process.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851
  1. /*
  2. * Architecture-specific setup.
  3. *
  4. * Copyright (C) 1998-2003 Hewlett-Packard Co
  5. * David Mosberger-Tang <davidm@hpl.hp.com>
  6. * 04/11/17 Ashok Raj <ashok.raj@intel.com> Added CPU Hotplug Support
  7. *
  8. * 2005-10-07 Keith Owens <kaos@sgi.com>
  9. * Add notify_die() hooks.
  10. */
  11. #include <linux/cpu.h>
  12. #include <linux/pm.h>
  13. #include <linux/elf.h>
  14. #include <linux/errno.h>
  15. #include <linux/kallsyms.h>
  16. #include <linux/kernel.h>
  17. #include <linux/mm.h>
  18. #include <linux/module.h>
  19. #include <linux/notifier.h>
  20. #include <linux/personality.h>
  21. #include <linux/sched.h>
  22. #include <linux/slab.h>
  23. #include <linux/stddef.h>
  24. #include <linux/thread_info.h>
  25. #include <linux/unistd.h>
  26. #include <linux/efi.h>
  27. #include <linux/interrupt.h>
  28. #include <linux/delay.h>
  29. #include <linux/kdebug.h>
  30. #include <linux/utsname.h>
  31. #include <asm/cpu.h>
  32. #include <asm/delay.h>
  33. #include <asm/elf.h>
  34. #include <asm/ia32.h>
  35. #include <asm/irq.h>
  36. #include <asm/kexec.h>
  37. #include <asm/pgalloc.h>
  38. #include <asm/processor.h>
  39. #include <asm/sal.h>
  40. #include <asm/tlbflush.h>
  41. #include <asm/uaccess.h>
  42. #include <asm/unwind.h>
  43. #include <asm/user.h>
  44. #include "entry.h"
  45. #ifdef CONFIG_PERFMON
  46. # include <asm/perfmon.h>
  47. #endif
  48. #include "sigframe.h"
  49. void (*ia64_mark_idle)(int);
  50. unsigned long boot_option_idle_override = 0;
  51. EXPORT_SYMBOL(boot_option_idle_override);
  52. unsigned long idle_halt;
  53. EXPORT_SYMBOL(idle_halt);
  54. unsigned long idle_nomwait;
  55. EXPORT_SYMBOL(idle_nomwait);
  56. void
  57. ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  58. {
  59. unsigned long ip, sp, bsp;
  60. char buf[128]; /* don't make it so big that it overflows the stack! */
  61. printk("\nCall Trace:\n");
  62. do {
  63. unw_get_ip(info, &ip);
  64. if (ip == 0)
  65. break;
  66. unw_get_sp(info, &sp);
  67. unw_get_bsp(info, &bsp);
  68. snprintf(buf, sizeof(buf),
  69. " [<%016lx>] %%s\n"
  70. " sp=%016lx bsp=%016lx\n",
  71. ip, sp, bsp);
  72. print_symbol(buf, ip);
  73. } while (unw_unwind(info) >= 0);
  74. }
  75. void
  76. show_stack (struct task_struct *task, unsigned long *sp)
  77. {
  78. if (!task)
  79. unw_init_running(ia64_do_show_stack, NULL);
  80. else {
  81. struct unw_frame_info info;
  82. unw_init_from_blocked_task(&info, task);
  83. ia64_do_show_stack(&info, NULL);
  84. }
  85. }
  86. void
  87. dump_stack (void)
  88. {
  89. show_stack(NULL, NULL);
  90. }
  91. EXPORT_SYMBOL(dump_stack);
  92. void
  93. show_regs (struct pt_regs *regs)
  94. {
  95. unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
  96. print_modules();
  97. printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
  98. smp_processor_id(), current->comm);
  99. printk("psr : %016lx ifs : %016lx ip : [<%016lx>] %s (%s)\n",
  100. regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
  101. init_utsname()->release);
  102. print_symbol("ip is at %s\n", ip);
  103. printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
  104. regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
  105. printk("rnat: %016lx bsps: %016lx pr : %016lx\n",
  106. regs->ar_rnat, regs->ar_bspstore, regs->pr);
  107. printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
  108. regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
  109. printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
