);
  1638. dst->ret = user_regset_copyin(&dst->pos, &dst->count,
  1639. &dst->u.set.kbuf,
  1640. &dst->u.set.ubuf,
  1641. &dst->target->thread.fph,
  1642. ELF_FP_OFFSET(32), -1);
  1643. }
  1644. }
  1645. static int
  1646. do_regset_call(void (*call)(struct unw_frame_info *, void *),
  1647. struct task_struct *target,
  1648. const struct user_regset *regset,
  1649. unsigned int pos, unsigned int count,
  1650. const void *kbuf, const void __user *ubuf)
  1651. {
  1652. struct regset_getset info = { .target = target, .regset = regset,
  1653. .pos = pos, .count = count,
  1654. .u.set = { .kbuf = kbuf, .ubuf = ubuf },
  1655. .ret = 0 };
  1656. if (target == current)
  1657. unw_init_running(call, &info);
  1658. else {
  1659. struct unw_frame_info ufi;
  1660. memset(&ufi, 0, sizeof(ufi));
  1661. unw_init_from_blocked_task(&ufi, target);
  1662. (*call)(&ufi, &info);
  1663. }
  1664. return info.ret;
  1665. }
  1666. static int
  1667. gpregs_get(struct task_struct *target,
  1668. const struct user_regset *regset,
  1669. unsigned int pos, unsigned int count,
  1670. void *kbuf, void __user *ubuf)
  1671. {
  1672. return do_regset_call(do_gpregs_get, target, regset, pos, count,
  1673. kbuf, ubuf);
  1674. }
  1675. static int gpregs_set(struct task_struct *target,
  1676. const struct user_regset *regset,
  1677. unsigned int pos, unsigned int count,
  1678. const void *kbuf, const void __user *ubuf)
  1679. {
  1680. return do_regset_call(do_gpregs_set, target, regset, pos, count,
  1681. kbuf, ubuf);
  1682. }
  1683. static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
  1684. {
  1685. do_sync_rbs(info, ia64_sync_user_rbs);
  1686. }
  1687. /*
  1688. * This is called to write back the register backing store.
  1689. * ptrace does this before it stops, so that a tracer reading the user
  1690. * memory after the thread stops will get the current register data.
  1691. */
  1692. static int
  1693. gpregs_writeback(struct task_struct *target,
  1694. const struct user_regset *regset,
  1695. int now)
  1696. {
  1697. if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
  1698. return 0;
  1699. tsk_set_notify_resume(target);
  1700. return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
  1701. NULL, NULL);
  1702. }
  1703. static int
  1704. fpregs_active(struct task_struct *target, const struct user_regset *regset)
  1705. {
  1706. return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
  1707. }
  1708. static int fpregs_get(struct task_struct *target,
  1709. const struct user_regset *regset,
  1710. unsigned int pos, unsigned int count,
  1711. void *kbuf, void __user *ubuf)
  1712. {
  1713. return do_regset_call(do_fpregs_get, target, regset, pos, count,
  1714. kbuf, ubuf);
  1715. }
  1716. static int fpregs_set(struct task_struct *target,
  1717. const struct user_regset *regset,
  1718. unsigned int pos, unsigned int count,
  1719. const void *kbuf, const void __user *ubuf)
  1720. {
  1721. return do_regset_call(do_fpregs_set, target, regset, pos, count,
  1722. kbuf, ubuf);
  1723. }
  1724. static int
  1725. access_uarea(struct task_struct *child, unsigned long addr,
  1726. unsigned long *data, int write_access)
  1727. {