  110. printk("b0 : %016lx b6 : %016lx b7 : %016lx\n", regs->b0, regs->b6, regs->b7);
  111. printk("f6 : %05lx%016lx f7 : %05lx%016lx\n",
  112. regs->f6.u.bits[1], regs->f6.u.bits[0],
  113. regs->f7.u.bits[1], regs->f7.u.bits[0]);
  114. printk("f8 : %05lx%016lx f9 : %05lx%016lx\n",
  115. regs->f8.u.bits[1], regs->f8.u.bits[0],
  116. regs->f9.u.bits[1], regs->f9.u.bits[0]);
  117. printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
  118. regs->f10.u.bits[1], regs->f10.u.bits[0],
  119. regs->f11.u.bits[1], regs->f11.u.bits[0]);
  120. printk("r1 : %016lx r2 : %016lx r3 : %016lx\n", regs->r1, regs->r2, regs->r3);
  121. printk("r8 : %016lx r9 : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
  122. printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
  123. printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
  124. printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
  125. printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
  126. printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
  127. printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
  128. printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
  129. if (user_mode(regs)) {
  130. /* print the stacked registers */
  131. unsigned long val, *bsp, ndirty;
  132. int i, sof, is_nat = 0;
  133. sof = regs->cr_ifs & 0x7f; /* size of frame */
  134. ndirty = (regs->loadrs >> 19);
  135. bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
  136. for (i = 0; i < sof; ++i) {
  137. get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
  138. printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
  139. ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
  140. }
  141. } else
  142. show_stack(NULL, NULL);
  143. }
  144. void tsk_clear_notify_resume(struct task_struct *tsk)
  145. {
  146. #ifdef CONFIG_PERFMON
  147. if (tsk->thread.pfm_needs_checking)
  148. return;
  149. #endif
  150. if (test_ti_thread_flag(task_thread_info(tsk), TIF_RESTORE_RSE))
  151. return;
  152. clear_ti_thread_flag(task_thread_info(tsk), TIF_NOTIFY_RESUME);
  153. }
  154. /*
  155. * do_notify_resume_user():
  156. * Called from notify_resume_user at entry.S, with interrupts disabled.
  157. */
  158. void
  159. do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
  160. {
  161. if (fsys_mode(current, &scr->pt)) {
  162. /*
  163. * defer signal-handling etc. until we return to
  164. * privilege-level 0.
  165. */
  166. if (!ia64_psr(&scr->pt)->lp)
  167. ia64_psr(&scr->pt)->lp = 1;
  168. return;
  169. }
  170. #ifdef CONFIG_PERFMON
  171. if (current->thread.pfm_needs_checking)
  172. /*
  173. * Note: pfm_handle_work() allow us to call it with interrupts
  174. * disabled, and may enable interrupts within the function.
  175. */
  176. pfm_handle_work();
  177. #endif
  178. /* deal with pending signal delivery */
  179. if (test_thread_flag(TIF_SIGPENDING)) {
  180. local_irq_enable(); /* force interrupt enable */
  181. ia64_do_signal(scr, in_syscall);
  182. }
  183. /* copy user rbs to kernel rbs */
  184. if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
  185. local_irq_enable(); /* force interrupt enable */
  186. ia64_sync_krbs();
  187. }
  188. local_irq_disable(); /* force interrupt disable */
  189. }
  190. static int pal_halt = 1;
  191. static int can_do_pal_halt = 1;
  192. static int __init nohalt_setup(char * str)
  193. {
  194. pal_halt = can_do_pal_halt = 0;
  195. return 1;
  196. }
  197. __setup("nohalt", nohalt_setup);
  198. void
  199. update_pal_halt_status(int status)
  200. {
  201. can_do_pal_halt = pal_halt && status;
  202. }
  203. /*
  204. * We use this if we don't have any better idle routine..
  205. */
  206. void
  207. default_idle (void)
  208. {
  209. local_irq_enable();
  210. while (!need_resched()) {
  211. if (can_do_pal_halt) {
  212. local_irq_disable();
  213. if (!need_resched()) {
  214. safe_halt();
  215. }
  216. local_irq_enable();
  217. } else
  218. cpu_relax();
  219. }
  220. }
  221. #ifdef CONFIG_HOTPLUG_CPU
  222. /* We don't actually take CPU down, just spin without interrupts. */
  223. static inline void play_dead(void)
  224. {
  225. extern void ia64_cpu_local_tick (void);
  226. unsigned int this_cpu = smp_processor_id();
  227. /* Ack it */
  228. __get_cpu_var(cpu_state) = CPU_DEAD;
  229. max_xtp();
  230. local_irq_disable();
  231. idle_task_exit();
  232. ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
  233. /*
  234. * The above is a point of no-return, the processor is
  235. * expected to be in SAL loop now.
  236. */
  237. BUG();
  238. }
  239. #else
  240. static inline void play_dead(void)
  241. {
  242. BUG();
  243. }
  244. #endif /* CONFIG_HOTPLUG_CPU */
  245. static void do_nothing(void *unused)
  246. {
  247. }
  248. /*
  249. * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
  250. * pm_idle and update to new pm_idle value. Required while changing pm_idle
  251. * handler on SMP systems.
  252. *
  253. * Caller must have changed pm_idle to the new value before the call. Old
  254. * pm_idle value will not be used by any CPU after the return of this function.
  255. */
  256. void cpu_idle_wait(void)
  257. {
  258. smp_mb();
  259. /* kick all the CPUs so that they exit out of pm_idle */
  260. smp_call_function(do_nothing, NULL, 1);
  261. }
  262. EXPORT_SYMBOL_GPL(cpu_idle_wait);
  263. void __attribute__((noreturn))
  264. cpu_idle (void)
  265. {
  266. void (*mark_idle)(int) = ia64_mark_idle;
  267. int cpu = smp_processor_id();
  268. /* endless idle loop with no priority at all */
  269. while (1) {
  270. if (can_do_pal_halt) {
  271. current_thread_info()->status &= ~TS_POLLING;
  272. /*
  273. * TS_POLLING-cleared state must be visible before we
  274. * test NEED_RESCHED:
  275. */
  276. smp_mb();
  277. } else {
  278. current_thread_info()->status |= TS_POLLING;
  279. }
  280. if (!need_resched()) {
  281. void (*idle)(void);
  282. #ifdef CONFIG_SMP
  283. min_xtp();
  284. #endif
  285. rmb();
  286. if (mark_idle)
  287. (*mark_idle)(1);
  288. idle = pm_idle;
  289. if (!idle)
  290. idle = default_idle;
  291. (*idle)();
  292. if (mark_idle)
  293. (*mark_idle)(0);
  294. #ifdef CONFIG_SMP
  295. normal_xtp();
  296. #endif
  297. }
  298. preempt_enable_no_resched();
  299. schedule();
  300. preempt_disable();
  301. check_pgt_cache();
  302. if (cpu_is_offline(cpu))
  303. play_dead();
  304. }
  305. }
  306. void
  307. ia64_save_extra (struct task_struct *task)
  308. {
  309. #ifdef CONFIG_PERFMON
  310. unsigned long info;
  311. #endif
  312. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  313. ia64_save_debug_regs(&task->thread.dbr[0]);
  314. #ifdef CONFIG_PERFMON
  315. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  316. pfm_save_regs(task);
  317. info = __get_cpu_var(pfm_syst_info);
  318. if (info & PFM_CPUINFO_SYST_WIDE)
  319. pfm_syst_wide_update_task(task, info, 0);
  320. #endif
  321. #ifdef CONFIG_IA32_SUPPORT
  322. if (IS_IA32_PROCESS(task_pt_regs(task)))
  323. ia32_save_state(task);
  324. #endif
  325. }
  326. void
  327. ia64_load_extra (struct task_struct *task)
  328. {
  329. #ifdef CONFIG_PERFMON
  330. unsigned long info;
  331. #endif
  332. if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
  333. ia64_load_debug_regs(&task->thread.dbr[0]);
  334. #ifdef CONFIG_PERFMON
  335. if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
  336. pfm_load_regs(task);
  337. info = __get_cpu_var(pfm_syst_info);
  338. if (info & PFM_CPUINFO_SYST_WIDE)
  339. pfm_syst_wide_update_task(task, info, 1);
  340. #endif
  341. #ifdef CONFIG_IA32_SUPPORT
  342. if (IS_IA32_PROCESS(task_pt_regs(task)))
  343. ia32_load_state(task);
  344. #endif
  345. }
  346. /*
  347. * Copy the state of an ia-64 thread.