  1728. unsigned int pos = -1; /* an invalid value */
  1729. int ret;
  1730. unsigned long *ptr, regnum;
  1731. if ((addr & 0x7) != 0) {
  1732. dprintk("ptrace: unaligned register address 0x%lx\n", addr);
  1733. return -1;
  1734. }
  1735. if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
  1736. (addr >= PT_R7 + 8 && addr < PT_B1) ||
  1737. (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
  1738. (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
  1739. dprintk("ptrace: rejecting access to register "
  1740. "address 0x%lx\n", addr);
  1741. return -1;
  1742. }
  1743. switch (addr) {
  1744. case PT_F32 ... (PT_F127 + 15):
  1745. pos = addr - PT_F32 + ELF_FP_OFFSET(32);
  1746. break;
  1747. case PT_F2 ... (PT_F5 + 15):
  1748. pos = addr - PT_F2 + ELF_FP_OFFSET(2);
  1749. break;
  1750. case PT_F10 ... (PT_F31 + 15):
  1751. pos = addr - PT_F10 + ELF_FP_OFFSET(10);
  1752. break;
  1753. case PT_F6 ... (PT_F9 + 15):
  1754. pos = addr - PT_F6 + ELF_FP_OFFSET(6);
  1755. break;
  1756. }
  1757. if (pos != -1) {
  1758. if (write_access)
  1759. ret = fpregs_set(child, NULL, pos,
  1760. sizeof(unsigned long), data, NULL);
  1761. else
  1762. ret = fpregs_get(child, NULL, pos,
  1763. sizeof(unsigned long), data, NULL);
  1764. if (ret != 0)
  1765. return -1;
  1766. return 0;
  1767. }
  1768. switch (addr) {
  1769. case PT_NAT_BITS:
  1770. pos = ELF_NAT_OFFSET;
  1771. break;
  1772. case PT_R4 ... PT_R7:
  1773. pos = addr - PT_R4 + ELF_GR_OFFSET(4);
  1774. break;
  1775. case PT_B1 ... PT_B5:
  1776. pos = addr - PT_B1 + ELF_BR_OFFSET(1);
  1777. break;
  1778. case PT_AR_EC:
  1779. pos = ELF_AR_EC_OFFSET;
  1780. break;
  1781. case PT_AR_LC:
  1782. pos = ELF_AR_LC_OFFSET;
  1783. break;
  1784. case PT_CR_IPSR:
  1785. pos = ELF_CR_IPSR_OFFSET;
  1786. break;
  1787. case PT_CR_IIP:
  1788. pos = ELF_CR_IIP_OFFSET;
  1789. break;
  1790. case PT_CFM:
  1791. pos = ELF_CFM_OFFSET;
  1792. break;
  1793. case PT_AR_UNAT:
  1794. pos = ELF_AR_UNAT_OFFSET;
  1795. break;
  1796. case PT_AR_PFS:
  1797. pos = ELF_AR_PFS_OFFSET;
  1798. break;
  1799. case PT_AR_RSC:
  1800. pos = ELF_AR_RSC_OFFSET;
  1801. break;
  1802. case PT_AR_RNAT:
  1803. pos = ELF_AR_RNAT_OFFSET;
  1804. break;
  1805. case PT_AR_BSPSTORE:
  1806. pos = ELF_AR_BSPSTORE_OFFSET;
  1807. break;
  1808. case PT_PR:
  1809. pos = ELF_PR_OFFSET;
  1810. break;
  1811. case PT_B6:
  1812. pos = ELF_BR_OFFSET(6);
  1813. break;
  1814. case PT_AR_BSP:
  1815. pos = ELF_AR_BSP_OFFSET;
  1816. break;
  1817. case PT_R1 ... PT_R3:
  1818. pos = addr - PT_R1 + ELF_GR_OFFSET(1);
  1819. break;
  1820. case PT_R12 ... PT_R15:
  1821. pos = addr - PT_R12 + ELF_GR_OFFSET(12);
  1822. break;
  1823. case PT_R8 ... PT_R11:
  1824. pos = addr - PT_R8 + ELF_GR_OFFSET(8);
  1825. break;
  1826. case PT_R16 ... PT_R31:
  1827. pos = addr - PT_R16 + ELF_GR_OFFSET(16);
  1828. break;
  1829. case PT_AR_CCV:
  1830. pos = ELF_AR_CCV_OFFSET;
  1831. break;
  1832. case PT_AR_FPSR:
  1833. pos = ELF_AR_FPSR_OFFSET;
  1834. break;
  1835. case PT_B0:
  1836. pos = ELF_BR_OFFSET(0);
  1837. break;
  1838. case PT_B7:
  1839. pos = ELF_BR_OFFSET(7);
  1840. break;
  1841. case PT_AR_CSD:
  1842. pos = ELF_AR_CSD_OFFSET;