  348. *
  349. * We get here through the following call chain:
  350. *
  351. * from user-level: from kernel:
  352. *
  353. * <clone syscall> <some kernel call frames>
  354. * sys_clone :
  355. * do_fork do_fork
  356. * copy_thread copy_thread
  357. *
  358. * This means that the stack layout is as follows:
  359. *
  360. * +---------------------+ (highest addr)
  361. * | struct pt_regs |
  362. * +---------------------+
  363. * | struct switch_stack |
  364. * +---------------------+
  365. * | |
  366. * | memory stack |
  367. * | | <-- sp (lowest addr)
  368. * +---------------------+
  369. *
  370. * Observe that we copy the unat values that are in pt_regs and switch_stack. Spilling an
  371. * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
  372. * with N=(X & 0x1ff)/8. Thus, copying the unat value preserves the NaT bits ONLY if the
  373. * pt_regs structure in the parent is congruent to that of the child, modulo 512. Since
  374. * the stack is page aligned and the page size is at least 4KB, this is always the case,
  375. * so there is nothing to worry about.
  376. */
  377. int
  378. copy_thread (int nr, unsigned long clone_flags,
  379. unsigned long user_stack_base, unsigned long user_stack_size,
  380. struct task_struct *p, struct pt_regs *regs)
  381. {
  382. extern char ia64_ret_from_clone, ia32_ret_from_clone;
  383. struct switch_stack *child_stack, *stack;
  384. unsigned long rbs, child_rbs, rbs_size;
  385. struct pt_regs *child_ptregs;
  386. int retval = 0;
  387. #ifdef CONFIG_SMP
  388. /*
  389. * For SMP idle threads, fork_by_hand() calls do_fork with
  390. * NULL regs.
  391. */
  392. if (!regs)
  393. return 0;
  394. #endif
  395. stack = ((struct switch_stack *) regs) - 1;
  396. child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
  397. child_stack = (struct switch_stack *) child_ptregs - 1;
  398. /* copy parent's switch_stack & pt_regs to child: */
  399. memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
  400. rbs = (unsigned long) current + IA64_RBS_OFFSET;
  401. child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
  402. rbs_size = stack->ar_bspstore - rbs;
  403. /* copy the parent's register backing store to the child: */
  404. memcpy((void *) child_rbs, (void *) rbs, rbs_size);
  405. if (likely(user_mode(child_ptregs))) {
  406. if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
  407. child_ptregs->r13 = regs->r16; /* see sys_clone2() in entry.S */
  408. if (user_stack_base) {
  409. child_ptregs->r12 = user_stack_base + user_stack_size - 16;
  410. child_ptregs->ar_bspstore = user_stack_base;
  411. child_ptregs->ar_rnat = 0;
  412. child_ptregs->loadrs = 0;
  413. }
  414. } else {
  415. /*
  416. * Note: we simply preserve the relative position of
  417. * the stack pointer here. There is no need to
  418. * allocate a scratch area here, since that will have
  419. * been taken care of by the caller of sys_clone()
  420. * already.
  421. */
  422. child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
  423. child_ptregs->r13 = (unsigned long) p; /* set `current' pointer */
  424. }
  425. child_stack->ar_bspstore = child_rbs + rbs_size;
  426. if (IS_IA32_PROCESS(regs))
  427. child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
  428. else
  429. child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
  430. /* copy parts of thread_struct: */
  431. p->thread.ksp = (unsigned long) child_stack - 16;
  432. /* stop some PSR bits from being inherited.
  433. * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
  434. * therefore we must specify them explicitly here and not include them in
  435. * IA64_PSR_BITS_TO_CLEAR.
  436. */
  437. child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
  438. & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
  439. /*
  440. * NOTE: The calling convention considers all floating point
  441. * registers in the high partition (fph) to be scratch. Since
  442. * the only way to get to this point is through a system call,
  443. * we know that the values in fph are all dead. Hence, there
  444. * is no need to inherit the fph state from the parent to the
  445. * child and all we have to do is to make sure that
  446. * IA64_THREAD_FPH_VALID is cleared in the child.
  447. *
  448. * XXX We could push this optimization a bit further by
  449. * clearing IA64_THREAD_FPH_VALID on ANY system call.
  450. * However, it's not clear this is worth doing. Also, it
  451. * would be a slight deviation from the normal Linux system
  452. * call behavior where scratch registers are preserved across
  453. * system calls (unless used by the system call itself).
  454. */
  455. # define THREAD_FLAGS_TO_CLEAR (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
  456. | IA64_THREAD_PM_VALID)
  457. # define THREAD_FLAGS_TO_SET 0
  458. p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
  459. | THREAD_FLAGS_TO_SET);
  460. ia64_drop_fpu(p); /* don't pick up stale state from a CPU's fph */
  461. #ifdef CONFIG_IA32_SUPPORT
  462. /*
  463. * If we're cloning an IA32 task then save the IA32 extra
  464. * state from the current task to the new task
  465. */
  466. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  467. ia32_save_state(p);
  468. if (clone_flags & CLONE_SETTLS)
  469. retval = ia32_clone_tls(p, child_ptregs);
  470. /* Copy partially mapped page list */
  471. if (!retval)
  472. retval = ia32_copy_ia64_partial_page_list(p,
  473. clone_flags);
  474. }
  475. #endif
  476. #ifdef CONFIG_PERFMON
  477. if (current->thread.pfm_context)
  478. pfm_inherit(p, child_ptregs);
  479. #endif
  480. return retval;
  481. }
  482. static void
  483. do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
  484. {
  485. unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
  486. unsigned long uninitialized_var(ip); /* GCC be quiet */
  487. elf_greg_t *dst = arg;
  488. struct pt_regs *pt;
  489. char nat;
  490. int i;
  491. memset(dst, 0, sizeof(elf_gregset_t)); /* don't leak any kernel bits to user-level */
  492. if (unw_unwind_to_user(info) < 0)
  493. return;
  494. unw_get_sp(info, &sp);
  495. pt = (struct pt_regs *) (sp + 16);
  496. urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
  497. if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
  498. return;
  499. ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
  500. &ar_rnat);
  501. /*
  502. * coredump format:
  503. * r0-r31
  504. * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
  505. * predicate registers (p0-p63)
  506. * b0-b7
  507. * ip cfm user-mask
  508. * ar.rsc ar.bsp ar.bspstore ar.rnat
  509. * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
  510. */
  511. /* r0 is zero */
  512. for (i = 1, mask = (1UL << i); i < 32; ++i) {
  513. unw_get_gr(info, i, &dst[i], &nat);
  514. if (nat)
  515. nat_bits |= mask;
  516. mask <<= 1;
  517. }
  518. dst[32] = nat_bits;
  519. unw_get_pr(info, &dst[33]);
  520. for (i = 0; i < 8; ++i)
  521. unw_get_br(info, i, &dst[34 + i]);
  522. unw_get_rp(info, &ip);