  1843. break;
  1844. case PT_AR_SSD:
  1845. pos = ELF_AR_SSD_OFFSET;
  1846. break;
  1847. }
  1848. if (pos != -1) {
  1849. if (write_access)
  1850. ret = gpregs_set(child, NULL, pos,
  1851. sizeof(unsigned long), data, NULL);
  1852. else
  1853. ret = gpregs_get(child, NULL, pos,
  1854. sizeof(unsigned long), data, NULL);
  1855. if (ret != 0)
  1856. return -1;
  1857. return 0;
  1858. }
  1859. /* access debug registers */
  1860. if (addr >= PT_IBR) {
  1861. regnum = (addr - PT_IBR) >> 3;
  1862. ptr = &child->thread.ibr[0];
  1863. } else {
  1864. regnum = (addr - PT_DBR) >> 3;
  1865. ptr = &child->thread.dbr[0];
  1866. }
  1867. if (regnum >= 8) {
  1868. dprintk("ptrace: rejecting access to register "
  1869. "address 0x%lx\n", addr);
  1870. return -1;
  1871. }
  1872. #ifdef CONFIG_PERFMON
  1873. /*
  1874. * Check if debug registers are used by perfmon. This
  1875. * test must be done once we know that we can do the
  1876. * operation, i.e. the arguments are all valid, but
  1877. * before we start modifying the state.
  1878. *
  1879. * Perfmon needs to keep a count of how many processes
  1880. * are trying to modify the debug registers for system
  1881. * wide monitoring sessions.
  1882. *
  1883. * We also include read access here, because they may
  1884. * cause the PMU-installed debug register state
  1885. * (dbr[], ibr[]) to be reset. The two arrays are also
  1886. * used by perfmon, but we do not use
  1887. * IA64_THREAD_DBG_VALID. The registers are restored
  1888. * by the PMU context switch code.
  1889. */
  1890. if (pfm_use_debug_registers(child))
  1891. return -1;
  1892. #endif
  1893. if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
  1894. child->thread.flags |= IA64_THREAD_DBG_VALID;
  1895. memset(child->thread.dbr, 0,
  1896. sizeof(child->thread.dbr));
  1897. memset(child->thread.ibr, 0,
  1898. sizeof(child->thread.ibr));
  1899. }
  1900. ptr += regnum;
  1901. if ((regnum & 1) && write_access) {
  1902. /* don't let the user set kernel-level breakpoints: */
  1903. *ptr = *data & ~(7UL << 56);
  1904. return 0;
  1905. }
  1906. if (write_access)
  1907. *ptr = *data;
  1908. else
  1909. *data = *ptr;
  1910. return 0;
  1911. }
  1912. static const struct user_regset native_regsets[] = {
  1913. {
  1914. .core_note_type = NT_PRSTATUS,
  1915. .n = ELF_NGREG,
  1916. .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
  1917. .get = gpregs_get, .set = gpregs_set,
  1918. .writeback = gpregs_writeback
  1919. },
  1920. {
  1921. .core_note_type = NT_PRFPREG,
  1922. .n = ELF_NFPREG,
  1923. .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
  1924. .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
  1925. },
  1926. };
  1927. static const struct user_regset_view user_ia64_view = {
  1928. .name = "ia64",
  1929. .e_machine = EM_IA_64,
  1930. .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
  1931. };
  1932. const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
  1933. {
  1934. #ifdef CONFIG_IA32_SUPPORT
  1935. extern const struct user_regset_view user_ia32_view;
  1936. if (IS_IA32_PROCESS(task_pt_regs(tsk)))
  1937. return &user_ia32_view;
  1938. #endif
  1939. return &user_ia64_view;
  1940. }