  523. dst[42] = ip + ia64_psr(pt)->ri;
  524. dst[43] = cfm;
  525. dst[44] = pt->cr_ipsr & IA64_PSR_UM;
  526. unw_get_ar(info, UNW_AR_RSC, &dst[45]);
  527. /*
  528. * For bsp and bspstore, unw_get_ar() would return the kernel
  529. * addresses, but we need the user-level addresses instead:
  530. */
  531. dst[46] = urbs_end; /* note: by convention PT_AR_BSP points to the end of the urbs! */
  532. dst[47] = pt->ar_bspstore;
  533. dst[48] = ar_rnat;
  534. unw_get_ar(info, UNW_AR_CCV, &dst[49]);
  535. unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
  536. unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
  537. dst[52] = pt->ar_pfs; /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
  538. unw_get_ar(info, UNW_AR_LC, &dst[53]);
  539. unw_get_ar(info, UNW_AR_EC, &dst[54]);
  540. unw_get_ar(info, UNW_AR_CSD, &dst[55]);
  541. unw_get_ar(info, UNW_AR_SSD, &dst[56]);
  542. }
  543. void
  544. do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
  545. {
  546. elf_fpreg_t *dst = arg;
  547. int i;
  548. memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
  549. if (unw_unwind_to_user(info) < 0)
  550. return;
  551. /* f0 is 0.0, f1 is 1.0 */
  552. for (i = 2; i < 32; ++i)
  553. unw_get_fr(info, i, dst + i);
  554. ia64_flush_fph(task);
  555. if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
  556. memcpy(dst + 32, task->thread.fph, 96*16);
  557. }
  558. void
  559. do_copy_regs (struct unw_frame_info *info, void *arg)
  560. {
  561. do_copy_task_regs(current, info, arg);
  562. }
  563. void
  564. do_dump_fpu (struct unw_frame_info *info, void *arg)
  565. {
  566. do_dump_task_fpu(current, info, arg);
  567. }
  568. void
  569. ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
  570. {
  571. unw_init_running(do_copy_regs, dst);
  572. }
  573. int
  574. dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
  575. {
  576. unw_init_running(do_dump_fpu, dst);
  577. return 1; /* f0-f31 are always valid so we always return 1 */
  578. }
  579. long
  580. sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
  581. struct pt_regs *regs)
  582. {
  583. char *fname;
  584. int error;
  585. fname = getname(filename);
  586. error = PTR_ERR(fname);
  587. if (IS_ERR(fname))
  588. goto out;
  589. error = do_execve(fname, argv, envp, regs);
  590. putname(fname);
  591. out:
  592. return error;
  593. }
  594. pid_t
  595. kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
  596. {
  597. extern void start_kernel_thread (void);
  598. unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
  599. struct {
  600. struct switch_stack sw;
  601. struct pt_regs pt;
  602. } regs;
  603. memset(&regs, 0, sizeof(regs));
  604. regs.pt.cr_iip = helper_fptr[0]; /* set entry point (IP) */
  605. regs.pt.r1 = helper_fptr[1]; /* set GP */
  606. regs.pt.r9 = (unsigned long) fn; /* 1st argument */
  607. regs.pt.r11 = (unsigned long) arg; /* 2nd argument */
  608. /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read. */
  609. regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
  610. regs.pt.cr_ifs = 1UL << 63; /* mark as valid, empty frame */
  611. regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
  612. regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
  613. regs.sw.pr = (1 << PRED_KERNEL_STACK);
  614. return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
  615. }
  616. EXPORT_SYMBOL(kernel_thread);
  617. /* This gets called from kernel_thread() via ia64_invoke_thread_helper(). */
  618. int
  619. kernel_thread_helper (int (*fn)(void *), void *arg)
  620. {
  621. #ifdef CONFIG_IA32_SUPPORT
  622. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  623. /* A kernel thread is always a 64-bit process. */
  624. current->thread.map_base = DEFAULT_MAP_BASE;
  625. current->thread.task_size = DEFAULT_TASK_SIZE;
  626. ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
  627. ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
  628. }
  629. #endif
  630. return (*fn)(arg);
  631. }
  632. /*
  633. * Flush thread state. This is called when a thread does an execve().
  634. */
  635. void
  636. flush_thread (void)
  637. {
  638. /* drop floating-point and debug-register state if it exists: */
  639. current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
  640. ia64_drop_fpu(current);
  641. #ifdef CONFIG_IA32_SUPPORT
  642. if (IS_IA32_PROCESS(task_pt_regs(current))) {
  643. ia32_drop_ia64_partial_page_list(current);
  644. current->thread.task_size = IA32_PAGE_OFFSET;
  645. set_fs(USER_DS);
  646. memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array));
  647. }
  648. #endif
  649. }
  650. /*
  651. * Clean up state associated with current thread. This is called when
  652. * the thread calls exit().
  653. */
  654. void
  655. exit_thread (void)
  656. {
  657. ia64_drop_fpu(current);
  658. #ifdef CONFIG_PERFMON
  659. /* if needed, stop monitoring and flush state to perfmon context */
  660. if (current->thread.pfm_context)
  661. pfm_exit_thread(current);
  662. /* free debug register resources */
  663. if (current->thread.flags & IA64_THREAD_DBG_VALID)
  664. pfm_release_debug_registers(current);
  665. #endif
  666. if (IS_IA32_PROCESS(task_pt_regs(current)))
  667. ia32_drop_ia64_partial_page_list(current);
  668. }
  669. unsigned long
  670. get_wchan (struct task_struct *p)
  671. {
  672. struct unw_frame_info info;
  673. unsigned long ip;
  674. int count = 0;
  675. if (!p || p == current || p->state == TASK_RUNNING)
  676. return 0;
  677. /*
  678. * Note: p may not be a blocked task (it could be current or
  679. * another process running on some other CPU. Rather than
  680. * trying to determine if p is really blocked, we just assume
  681. * it's blocked and rely on the unwind routines to fail
  682. * gracefully if the process wasn't really blocked after all.
  683. * --davidm 99/12/15
  684. */
  685. unw_init_from_blocked_task(&info, p);
  686. do {
  687. if (p->state == TASK_RUNNING)
  688. return 0;
  689. if (unw_unwind(&info) < 0)
  690. return 0;
  691. unw_get_ip(&info, &ip);
  692. if (!in_sched_functions(ip))
  693. return ip;
  694. } while (count++ < 16);
  695. return 0;
  696. }
  697. void
  698. cpu_halt (void)
  699. {
  700. pal_power_mgmt_info_u_t power_info[8];
  701. unsigned long min_power;
  702. int i, min_power_state;
  703. if (ia64_pal_halt_info(power_info) != 0)
  704. return;
  705. min_power_state = 0;
  706. min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
  707. for (i = 1; i < 8; ++i)
  708. if (power_info[i].pal_power_mgmt_info_s.im
  709. && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
  710. min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
  711. min_power_state = i;
  712. }
  713. while (1)
  714. ia64_pal_halt(min_power_state);
  715. }
  716. void machine_shutdown(void)
  717. {
  718. #ifdef CONFIG_HOTPLUG_CPU
  719. int cpu;
  720. for_each_online_cpu(cpu) {
  721. if (cpu != smp_processor_id())
  722. cpu_down(cpu);
  723. }
  724. #endif
  725. #ifdef CONFIG_KEXEC
  726. kexec_disable_iosapic();
  727. #endif
  728. }
  729. void
  730. machine_restart (char *restart_cmd)
  731. {
  732. (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
  733. (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
  734. }
  735. void
  736. machine_halt (void)
  737. {
  738. (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
  739. cpu_halt();
  740. }
  741. void
  742. machine_power_off (void)
  743. {
  744. if (pm_power_off)
  745. pm_power_off();
  746. machine_halt();
  747. }